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Abstract

We present a novel approach for nonparametric regression using wavelet basis
functions. Our proposal, waveMesh, can be applied to non-equispaced data with
sample size not necessarily a power of 2. We develop an efficient proximal gradient
descent algorithm for computing the estimator and establish adaptive minimax
convergence rates. The main appeal of our approach is that it naturally extends to
additive and sparse additive models for a potentially large number of covariates.
We prove minimax optimal convergence rates under a weak compatibility condition
for sparse additive models. The compatibility condition holds when we have a
small number of covariates. Additionally, we establish convergence rates for when
the condition is not met. We complement our theoretical results with empirical
studies comparing waveMesh to existing methods.

1 Introduction

We consider the canonical task of estimating a regression function, f, from observations {(x;,y;) :
1t =1,...,n}, with@; € [0,1], y; € Rand y; = f(x;) +¢; (i = 1,...,n), where ¢; are
independent, mean 0, sub-Gaussian random variables. A popular approach for estimating f is to use
linear combinations of a pre-specified set of basis functions, e.g., polynomials, splines [Wahba, 1990],
wavelets [Daubechies, 1992], or other systems [éencov, 1962]. The weights, or coefficients, in such
a linear combination are often determined using some form of penalized regression. In this paper,
we focus on estimators that use wavelets. Wavelet-based estimators have compelling theoretical
properties. However, a number of issues have limited their adaptation in many non-parametric
applications. The approach proposed in this paper overcomes these issues. Throughout the paper, we
assume basic knowledge of wavelet methods though some key points will be reviewed. For a detailed
introduction to wavelets, see books by Daubechies [1992], Percival and Walden [2006], Vidakovic
[2009], Nason [2010], Ogden [2012].

Wavelets are a system of orthonormal basis functions for L?([0,1]). Wavelets are popular for
representing functions because they allow time and frequency localization [Daubechies, 1990] as
opposed to, say, Fourier bases, which allow only frequency localization. Additionally, wavelet-based
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methods are computationally efficient. The main ingredient of wavelet regression is the discrete
wavelet transform (DWT) and its inverse (IDWT) which can be computed in O(n) operations [Mallat,
1989]. Unfortunately, traditional wavelet methods require stringent conditions on the data, specifically
that x; = i/n with n = 27 for some integer .J. This is not a problem in many signal processing
applications with regularly sampled signals; however, in general non-parametric regression, this
condition will rarely be satisfied. A simple solution for general data types is to ignore irregular
spacing of data [Cai and Brown, 1999, Sardy et al., 1999] and/or artificially extend the signal such
that n = 27 [Strang and Nguyen, 1996, Ch. 8]. Other solutions include transformations [Cai and
Brown, 1998, Pensky and Vidakovic, 2001] or interpolation [Hall and Turlach, 1997, Kovac and
Silverman, 2000, Antoniadis and Fan, 2001] of the data to a regular grid of size 27 The literature
on univariate wavelet methods is quite extensive and cannot be adequately discussed within this
manuscript. In contrast, the literature on wavelet methods for multiple covariates is rather limited,
particularly when the number of covariates is large.

For the multivariate settings with a; € [0, 1]? for p > 2, we consider estimating an additive model,
ie., f(xi) = >, fj (xi;). Additive models naturally extend linear models to capture non-linear
conditional relationships, while retaining some interpretability; they also do not suffer from the
curse of dimensionality. Despite these benefits, wavelet-based additive models have received limited
attention. This is most likely because data with multiple covariates are rarely available on a regular
grid of size n = 27. Sardy and Tseng [2004] fit additive wavelet models by treating the data as if
regularly spaced; however, they do not discuss the case when n is not a power of 2. A number of
proposals transform the data to a regular grid [Amato and Antoniadis, 2001, Zhang and Wong, 2003,
Grez and Vidakovic, 2018]. However, to do this, the density of the covariates must be estimated,
which unnecessarily invokes the curse of dimensionality. In addition, to the best of our knowledge,
there are no wavelet-based methods for fitting additive models in high dimensions (when p > n) that

induce sparsity, i.e., for many j, give a solution with f; =0.

In this paper, we give a simple proposal that effectively extends wavelet-based methods to non-
parametric modeling with a potentially large number of covariates. We present an interpolation-based
approach for dealing with irregularly spaced data when n is not necessarily a power of 2. However,
unlike existing interpolation methods, we do not transform the raw data (x;,y;). As a result, our
method naturally extends to additive and sparse additive models. We also propose a penalized
estimation framework to induce sparsity in high dimensions. We develop a proximal gradient descent
method for computation of our estimator, which leverages fast algorithms for DWT and sparse matrix
multiplication. Furthermore, we establish adaptive minimax convergence rates (up to a log n factor)
similar to that of existing wavelet methods for regularly spaced data. We also establish convergence
rates for our (sparse) additive proposal for a potentially large number of covariates. We discuss an
extension of our proposal to general convex loss functions, and a weighted variation of our penalty
which exhibits improved performance.

In Section 2 we present our univariate, additive and sparse additive proposals. The univariate case
(p = 1) is mainly presented to motivate our proposal. We also present our main algorithm for
computing the estimator. We establish convergence rates of our estimators in Section 3, and present
empirical studies in Section 4. Concluding remarks are given in Section 5.

2 Methodology

2.1 Short background on wavelets

We begin with a quick review of wavelet methods for nonparametric regression covering 3 main
ingredients: (1) wavelet basis functions, (2) the discrete wavelet transform (DWT) and, (3) shrinkage.

First, wavelets are a system of orthonormal basis functions for L2([0, 1]) or L?(R). The bases are
generated by translations and dilations of special functions ¢(-) and v(+) called the father and mother
wavelet, respectively. In greater detail, for any jo > 0, a function f € L?([0, 1]) can be written as
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The coefficients a1 and 3;, are called the father and mother wavelet coefficients, respectively. The
index j is called the resolution level and j, is the minimum resolution level. Different choices of
¢ and v generate various wavelet families. Popular choices are Daubechies [Daubechies, 1988],
Coiflets [Daubechies, 1993], Meyer wavelets [Meyer, 1985], and Spline wavelets [Chui, 1992]; for
an overview of wavelet families, see Ogden [2012]. Often functions with a truncated basis expansion

are considered, i.e., functions of the form f(x) = ZZ 00 Y ajonbion () + le]:jo Zi:)l Birtik(x),
for some J. For regular data with x; =i/n (i = 1,...,n) and n = 27 for some J, we can calculate
the vector f = [f(1/n), f(2/n),..., f(n/n)]T efficiently via our second ingredient described next.

Any vector f = [f(1/n), f(2/n),..., f(n/n)]T, for function f with truncated wavelet basis expan-
sion of order .J, can be written as a linear combination of that truncated wavelet basis. In particular,

f=WTd, where d = (ajoo, s Qggio 15 Bje0s Bjols - - - ,,BJQJ_l)T is the vector of wavelet coef-
ficients, and the rows of W contain the corresponding wavelet basis functions evaluated at x; = i/n.
Specifically, W is an orthogonal matrix with W; ~ /ni;i(i/n), or Wi; = /né;i(i/n), for some
I; the +/n factor is due to convention in the literature and software implementation. By orthogonality,
d = W f; this transformation from f to its wavelet coefficients via multiplication by W is known as
the discrete wavelet transform (DWT). The transformation from wavelet coefficients to fitted values,
via multiplication by W T is known as the inverse discrete wavelet transform (IDWT). The DWT and
IDWT can be computed in O(n) operations via Mallat’s pyramid algorithm [Mallat, 1989]. However,
this is only possible for n = 27.

Finally, shrinkage is employed to obtain estimates of the form f = W " d; for ease of exposition, we
will assume jp = 0; i.e., all except the first element of d correspond to mother wavelet coefficients.
Our methodology and theoretical results do not depend on the choice of jy. The wavelet shrinkage
estimator is given by

d(—argmln*Hy WTd||2+>\Z\d l, (2)

=2
for a positive tuning parameter ), and given data {(i/n,y;) € R? : i = 1,...,n}. The /1 penalty,
Soi o |dil = ||d—1]|1, shrinks the wavelet coefficients and also induces sparsity; the sparsity is

motivated by the desirable parsimony property of wavelets: many functions in L?([0, 1]) are sparse
linear combinations of wavelet bases. The optlmlzatlon problem (2) can be solved exactly as follows:

define d = Wy, the DWT of y. Then, d; = d; and d; = sgn(d;)(|ds] — 204 (i = 2,...,n) where
(z)4+ = max(x,0). Thus, for regularly spaced data with n = 2J wavelet bases provide an efficient
nonparametric estimator. In the following subsection, we discuss some existing methods for dealing
with irregularly spaced data and present our novel proposal, waveMesh.

2.2 A novel interpolation scheme

The common approach to dealing with irregularly spaced data is to map the observed outcomes
{(z4,v:) €[0,1] x R:4i=1,...,n} to approximate outcomes on the regular grid {(i/n, y.) € R? :
i=1,...,K} for K = 27 for some integer .J, via either interpolation or transformation of the data.
The novelty of our approach is a reversal of the direction of interpolation, i.e., interpolation from fitted
values on the regular grid i /K (i = 1,..., K), to approximated fits on the raw data x; (i = 1,...,n).
For our proposal, we require an interpolation scheme which can be written as a linear map. In greater
detail, for any function f evaluated at a regular grid, f=1[f(1/K),...,f(K/K)]" we require

an interpolation scheme f(-) such that [f(z1), ..., f(2n)]T = R for some interpolation matrix
R € R™ X Linear interpolation is a natural choice where
. o (i+1)— Kz , Kz —i
x)=f/K)————+f((+1)/K) 77—, 3
Fla) = 106/ K) 2 + G+ 0/ K) ®
forz € (i/K, (i +1)/K] and f(z) = f(1/K) for z < 1/K; and the interpolation matrix is
1 j=1la; <1/K
R — (j'i‘l)—KQ?i j:LKl‘iLl‘iE(l/K,l] 4)
W= Kei—(j—1)  j=[Kz|,2 € (1/K,1] -

0 otherwise



Our proposal, waveMesh, solves the following convex optimization problem

d arg min f||y RVV—'—dH2 + A|ld=-1]1, (5)
deRE

where K = 2[leg2n] g | = [do,...,d,]" € RE=1 and W € RE*K is the usual DWT matrix. To
evaluate the waveMesh estimate at a new point z € R, one can use r(z) ' W T d, where r is given by
the chosen interpolation scheme. The advantage of waveMesh, over existing methods, is that it can
naturally be extended to additive models. Given data {(z;,y;) € RP™ :i=1,...,n}, let R; €
R"™* XK be the interpolation matrix corresponding to covariate j, i.e., ij = [f('xlq-), ey flza)] "
Then, waveMesh can be extended to fitting additive models by the following optimization problem:

31,...,d — argmln Hy ZR w'd; H +)‘ZHdﬂ 11, (6)
dp ERK 2
and f = [f(z1),.... f(zn)]T = > r fi = - R;WTd;. Finally, we can extend additive

waveMesh to fitting sparse additive models for a potentially large number of covariates. This can be
achieved by adding a sparsity inducing penalty for each component f; as follows:

~ ~ 1 P 2 P
dioody e argmin Sy =S RWTG|| ST sl + R dylle] . ()
dy,....d,eR - -
1;--+,@p j=1 j=1

2.3 Algorithm for waveMesh and sparse additive waveMesh

We now present a proximal gradient descent algorithm [Parikh and Boyd, 2014] for solving the
optimization problem (5). For convex loss ¢ and penalty P, the proximal gradient descent algorithm
iteratively finds the minimizer of {¢(d) + P(d)} via the iteration:

d+D argmin %H (d(l) - tNK(d(l))) - de +4,P(d),

for a step-size t; > 0. The algorithm is guaranteed to converge as long as t; < L~! where L is the
Lipschitz constant of V(+). The step-size can be fixed or selected via a line search algorithm. For
(5), we obtain the following iterative scheme:

1 2
d) ¢+ argmin 5“{(1;( “HRTRWTdD + thTy} - WTolH2 M dY . ®
deRK

Our algorithm has a number of desirable features which make it computationally efficient. Firstly,
(8) is the traditional wavelet problem for regularly spaced data (2), with response vector r =
{(Ix —t;,RTRYWTd® + ;R y}. The vector = can be efficiently calculated via the sparsity of
R and Mallat’s algorithm for DWT [Mallat, 1989]. Secondly, we can use a fixed step size with
t = Lm}m where Ly, is the maximum eigenvalue of RTR. Again, the maximum eigenvalue can
be efficiently computed for sparse matrices, e.g., if R is the linear interpolation matrix then R" R
is tridiagonal, and its eigenvalues can be calculated in O(K log K') operations. The matrix R for
linear interpolation matrix needs to be computed once and requires a sorting of the observations,
i.e. O(nlogn). Finally, by taking advantage of Nesterov-style acceleration [Nesterov, 2007], the
worst-case convergence rate of the algorithm after k steps can be improved from O(k~1) to O(k=2).

The procedure (8) can also be used to solve the additive (6) and sparse additive (7) extensions via a
block coordinate descent algorithm. Specifically, given a set of estimates d; (j = 1,...,p) we can
fix all but one of the vectors d; and optimize over the non-fixed vector, by solving

mldrlelgllze ||1°j RiWTd|3 + Mlld_1]l1 + Ao||R;W T d2, )
for some vector r; € R™. For additive waveMesh (Ay = 0), this reduces to the univariate problem
which can be solved via the algorithm (8). For sparse additive waveMesh (A2 # 0), the problem can
be solved by solving (9) with Ay = 0 following by a soft-scaling operation [Petersen et al., 2016,
Lemma 7.1]. We detail our algorithm for sparse additive waveMesh in the supplementary material.



2.4 Some extensions and variations

In this subsection, we discuss some variations and extensions of waveMesh, namely (1) using a
conservative order for the wavelet basis expansion, (2) extending waveMesh for more general loss
functions and, (3) using a weighted ¢; penalty for shrinkage of wavelet coefficients.

While in (5) we set K = 2llogz 7] we could, instead, set K to be any power of 2. Since the main
computational step in our algorithm is the DWT and IDWT which requires O(K) operations, a
smaller value of K can greatly reduce the computation time. Furthermore, using a smaller K can
lead to superior predictive performance in some settings; this is formalized in our theoretical results
of Section 3 and observed in the simulation studies of Section 4. In the supplementary material we
present additional simulation studies comparing the prediction performance and computation time of
waveMesh for various values of K.

Secondly, waveMesh can be extended to other loss functions appropriate for various data types. For
example, we can extend our methodology to the setting of binary classification via a logistic loss
function. Let y; € {—1,1} (i = 1,...,n) be the observed response. For the univariate case, we get

d + argmin 1 Zlog (1+exp [—y: (RW ' d);]) + Ald_1]1- (10)
deRK 2 i—1

Like the least squares loss, (10) naturally extends to (sparse) additive models. The problem can be
efficiently solved via a proximal gradient descent algorithm described in the supplementary material.

Finally, we consider a variation of our #; penalty motivated by the SURESHRINK procedure of Donoho
and Johnstone [1995]. For a vector d € R¥ of discrete father and mother wavelet coefficients, denote
by d;; the discrete mother wavelet coefficients at resolution level j. For this particular variation, we
require that the minimum resolution level j; > 1. We then propose to solve

log, K
~ 1 .
d < arg min §||y —RWTd|2+ ) Z V2log(7)lld - (11)
deR Jj=Jjo
In the supplementary material we show that the above estimator outperforms the usual waveMesh
estimator (5) in terms of prediction error.

3 Theoretical results

In this section, we study finite sample properties of our univariate estimator (5), and sparse additive
estimator (7). We begin with a quick introduction to Besov spaces and their connection to wavelet
bases. We establish minimax convergence rates (up to a log n factor) for our univariate proposal. We
note that our estimator (5) can be seen as a lasso estimator [Tibshirani, 1996] with design matrix
RW T this allows us to use well-known results for the lasso estimator to easily establish minimax
rates which we present below. Additionally, the lasso formulation allows us to establish sufficient

conditions for the uniqueness of our estimator. Specifically, fitted values } = RWTd are unique
whereas uniqueness of d depends on the matrix RV . In the interest of brevity, we omit derivation of

sufficient conditions for uniqueness of d and refer the interested reader to Tibshirani [2013]. Finally,
we also establish rates for the sparse additive waveMesh proposal for a specific penalty.

Besov spaces on the unit interval, B>

21,42 are function spaces with specific degrees of smoothness

in their derivative: for the Besov norm || - ||Bgl,q2’ B ., = {9 € L*([0,1)) : ||9||B,§1,q2 < C}.
The constants (s, g1, g2) are the parameters of Besov spaces; for a function g € L?([0, 1]) with the
wavelet bases expansion (1), the Besov norm is defined as

o0 /ot q271/q2
s = il | 3 {2evm, L] (12)

9l B
Jj=Jjo

where o, € R2" is the vector of father wavelet coefficients with minimum resolution level ji, and
B; € R? is the vector of mother wavelet coefficients at resolution level j. For completeness, we

also define [|g||B; . = llajollq, + sup;»;, {20(s+1/2=1/a)|| 8 ||, }. We consider Besov spaces



because they generalize well-known classes such as the Sobolev (B3 5, s = 1,2,...), and Holder
(B3, > § > 0) spaces and the class of bounded total variation functions (sandwiched between Bj
and B ). Our first result below establishes near minimax convergence rates for the prediction
error of our estimator. An attractive feature of our estimator is that it achieves this rate without any
information about the parameters (s, ¢1, g2). We recover the usual wavelet rates of Donoho [1995]
under the special case when x; = i/n and R = I,,. Additionally, the theorem justifies the use of
K < n basis functions: if the true function is sufficiently smooth, we recover the usual rates with an
additional log K factor instead of log n.

Theorem 1 Suppose yi = fO(z;) +&; (i = 1,...,n) for mean zero, sub-Gaussian noise ¢;. Define
the estimator f = RW T d = [f(x1),..., f(x,)]T for linear interpolation matrix R (4) where

d + argmin flly RWTd|2 4+ \|d_11,
deRK
for the usual DWT transform matrix W € RE*K gssociated with some orthogonal wavelet family.
Further, define £° = [f°(z1),..., f%(x,)|" and f° = [f°(1/K),..., fO(K/K)|T. Assume that

foe By, 4, and the mother wavelet ), has r null moments and r continuous derivatives where

r > max{l,s}. Suppose X > c1\/t> + 2log K for some t > 0. Then, for sufficiently large K
(specifically K > cin*/ 51 for some constant cy), with probability at least 1 — 2 exp(—t2/2), we

have
logK)

2 ~
o e el £ 210 B3,
where the constant ¢ depends on R and the distribution of ;, and the constant C' depends on R.

The above theorem includes an approximation error term || fO — Rf°||3 which depends on the type
of interpolation matrix R. For example, for linear interpolation of a twice continuously differentiable
function, the approximation error scales as O(K ~2). Thus, for a sufficiently large K (particularly
K = n), the approximation error will disappear. In fact, as long as the approximation error is of the
order (log K /n)?*/(2s+1) we obtain the usual near-minimax rate.

For the sparse additive model, we consider a different model motivated by the Besov norm
(12). Our next theorem provides convergence rates for the estimated function f = Z§:1 fi =
_) R;WTd;, where

di,....d, Jagmin Hy ZR +Z [ Pu(dy) + Aol R;W gl (13)

Ldp eRK

and the penalty Ps is the discrete version of the Besov norm for By ;. Specifically, for d as a
vector of father coefficients, ajox (k = 0,...,27 — 1), and mother wavelet coefficients ;. (j =
. Jik=0,...,29 — 1) the penalty is

290 1

- X il + Cha Z 1Bl )- (14)

J=Jo

Before presenting our next result, we state and discuss the so called compatibility condition. This
condition is common in the high-dimensional literature [van de Geer and Bithlmann, 2009] and crucial
for proving minimax rates for sparse additive models. Briefly, our proof requires the semi-norms
> jes I1f5ll2 and || Z§=1 fjll2 to be somehow ‘compatible’, for an index set S C {1,...,p}. In
the low-dimensional/non-sparse case, i.e., S = {1,...,p}, the semi-norms are compatible by the
inequality > ¢ [| f5[l2 < VISl >2%_1 fll2- The compatibility condition ensures such an inequality
holds for proper subsets S. Furthermore, the compatibility condition can be relaxed at the cost of
proving a slower rate; this is similar to the lasso slow rate [Dalalyan et al., 2017].

Definition 1 The compatibility condition is said to hold for an index set S C {1,2,...,p}, with
compatibility constant 9(S) > 0, if for all v > 0 and any set of discrete wavelet coefficients vector



(di,....,dp), that satisfy 3 g. n~HIR;W T djl2 + Y201 Ps(dy) < 335
holds that 3,5 | By W d; 2 < /IST| S0, B,W T d | /0(S)

Theorem 2 Assume the model y; = fo(:l:i) +e&; (1 =1,...,n)with mean zero, sub-Gaussian <;. Let
f= Z?:l fj be as defined in (13), and let f* = Z]GS* fi= Z]ES* R; WTd;? be an arbitrary
sparse additive function with S* C {1,2,...,p}. Let p = nmax{nf%/ s+ (log p/n)'/?} for a
constant K that depends on the distribution of €; and s. Suppose A > 4p. Then, with probability at
least 1 — 2 exp(—cinp?) — cz exp(—c3np?), we have

ool Hfo fH <Clmax{|5 In i |S*‘(logp) /2 }+n_1 Hfo_f*H;’

where constants c1,co depend on the distribution of €; and s, and Cy depends on k and
|S*| 1 > jes- Ps(d}). Furthermore, if the compatibility condition holds for S* with constant

9(S*) we have

2
2 b

o1 Hfo ‘fH <C’2max{|S In~ 52y \S*|10gp}+4n_1 Hfo_f*

where the constant Cy depends on 9(S*) and |S*|~1 > Py(d?).

jeS* J

4 Numerical experiments

4.1 Experiments for univariate regression

We begin with a simulation to compare the performance of univariate waveMesh to the traditional
interpolation method of Kovac and Silverman [2000], isometric wavelet method of Sardy et al.
[1999]—which treats the data as if it were regularly spaced—and adaptive lifting method of Nunes
et al. [2006]. The former two methods are implemented in the R package wavethres [Nason, 2016]
and the latter is implemented in the ad1ift package [Nunes and Knight, 2017].

We generate the data as y; = f9(z;) +¢&; (i = 1,...,n) for different choices of function f° and
n. The errors are distributed as ; ~ A(0, 2) with o2 chosen such that SNR = 5, where SNR =
var(f)/o%. We consider two different choices of the covariate, z; ~ U[0,1] and z; ~ N(0,1)
scaled to lie in [0, 1]. We consider 6 different choices for the function f°: 1. polynomial, 2. sine,
3. piecewise polynomial, 4. heavy sine, 5. bumps and, 6. doppler. These functions are shown in
Figure 1 of the supplementary material. We apply our proposal, waveMesh, the interpolation proposal
of Kovac and Silverman [2000] and isometric wavelet proposal of Sardy et al. [1999], for a sequence
of 50 X values linear on the log scale and select the A value that minimizes the mean square error,

MSE = n~!|f° — ﬂf; For adaptive lifting, the R implementation automatically selects a tuning
parameter. We implement waveMesh using the linear interpolation matrix (4). We also implement
waveMesh using a small grid, i.e., we fit (5) with K = 2° and 2°. The R implementation of isometric
wavelets requires sample sizes to be a power of two; if not, we pad the response vector with zeros.

We also analyze the motorcycle data studied by Silverman [1985] consisting of 133 head acceleration
measurements in a simulated motorcycle accident taken at 94 unequally spaced time points. To
avoid the issue of repeated measurements, we average acceleration measurements at the same time
leading to a sample size of n = 94. Selection of tuning parameter for waveMesh is done via 5-fold
cross validation. For interpolation [Sardy et al., 1999] and isometric [Kovac and Silverman, 2000]
wavelet proposals, we use the universal thresholding rule for tuning parameter selection [Donoho
and Johnstone, 1994]; this rule leads to near minimax convergence rates like that of Theorem 1.

Table 1 shows the ratio of MSE between our proposal with K = 218271 and other proposals
for uniformly distributed x;. We observe that our proposal has the smallest MSE for all functions
except the Bumps function. Even for the Bumps function, waveMesh exhibits superior prediction
performance over other methods for n = 512. We also observe that waveMesh with smaller values
of K often outperforms the full waveMesh (K = 2Mog> 71y method in terms of MSE. Results for
normally distributed x; are given in the supplementary material. In that case, we again observe that
waveMesh outperforms existing methods for a number of simulation scenarios, except for a few
cases with polynomial and bumps functions. Results for sample sizes that are not powers of two



Table 1: Results for z; ~ U[0, 1] averaged over 100 replicates; the ratio MSE / MSE g is shown
along with 100x the standard error, where MSE g is the MSE of waveMesh with K = 2flogy ]
Boldface values represent the method with the smallest MSE within each row of the table.

waveMesh waveMesh Interpolation  Isometric  Adaptive Lifting
K=2° K =26

Polynomial n=64 1.19(5.51) 1.00(0.00) 124(@&11) 1.78(7.56)  4.28 (29.86)
n=128 092(557) 0.77(3.07) 1.12(6.00) 133(7.18)  3.57 (31.27)
n=256 1.00(620) 0.85(3.15) 1.61(9.04) 1.50(7.67)  4.29 (31.29)
n=512 0.78(3.18) 0.72(2.58) 1.76(6.11) 1.13(2.64)  3.61 (26.47)
Sine n=64 0.97(3.14) 1.00(0.00) 1.47(581) 1.59(6.72)  3.62(33.65)
n=128 076(3.18) 0.76(1.96) 1.29(6.08) 1.46(524)  2.98 (19.78)
n=256 0.66(2.50) 0.70(2.22) 1.93(9.49) 1.34(4.23)  3.41(18.80)
n=512 057(234) 0.56(222) 2.13(778) 124(3.66)  3.63 (28.42)

Piccewise n=64  0.85(1.97) 1.00(0.00) 1.I8(3.12) 1.31(3.62) 1.63 (9.07)
Polynomial n=128 0.77(2.00) 0.82(1.52) 126(2.75) 1.22(2.61) 1.40 (7.36)
n=256 0.82(1.92) 0.79(1.59) 142(3.18) 1.14(2.11) 1.15 (6.04)
n=512 1.01(243) 0.86(1.70) 1.71(3.56) 1.15(1.99) 1.25 (7.24)
Heavy Sine n=64 0.84(2.44) 1.00(0.00) 1.12(3.04) 1.41(3.17) 1.70 (8.35)
n=128 0.75(2.66) 0.82(1.16) 1.17(3.32) 1.50 (4.75) 1.56 (8.26)
n=256 0.66(1.64) 0.72(1.14) 1.37(2.98) 1.33(2.58) 1.53 (6.74)
n=512 0.58(1.59) 0.60(1.18) 1.58(3.05) 1.29 (1.60) 1.50 (9.21)

Bumps n=64 2.11(230) 1.00(0.00) 1.70(1.75) 0.72 (1.3%) 1.07 5.12)
n=128 286(277) 2.11(1.62) 140(1.59) 0.63(0.83)  0.85(2.43)
n=256 4.81(6.82) 3.47(4.39) 1.43(1.89) 0.88(0.99)  0.97 (2.00)
n=512 745(9.13) 5.69(6.77) 1.32(1.35) 1.19(1.03) 1.23 (2.34)
Doppler n=64 0.98(1.69) 1.00(0.00) 1.15(3.45) 1.33(3.20) 1.30 (3.65)
n=128 124(2.02) 0.89(1.04) 1.07(2.13) 1.44(2.57) 1.18 (3.22)
n=25 1.71(3.92) 094(1.38) 120(2.11) 1.29(1.99) 1.30 (3.44)
n=512 2.58(4.85) 1.26(2.01) 121(1.48) 1.10(1.31) 1.23 (3.36)

were similar to the results provided here. In the interest of brevity, these results are presented in the
supplementary material.

In Figure 1, we plot the motorcycle data and fitted functions for each method. Here, waveMesh
reasonably models the data via a smooth function; the interpolation method has a similar but slightly
more biased result around 10 to 25 ms. Adaptive lifting and isometric wavelets lead to highly variable
estimates.

4.2 Experiments for multivariate additive regression

We proceed with a simulation study to illustrate the performance of additive waveMesh compared
to the proposal of Sardy and Tseng [2004], AMlet. We use the author-provided R implementation
for the AMlet proposal; due to a lack of R packages for other proposals, we defer the comparison to
future work. We consider the following simulation setting: we generate data with y; = f1(x;1) +
fo(@io) + f3(wi3) + falwia) +ei (@ =1,...,219), where e; ~ N(0,0?), 2; ~ U[0, 1], and o2 such
that SNR = 10. The four functions f, ..., f4 are the polynomial, sine, piecewise polynomial and
heavy sine functions presented in Figure 1 of the supplementary material. We consider sample sizes
n = 64,100, 256, 500, 512 and results were averaged over 100 data sets. For sample sizes not a
power of 2, the response vector was padded with zeros for the R implementation of AMlet. The
universal threshold rule was used for AMlet as detailed in Sardy and Tseng [2004]; 5-fold cross
validation was used for additive waveMesh for selection of \.

For a real world data analysis, we consider the Boston housing data analyzed by Ravikumar et al.
[2009]. The goal is to predict the median value of homes based on 10 predictors. The data consists of
n = 506 observations; we use 256 observations for training and calculate the test error on the rest.
Tuning parameters are selected in the same way as the simulation study above.

Table 2 shows the MSE of both proposals for various choices of n for the simulation study. The
results clearly indicate that additive waveMesh offers substantial improvement over AMlet, especially
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Figure 1: Fitted functions to the motorcycle accident dataset for each of the 4 methods.

for smaller values of n. We observe similar results for the Boston housing data: the average test
error is 21.2 for waveMesh (standard error 0.34) and 25.1 for AMlet (standard error 0.42). These
results support our theoretical analysis and underscore the advantages of waveMesh in sparse high-
dimensional additive models.

5 Conclusion

In this paper, we introduced waveMesh, a novel method for non-parametric regression using wavelets.
Unlike traditional methods, waveMesh does not require that covariates are uniformly spaced on the
unit interval, nor does it require that the sample size is a power of 2. We achieve this using a novel
interpolation approach for wavelets. The main appeal of our proposal is that it naturally extends to
multivariate additive models for a potentially large number of covariates.

To compute the estimator, we proposed an efficient proximal gradient descent algorithm, which
leverages existing techniques for fast computation of the DWT. We established minimax convergence
rates for our univariate proposal over a large class of Besov spaces. For a particular Besov space,
we also established minimax convergence rates for our (sparse) additive framework. The R package
waveMesh, which implements our methodology, will soon be publicly available on GitHub.

Table 2: MSE and standard error of waveMesh and AMlet averaged over 100 data sets.

n = 64 n = 100 n =128 n = 256 n = 500 n =512
waveMesh  10.76 (0.31) 11.35(0.33) 8.82(0.24) 5.45(0.11) 4.34 (0.08) 4.08 (0.07)
AMlet 100.48 (1.83) 34.58 (1.05) 45.49(1.09) 19.57(0.33) 10.67 (0.12) 8.90(0.11)
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