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Abstract

We consider general Gaussian latent tree models in which the observed variables
are not restricted to be leaves of the tree. Extending related recent work, we
give a full semi-algebraic description of the set of covariance matrices of any
such model. In other words, we find polynomial constraints that characterize
when a matrix is the covariance matrix of a distribution in a given latent tree
model. However, leveraging these constraints to test a given such model is often
complicated by the number of constraints being large and by singularities of
individual polynomials, which may invalidate standard approximations to relevant
probability distributions. Illustrating with the star tree, we propose a new testing
methodology that circumvents singularity issues by trading off some statistical
estimation efficiency and handles cases with many constraints through recent
advances on Gaussian approximation for maxima of sums of high-dimensional
random vectors. Our test avoids the need to maximize the possibly multimodal
likelihood function of such models and is applicable to models with larger number
of variables. These points are illustrated in numerical experiments.

1 Introduction

Latent tree models are associated to a tree-structured graph in which some nodes represent observed
variables and others represent unobserved (latent) variables. Due to their tractability, these models
have found many applications in fields ranging from the traditional life sciences, biology and
psychology to contemporary areas such as artificial intelligence and computer vision; refer to Mourad
et al. [2013] for a comprehensive review. In this paper, we study the problem of testing the goodness-
of-fit of a postulated Gaussian latent tree model to an observed dataset. In a low dimensional
setting where the number of observed variables is small relative to the sample size at hand, testing is
usually based on the likelihood ratio which measures the divergence in maximum likelihood between
the postulated latent tree model and an unconstrained Gaussian model. This, however, requires
maximization of the possibly multimodal likelihood function of latent tree models. In contrast, recent
work of Shiers et al. [2016] takes a different approach and leverages known polynomial constraints
on the covariance matrix of the observed variables in a given Gaussian latent tree. Specifically, the
postulated latent tree is tested with an aggregate statistic formed from estimates of the polynomial
quantities involved. This approach can be traced back to Spearman [1904] and Wishart [1928]; also
see Drton et al. [2007, 2008].

We make the following new contributions. In Section 2, we extend the polynomial characterization of
Shiers et al. [2016] to cases where observed nodes may also be inner nodes of the tree as considered,
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for example, in the tree learning algorithms of Choi et al. [2011]. Section 3 describes how we
may use polynomial equality constraints to test a star tree model. We base ourselves on the recent
groundbreaking work of Chernozhukov et al. [2013a], form our test statistic as the maximum of
unbiased estimates of the relevant polynomials, and calibrate the critical value for testing based on
multiplier bootstrapping techniques. This new way of using the polynomials to furnish a test allows
us to handle latent trees with a larger number of observed variables and avoids potential singularity
issues caused by individual polynomials. Numerical experiments in Section 4 makes comparisons to
the likelihood ratio test and assesses the size of our tests in finite samples. Section 5 discusses future
research directions.

Notation. Let 1 ≤ r ≤ m be two positive integers. We let [m] = {1, . . . ,m} and write
{
m
r

}
:=

{I ⊆ [m] : |I| = r} for the collection of subsets of [m] with cardinality r. The supremum norm of
a vector is written ‖ · ‖∞. For two random variables R1 and R2, the symbols R1 =d R2 indicates
that R1 and R2 have the same distributions, and R1 ≈d R2 indicates that the distributions are
approximately equal. N(µ, σ2) means a normal distribution with mean µ and standard deviation σ2.

2 Characterization of general Gaussian latent trees

We first provide the definition of the models considered in this paper. A tree is an undirected graph in
which any two nodes are connected by precisely one path. Let T = (V,E) be a tree, where V is the
set of nodes, and E is the set of edges which we take to be unordered duples of nodes in V . We say
that T is a latent tree if it is paired with a set X = {X1, . . . , Xm} ⊂ V , corresponding to m observed
variables, such that v ∈ X whenever v ∈ V is of degree less than or equal to two. In particular, X
contains all leaf nodes of the tree T (i.e., nodes of degree 1), but it may contain additional nodes.
The nodes in V \X correspond to latent variables that are not observed but each have at least three
other neighbors in the tree. This minimal degree requirements of 3 on the latent nodes ensures
identifiability [Choi et al., 2011, p.1778]. In the terminology of mathematical phylogenetics, T is a
semi-labeled tree on X with an injective labeling map; see Semple and Steel [2003, p.16]. However,
phylogenetic trees are latent trees restricted to have X equal to the set of leaves. While we have
defined X as a set of nodes, it will be convenient to abuse notation slightly and let X also denote a
random vector (X1, . . . , Xm)′ whose coordinates correspond to the nodes in question. The context
will clarify whether we refer to nodes or random variables.

Now we present the polynomial characterization of a Gaussian latent tree graphical model that
extends the results in Shiers et al. [2016]. The Gaussian graphical model on T , denotedM(T ), is
the set of all |V |-variate Gaussian distributions respecting the pairwise Markov property of T , i.e.,
for any pair u, v ∈ V with (u, v) 6∈ E, the random variables associated to u and v are conditionally
independent given the variables corresponding to V \{u, v}. The T -Gaussian latent tree model on X,
denotedMX(T ), is the set of all m-variate Gaussian distributions that are the marginal distribution
for X under some distribution inM(T ). For a given distribution inM(T ), let ρpq be the Pearson
correlation of the pair (Xp, Xq) for any 1 ≤ p 6= q ≤ m. The pairwise Markov property implies that

ρpq =
∏

(u,v)∈phT (Xp,Xq)

ρ′uv, (2.1)

where phT (Xp, Xq) denotes the set of edges on the unique path that connects Xp and Xq in T , and
ρ′uv is the Pearson correlation between a pair of nodes u and v in V . Of course, ρ′uv = ρpq if u = Xp

and v = Xq . In the sequel, we often abbreviate phT (Xp, Xq) as phT (p, q) for simplicity.

Suppose Σ = (σpq)1≤p,q≤m is the covariance matrix of X. Our task is to test whether Σ comes
fromMX(T ) against a saturated Gaussian graphical model. We assume that all edges in the tree T
correspond to a nonzero correlation, so that Σ contains no zero entries. The covariance matrices for
MX(T ) are parametrized via (2.1). As shown in Shiers et al. [2016], this set of covariance matrices
may be characterized by leveraging results on pseudo-metrics defined on X. Suppose w : E −→ R≥0
is a function that assigns non-negative weights to the edges in E. One can then define a pseudo-metric
δw : X×X −→ R≥0 by

δw(Xp, Xq) =

{ ∑
e∈phT (p,q) w(e) : p 6= q,

0 : p = q.
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This is known as a T -induced pseudo-metric on X. The following lemma characterizes all the
pseudo-metrics on X that are T -induced. The proof is a bit delicate and is given in our supplementary
material.
Lemma 2.1. Suppose δ : X×X −→ R≥0 is a pseudo-metric defined on X. Let δpq = δ(Xp, Xq)
for any p, q ∈ [m] for simplicity. Then δ is a T -induced pseudo-metric if and only if for any four
distinct 1 ≤ p, q, r, s ≤ m such that phT (p, q) ∩ phT (r, s) = ∅,

δpq + δrs ≤ δpr + δqs = δps + δqr, (2.2)

and for any three distinct 1 ≤ p, q, r ≤ m,

δpq + δqr = δpr (2.3)

if phT (p, r) = phT (p, q) ∪ phT (q, r).

Lemma 2.1 modifies Corollary 1 in Shiers et al. [2016] by requiring the extra equality constraints in
(2.3) concerning three distinct variable indices. For any subset S ⊂ X, let T |S be the restriction of
T to S, that is, the minimal subtree of T induced by the elements in S with all the nodes of degree
two not in S suppressed [Semple and Steel, 2003, p.110]; refer to Section 7 in our supplementary
material for the related graphical notions. Shiers et al. [2016] only consider phylogenetic trees in
which the observed variables X always correspond to the set of nodes in T with degree one. In
this case the constraint in (2.3) is vacuous. Indeed, if Xp, Xq, Xr are any three observed nodes
in T , then T |{Xp, Xq, Xr} must have the configuration on the left panel of Figure 2.1, and it
can be seen that phT (πp, πq) ∪ phT (πq, πr) 6= phT (πp, πr) for any permutation (πp, πq, πr) of
(p, q, r). However, for a general latent tree T whose observed nodes are not confined to be the leaves,
condition (2.3) is necessary for a pseudo-metric δ to be T -induced: T |{Xp, Xq, Xr} may take the
configuration on the right panel of Figure 2.1, where for some permutation (πp, πq, πr) of (p, q, r),
phT (πp, πr) = phT (πp, πq) ∪ phT (πq, πr), and it must hold that

δπpπr = δπpπq + δπqπr

if δ is T -induced.

While condition (2.2) appears in the result of Shiers et al. [2016], it may lead to different patterns
of constraints for a general latent tree. For four distinct indices 1 ≤ p, q, r, s ≤ m, there are
three possible partitions into two subsets of equal sizes, namely, {p, q}|{r, s}, {p, r}|{q, s} and
{p, s}|{q, r}. These three partitions correspond to the path pairs

(phT (p, q), phT (r, s)), (phT (p, r), phT (q, s)) and (phT (p, s), phT (q, r)) (2.4)

respectively. Now refer to Figure 2.2 which shows all possible configurations of the restriction of T
to the four observed variables Xp, Xq, Xr, Xs. In Figure 2.2(a)-(c), up to permutations of the indices
{p, q, r, s}, only one of three pairs in (2.4) can give an empty set when the intersection of its two
component paths is taken. In light of (2.2), this implies that, for some permutation π of the indices
p, q, r, s,

δπpπq + δπrπs ≤ δπpπr + δπqπs = δπpπs + δπqπr . (2.5)
On the contrary, in Figure 2.2(d) and (e), it must be the case that each of the three path pairs in
(2.4) gives an empty set when an intersection is taken between its two component paths, giving the
equalities δpq + δrs = δpr + δqs = δps + δqr in consideration of (2.2).

Lemma 2.1 readily implies a characterization of the latent tree model MX(T ) via polynomial
constraints in the entries of the covariance matrix Σ = (σpq) as spelt out in the ensuing corollary. Its
proof employs similar arguments in Shiers et al. [2016] and is deferred to our supplementary material.
In what follows, we letQ ⊂

{
m
4

}
be the set of all quadruples {p, q, r, s} ∈

{
m
4

}
such that only one of

the three path pairs in (2.4) gives an empty set when the union of its two component paths is taken. In
other words, Q contains all S ∈

{
m
4

}
such that T |S is one of the configurations in Figure 2.2(a)-(c).

Given {p, q, r, s} ∈ Q, we write {p, q}|{r, s} ∈ Q to indicate that {p, q, r, s} belongs to Q in a
way that it is the path pairs phT (p, q) and phT (r, s) that have empty intersection. Similarly, we
will let L be the set of all triples S = {p, q, r} ∈

{
m
3

}
such that T |S has the configuration in

Figure 2.1(b). We will use the notation p− q − r ∈ L to indicate that q is the “middle point" such
that phT (p, q) ∩ phT (q, r) = ∅.
Corollary 2.2. Suppose Σ = (σpq)1≤p,q≤m is the covariance matrix of X and has no zero entries.
The following are together necessary and sufficient for the distribution of X to belong toMX(T ):
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(a) (b)

Figure 2.1: The possible restrictions of a latent tree to three distinct observed variables. Observed
variables correspond to solid black dots, latent variables to grey circles.

Figure 2.2: The possible restrictions of a latent tree to four distinct observed variables. From left to
right, (a)-(e). Observed variables correspond to solid black dots, latent variables to grey circles.

i. Inequality constraints:

(a) For any {p, q, r} ∈
{
m
3

}
, σpqσprσqr ≥ 0.

(b) For any {p, q, r} ∈
{
m
3

}
\L,

σ2
pqσ

2
qr − σ2

qqσ
2
pr, σ

2
prσ

2
qr − σ2

rrσ
2
pq, σ

2
pqσ

2
pr − σ2

ppσ
2
qr ≤ 0.

(c) For any {p, q}|{r, s} ∈ Q, σ2
prσ

2
qs − σ2

pqσ
2
rs ≤ 0.

ii. Equality constraints:

(a) For any p− q − r ∈ L, σpqσqr − σqqσpr = 0.
(b) For any {p, q}|{r, s} ∈ Q, σprσqs − σpsσqr = 0.

(c) For any {p, q, r, s} 6∈ Q, σpsσqr − σprσqs = σpqσrs − σprσqs = 0.

3 Testing a star tree model

In this section we illustrate how one can test a postulated Gaussian latent tree model using Corol-
lary 2.2. In order to focus the discussion we treat the simple but important special case of a star
tree, which corresponds to a single factor model. A single factor model with m observed variables
X = {X1 . . . , Xm} can be described by the linear system of equations

Xp = µp + βpH + εp, 1 ≤ p ≤ m, (3.1)

where µp is the mean of Xp, H ∼ N(0, 1) is a latent variable, βp is the loading coefficient for
variable Xp, and εp ∼ N(0, σ2

p,ε) is the idiosyncratic error for variable Xp. All of H , ε1, . . . , εm
are independent. The model postulates that X1, . . . , Xm are conditionally independent given H . It
thus corresponds to the graphical model associated with a star tree T? = (V,E) with V = X ∪ {H},
E = {(H,Xp)}1≤p≤m.
Let X1, . . . ,Xn be i.i.d. draws from the distribution of X, which is assumed to be Gaussian. Our goal
is to test whether the distribution of X belongs to the single factor modelMX(T?). Without loss of
generality, we may assume that µp = 0 for all p ∈ [m] [Anderson, 2003, Theorem 3.3.2]. We proceed
by testing whether all the constraints in Corollary 2.2 are simultaneously satisfied with respect to the
latent tree T?. For simplicity, we will focus on testing the equality constraints in Corollary 2.2(ii),
and briefly discuss how one can incorporate the inequality constraints in Corollary 2.2(i) in Section 5.
For T?, both sets L and Q are empty, so that Corollary 2.2(ii)(a) and (b) are automatically satisfied.
Hence, we are only left with Corollary 2.2(ii)(c): For any {p, q, r, s} ∈

{
m
4

}
,

σpsσqr − σprσqs = σpqσrs − σprσqs = 0. (3.2)

The two polynomials above, equal to det(Σpq,sr) and det(Σps,qr) respectively, are known as tetrads
in the literature of factor analysis. It is well-known that they define equality constraints for a single
factor model [Bekker and de Leeuw, 1987, Bollen and Ting, 1993, Drton et al., 2007].
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3.1 Estimating tetrads

The idea now is to estimate each one of the 2 ·
(
m
4

)
tetrads in (3.2), and aggregate the estimates in a

test statistic. From the sample covariance matrix S = (spq) = n−1
∑n
i=1 XiX

T
i , a straightforward

sample tetrad estimate, say spssqr − sprsqs, can be computed. If one define the vectors t =
(sps, sqr, spr, sqs)

′ and t0 = (σps, σqr, σpr, σqs)
′, as well as the function g(t) = spssqr − sprsqs,

by the delta method it is expected that
√
n(g(t)− g(t0))→ N(0,∇g(t0)′V∇g(t0)), where V is the

limiting covariance matrix of
√
n(t−t0) and∇g(t0) is the gradient of g(·) evaluated at t0. However,

the distribution of this sample tetrad becomes asymptotically degenerate at singularities, that is, when
the gradient∇g(t0) vanishes, which happens if the underlying true covariances are zero [Drton and
Xiao, 2016]. Consequently, a standardized sample tetrad cannot be well approximated by a normal
distribution if the underlying correlations are weak. More generally, even for stronger correlations,
we found it difficult to reliably estimate the variance of all sample tetrads in larger-scale models.

We propose alternative estimators for which sampling variability can be estimated more easily. Due to
the independence of samples, the tetrad det(Σpq,sr) = σpsσqr − σprσqs can be estimated unbiasedly
with the differences

Yi,(pq)(sr) := Xp,iXs,iXq,i+1Xr,i+1 −Xp,iXr,iXq,i+1Xs,i+1, i = 1, . . . , n− 1, (3.3)

where the subscripts in Yi,(pq)(sr) is indicative of the row and column indices for the subma-
trix Σpq,sr. These differences can then be averaged for an estimate of the tetrad. Similarly,
one can form Yi,(ps)(qr) to estimate det(Σps,qr) in (3.2). If we arrange all the tetrads from
{det(Σpq,sr), det(Σps,qr)}{p,q,r,s}∈{m4} into a 2

(
m
4

)
-vector Θ, and correspondingly arrange the esti-

mates {Yi,(pq)(sr), Yi,(ps)(qr)}{p,q,r,s}∈{m4} into a 2
(
m
4

)
-vector Yi for each i, then the central limit

theorem for 1-dependent sums ensures that for sufficiently large sample size n we have the distribu-
tional approximation √

n− 1(Ȳ −Θ) ≈d N(0,Υ), (3.4)

where Ȳ = (n − 1)−1
∑n−1
i=1 Yi and Υ = Cov[Y1,Y1] + 2Cov[Y1,Y2]. The latter limiting

covariance matrix will not degenerate to a singular matrix even if the underlying covariance matrix
for X has zeros at which some of the tetrads are singular (i.e. have zero gradient).

3.2 Bootstrap test

The fact from (3.4) could serve as the starting point for a test of modelM(T?). However, the normal
approximation quickly becomes of concern when moving beyond a small number of variables m.
Indeed, the dimension of Θ, 2

(
m
4

)
, may well be close to the sample size n, or even larger. For

instance, if n = 250, for a model with merely 8 observed variables the dimension of Θ is already
2
(
8
4

)
= 140, more than half the sample size. A recent work of Zhang and Wu [2017], which follows

up on the groundbreaking paper of Chernozhukov et al. [2013a] on Gaussian approximation for
maxima of high dimensional independent sums, suggests that while the approximation in (3.4) may
be dubious, by taking a supremum norm on both sides, the Gaussian approximation

√
n− 1‖(Ȳ −Θ)‖∞ ≈d ‖Z‖∞, (3.5)

where Z =d N(0,Υ), can be valid even the dimension of Θ is large compared to n. In fact, the
original work of Chernozhukov et al. [2013a] suggested that asymptotically, the dimension can be
sub-exponential in the sample size for the Gaussian approximation to hold. In what follows, we will
discuss implementation of and experiments with a vanishing tetrad test based on (3.5). While it is
possible to adapt the supporting theory for the present application, the technical details are involved
and beyond the scope of this conference paper.

Since Ȳ from (3.4) and (3.5) is an estimator of the vector of tetrads Θ, it is natural to use ‖Ȳ‖∞ as the
test statistic and reject the modelM(T?) for large values of ‖Ȳ‖∞. The Gaussian approximation (3.5)
suggests that whenM(T?) is true, i.e. Θ = 0,

√
n− 1‖Y‖∞ is distributed as ‖Z‖∞. Nevertheless,

to calibrate critical values based on the distribution of ‖Z‖∞, one must estimate the unknown
covariance matrix Υ. Zhang and Wu [2017] suggested the batched mean estimator

Υ̂ =
1

Bω

ω∑
b=1

(∑
i∈Lb

(Yi − Ȳ)

)(∑
i∈Lb

(Yi − Ȳ)

)T
, (3.6)
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where for a batch size B and ω := b(n− 1)/Bc one considers the non-overlapping sets of samples
Lb = {1 + (b− 1)B, . . . , bB}, b = 1, . . . , ω. The “batching" aims to capture the dependence among
the Yi’s, and has been widely studied in the time series literature [Bühlmann, 2002, Lahiri, 2003]. If
modelM(T?) is true, then (3.5) yields that

T :=
√
n− 1‖ diag(Υ̂)−1/2Ȳ‖∞ ≈d ‖diag(Υ̂)−1/2Z̃‖∞,

where the right-hand side is to interpreted conditionally on Υ̂, with Z̃ ∼ N(0, Υ̂) and diag(Υ̂)

comprising only the diagonal of Υ̂. More precisely, for a fixed test level α ∈ (0, 1), if we define q1−α
to be the conditional (1− α)-quantile of the distribution of ‖diag(Υ̂)−1/2Z̃‖∞ given Υ̂, then

P (T > q1−α) ≈ α, (3.7)

according to Zhang and Wu [2017, Corollary 5.4]. We will use T as our test statistic for the model
M(T?), and calibrate the critical value based on (3.7) by simulating the conditional quantile q1−α
from ‖ diag(Υ̂)−1/2Z̃‖∞ for fixed Υ̂.

3.3 Implementation

While our above presentation invoked the estimate Υ̂, which is a matrix with O(m8) entries, we
may in fact bypass the problem of computing such a large covariance matrix for the tetrad estimates.
To simulate the conditional quantile q1−α in (3.7), let e1, . . . , eω be i.i.d. standard normal random
variables, and consider the expression∥∥∥∥∥diag(Υ̂)−1/2√

Bω

ω∑
b=1

eb

(∑
i∈Lb

(Yi − Ȳ)

)∥∥∥∥∥
∞

, (3.8)

which has exactly the same distribution as ‖ diag(Υ̂)−1/2Z̃‖∞ conditioning on the data X1, . . . ,Xn.
We emphasize the O(m4) diagonal entries of Υ̂ are easily computed as variances in (3.6). In
conclusion, we perform the following multiplier bootstrap procedure: (i) Generate many, say E =
1000, sets of {e1, . . . , eω}, (ii) evaluate (3.8) for each of these E sets, and (iii) take q1−α to be the
1−α quantile from the resulting E numbers. Despite the bootstrap being a computationally intensive
process, it is not hard to see that the evaluation of (3.8) for all E sets of multipliers will involve
O(m4nE) operations, which even for moderate m is far less than the O(m8) operations needed to
obtain an entire covariance matrix for all tetrads.
Remark. It is instructive to make a comparison with the testing methodology in Shiers et al. [2016],
where the focus was on lower-dimensional applications. Suppose τ : Σ 7→ Θ is the function that
maps the covariance matrix Σ into the vector Θ of tetrads in (3.2). To test the vanishing of the tetrads,
Shiers et al. [2016] form plug-in estimates Θ̂ = τ(S) for Θ with the sample covariance matrix
S = n−1

∑n
i=1 XiX

T
i . Letting Var[τ(S)] be the covariance matrix for the 2

(
m
4

)
-vector τ(S), they

form a Hotelling’s T 2 type statistic as

nτ(S)T (V̂ar[τ(S)])−1τ(S), (3.9)

where V̂ar[τ(S)] is a consistent estimate for Var[τ(S)]; see also Drton et al. [2008]. For a test of
model M(T?), this statistic is now compared to a chi-square distribution with 2

(
m
4

)
degrees of

freedom. While this calibration is justified for sufficiently large sample size n by a joint normal
approximation analogous to (3.5), it can be problematic for large m. Even more pressing can be
the computational disadvantage that one explicitly uses the entire matrix V̂ar[τ(S)] with its O(m8)
entries.

4 Numerical experiments

We now report on some experiments with the bootstrap test based on the sup-norm of the estimated
tetrads T proposed in Section 3. In the implementation we always use E = 1000 sets of normal
multipliers to simulate the quantile q1−α and work with batch sizeB = 3 in (3.8). We also benchmark
our methodology against the likelihood ratio test for factor models implemented by the function
factanal in the base library of R, which implements a likelihood ratio (LR) test with Bartlett
correction for more accurate asymptotic approximation. The critical value of the LR test is calibrated
with the chi-square distribution with

(
m−1
2

)
− 1 degrees of freedom [Drton et al., 2009, p.99].
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Figure 4.1: Empirical test sizes vs nominal test levels based on 500 experiments. Data are generated
based onMX(T?) with parameters as prescribed in the text. Upper panels: (m,n) = (20, 250).
Lower panels: (m,n) = (20, 500). Left panels: Setup 1. Right panels: Setup 2. Open circles: Test
based on the statistic T . Crosses: LR test implemented by factanal.

4.1 Low dimensional setup

We first consider two experimental setups, each with data generated from the one-factor model in
(3.1) for both (m,n) = (20, 250) and (m,n) = (20, 500). The model parameters are as follows:
(i) Setup 1: all loadings βp and error variances σ2

p,ε are taken to be 1. (ii) Setup 2: β1 and β2 are
taken to be 10, while the other loadings are independently generated based on a normal distribution
with mean 0 and variance 0.2. The error variances σ2

p,ε all equal 1/3.

For different nominal test levels α in the range (0, 1) that are 0.01 apart, we compare the empirical
sizes of our test based on the statistic T and the likelihood ratio (LR) test implemented by the function
factanal, using 500 repetitions of experiments. The results are shown in Figure 4.1. The left two
panels correspond to Setup 1 and the right two panels correspond to Setup 2, while the upper panels
correspond to (m,n) = (20, 250) and lower correspond to (m,n) = (20, 500). While we show the
entire range (0, 1) for the x-axis, practical interest is typically in the initial part where the nominal
error rate is in say (0, 0.1).

In Setup 1, for both sample sizes, the empirical test sizes of the LR test align almost perfectly with the
45◦ line as one would expect from classical theory. The sizes of our test based on T also align better
with 45◦ line as sample sizes grow. Note that for nominal test levels that are of practical interest, T
also gives conservative test sizes for both sample sizes.

In Setup 2, where parameters are close to being “singular", one can see the true advantage of using
T over the LR test. The empirical test sizes of the LR test with factanal do not align well with
the 45◦ line as one normally expect from classical theory, whereas the test sizes of our statistic T
lean closer to the 45◦ line as n increases. Particularly the performance of the LR test is problematic
since, by rejecting the true model (3.1) all too often, it fails to give even an approximate control
on type 1 error. Note that the values of β and σp,ε are such that, for the most part, the observed
variables X are rather weakly dependent on each other. If the observations were in fact independent
then the likelihood ratio test statistic does not exhibit a chi-square limiting distribution [Drton, 2009,
Theorem 6.1]. This highlights the fact that, in addition to avoiding any non-convex optimization of
the likelihood function of the factor model, our approach based on the simple estimates from (3.3) is
not subject to non-standard limiting behaviors that plague the LR test when the parameter values lean
close to singularities of the parameter space [Drton, 2009].
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Figure 4.2: Empirical test size vs nominal test levels based on 500 experiments for data generated
fromMX(T?) under Setup 1 and (m,n) = (100, 250). Open circles: Test based on T . Crosses: LR
test implemented by factanal.

4.2 Higher dimensional setup

Our last experiment aims to compare the test sizes of the two tests when the number of observed
variables m is relatively large compared to n. Data are exactly as in Setup 1, except that (m,n) =
(100, 250). For such a model with large m, the number of tetrads involved in our testing methodology
is so large that even after taking the supremum norm one shouldn’t expect (3.5) to hold; for example,
whenm = 50, the dimension of Θ is 2 ·

(
50
4

)
= 460600, and one should be skeptical about the validity

of (3.5) when we only have the sample size n = 250. To implement our test, we first randomly select
10000 of the 2 ·

(
m
4

)
tetrads, and proceed with the bootstrapping procedure in (3.8) with Yi being

estimates for this selected subset of tetrads alone. The choice of 10000 tetrads to be tested is based on
the fact that, in the previous experiments with (m,n) = (20, 250), our test gives reasonable empirical
test sizes for a practical range of nominal levels when the total number of tetrads being tested, 2 ·

(
20
4

)
,

is approximately 10000. Since the subset of tetrads is randomly selected, our test is still expected to
approximately control the test sizes at nominal level. The results are reported in Figure 4.2 .

As seen, the test based on T has the main features seen in the first experiment. In particular, it
successfully controls type I error rates for the practical range of α ∈ (0, 0.1). In contrast, with m
increased to 100, the LR test drastically fails to control type I error rate. This is despite the fact that
the setup is regular with parameter values that are far from any model singularity. The reason for the
failure of the LR test is the fact that the dimension is on the same order as the sample size of 250. The
sample size is not large enough for chi-square asymptotics based on fixed dimension m to “kick in”.

5 Discussion

In this paper we have established a full set of polynomial constraints on the covariance matrix of
the observed variables, in the form of both equalities and inequalities, that characterizes a general
Gaussian latent tree model whose observed nodes are not confined to be the leaves. Focusing on
the special case of a star tree model, we also experimented with a new methodology for testing
the equality constraints by forming unbiased estimates of the polynomials involved. In simulation
studies, when the number of variables involved is large or the underlying parameters are close to
being “singular", our test compares favorably with the likelihood ratio test in terms of test size.

Our results have paved the way for developing a full-fledged algebraic test for a Gaussian latent tree
model. Although we have not pursued this generality in the present conference paper, we give a brief
discussion here. Of course, to do so one would first need to write an efficient graph algorithm to tease
out all the polynomials entailed by Corollary 2.2 for a given latent tree input. Then the current testing
methodology can be adopted by forming unbiased estimates of all these polynomials at hand, which
also brings to our attention that in Section 3 only the equality constraints in Corollary 2.2(ii) were used
to test the single factor model. For illustration, take the 3-degree monomial in Corollary 2.2 (i)(a) as

8



an example. Like (3.3), one may form a summand Yi,(p,q,r) = Xp,iXq,iXp,i+1Xr,i+1Xq,i+2Xr,i+2,

which is unbiased for σpqσprσqr, and then use (n−2)−1
∑n−2
i=1 Yi,(p,q,r) as an averaged estimator. To

incorporate the constraints in Corollary 2.2 (i) into our test one can first arrange all those inequalities
into “less than" conditions, i.e., Corollary 2.2 (i)(a) becomes −σpqσprσqr ≤ 0 and the corresponding
estimate becomes −(n− 2)−1

∑n−2
i=1 Yi,(p,q,r). Following that, in the definition of the test statistic

T , one can take a maximum over all the unbiased estimates for the “less than" versions of the
polynomials in Corollary 2.2(i), in addition to the absolute values of the estimates for the polynomials
in Corollary 2.2(ii). The resulting test statistic shall also reject the modelM(T?) when its value is
too large. While critical values can still be calibrated with multiplier bootstrap, additional techniques
such as inequality selection can be incorporated to contain the power loss as a result of testing the
inequalities; see Chernozhukov et al. [2013b] for more details.

Another challenge is the determination of the batch size B in (3.6). In our simulation studies of
Section 4 we took B = 3 since we believe that a batch size of 3 should be enough to capture
dependence among the 1-dependent summands. Batch size determination has been widely studied
in the time series literature for low dimensional problems [Bühlmann, 2002, Hall et al., 1995,
Lahiri, 2003]. To the best of our knowledge, in high dimensions this is still a widely open problem.
Theoretical research on this is far beyond the scope of our current work.
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