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Abstract

Consider a classification problem where we have both labeled and unlabeled data
available. We show that for linear classifiers defined by convex margin-based sur-
rogate losses that are decreasing, it is impossible to construct any semi-supervised
approach that is able to guarantee an improvement over the supervised classifier
measured by this surrogate loss on the labeled and unlabeled data. For convex
margin-based loss functions that also increase, we demonstrate safe improvements
are possible.

1 Introduction

Semi-supervised learning has been reported to deliver encouraging results in various settings, e.g.
for object detection in computer vision (Rasmus et al., 2015), protein function prediction from
sequence data (Weston et al., 2005) or prediction of cancer recurrence (Shi & Zhang, 2011) in the
bio-medical domain and part-of-speech tagging in natural language processing (Elworthy, 1994). In
other settings, however, using unlabeled data has been shown to lead to a decrease in performance
when compared to the supervised solution (Elworthy, 1994; Cozman & Cohen, 2006). For semi-
supervised classifiers to be used safely in practice, we may at least want some guarantee that they do
not reduce performance compared to their supervised alternatives. Some have attempted to provide
such guarantees either empirically by restrictions on the parameters to be estimated (Loog, 2010)
or under particular assumptions on the data (Li & Zhou, 2015). In general, however, it is unclear
for what classifiers one can construct ‘safe’ semi-supervised approaches that can be expected to not
decrease performance, or whether this is at all possible.

1.1 Safety and Pessimism

This work explores whether and, if so, how we can guarantee unlabeled data to improve, or at least
not decrease the performance of a semi-supervised classifier in comparison to a supervised classifier.
‘Pessimism’ refers to the property that we want this guarantee to hold for every single instantiation of
a problem, even for the worst possible unknown labeling of the unlabeled data. The reason we choose
such a strict criterion is that it is the only criterion that can guarantee (with probability one), that
performance degradation will not occur, for the particular dataset one is faced with. Therefore, a semi-
supervised approach can only be called truly safe if it guarantees non-degradation of performance in
this pessimistic sense. Note that the labelings that we will be considering are not as pessimistic as
they first appear: because performance is compared to the supervised classifier, these labelings will
be optimistic with respect to the supervised classifier, as will become apparent when we formally
define the criterion for safe semi-supervised learning in Equation (3).

We compare the performance of the supervised and semi-supervised classifier measured on the labeled
and unlabeled data. This is, strictly speaking, a transductive setting (Joachims, 1999), where one
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measures performance on a specifically defined set of objects, and not a semi-supervised setting
where one measures performance on unseen objects generated from the same distribution as the
training data. There are two reasons this transductive setting is interesting in the context of safe
semi-supervised learning. 1. The performance criterion in this setting corresponds to the performance
criterion we would observe and optimize for if the labels for all objects would be available. 2. As the
number of unlabeled objects grows, and they start to better represent the distribution of interest in the
inductive/semi-supervised setting, the limits and possibilities that we derive continue to hold, while
we converge to the setting where the marginal distribution of the inputs is assumed to be known that
is considered in other work on the possibilities of semi-supervised learning (Sokolovska et al., 2008;
Ben-David et al., 2008). All in all, while we consider a transductive setting, it should be clear that
our analysis does provide valid insights into the safe semi-supervised setting as well.

1.2 The Use of Surrogate Losses

Important in this work, is that we take the view that a semi-supervised version of, for instance,
logistic regression is a classifier that still attempts to minimize logistic loss, but uses unlabeled data
to improve its ability to do so. So it should be judged on how well it generalizes in terms of this
intrinsic loss. If we were to compare performance in terms of some other loss, like the error rate, one
runs the risk of attributing improvements to the use of unlabeled data that are, in fact, caused by other
changes to the classifier. For instance, the semi-supervised classifier might implicitly use some other
surrogate loss that turns out to be better aligned with the loss used for evaluation.

Therefore, as our definition of performance, we consider the surrogate loss the classifier optimizes
and compare this loss for the supervised and the semi-supervised learner on the combined labeled
and unlabeled data. The surrogate loss corresponds to the loss one would minimize if we did have
labels for the unlabeled objects. Considering the same criterion in the supervised and semi-supervised
case aligns the goal of constructing a semi-supervised classifier with the one used when constructing
a supervised classifier. It avoids conflating improved performance based on a change in surrogate
loss function with improvements gained by the availability of unlabeled data. For the same reason
we also keep the regularization parameter fixed in the objective functions of the supervised and
semi-supervised classifiers.

1.3 Outline

The main conclusion from our analysis (Theorems 1 and 2) is that for classifiers defined by convex
margin-based surrogate losses that are decreasing, it is impossible to come up with any semi-
supervised approach that is able to guarantee safe improvement. We also consider the case of losses
that are not decreasing and in particular study the quadratic loss. We show under what conditions it is
possible in this case to come up with a semi-supervised classifier that provides safe improvements
over the supervised classifier.

The rest of this work is structured as follows. We start by introducing margin-based loss functions in
the empirical risk minimization framework and the extension to the semi-supervised setting. In this,
we only treat binary linear classifiers. Though not a real restriction, it does simplify our exposition
and allows us to focus on the core ideas. In Section 3, we formalize our strict notion of safe semi-
supervised learning. We first show that for the class of decreasing loss functions it is impossible to
derive any semi-supervised learning strategy that is not worse than the supervised classifier for all
possible labelings of the unlabeled data. We then consider the case of soft assignment of unlabeled
objects to classes. Here, too, it is impossible to provide a strict improvement guarantee for this class
of loss functions. We subsequently show for what losses it is possible to get strict improvements. In
Section 5 we apply the theory to a few well-known loss functions. In Section 6 we discuss how these
results relate to other results on the (im)possibility of (safe) semi-supervised learning and what the
implications of these results are for other safe approaches.

2 Preliminaries

We consider binary linear classifiers in the empirical risk minimization framework. Let X be an
L⇥ d design matrix of L labeled objects, where each row x> is a d-dimensional vector of feature
values corresponding to each labeled object. Let y 2 {�1,+1}L be the corresponding label vector.
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The vector w 2 Rd contains the weights defining a linear classifier through sign(x>w). We consider
convex margin-based surrogate loss functions, which are loss functions of the form �(yx>w). Many
well-known classifiers can be described in this way, including support vector machines, least squares
classification, least squares support vector machines and logistic regression (Bartlett et al., 2006).

2.1 Empirical Risk Minimization

In the empirical risk minimization framework a classifier is obtained by minimizing a chosen surrogate
loss � over a set of training objects plus an optional regularization term ⌦, which we take to be a
convex function of w:

R�(w,X,y) =
LX

i=1

�(yix
>
i w) + �⌦(w) . (1)

By minimizing this with respect to w we get a supervised classifier:
wsup = argmin

w
R�(w,X,y) .

In the semi-supervised setting, we have an additional design matrix corresponding to unlabeled objects
Xu, sized U ⇥ d, with unknown labels yu 2 {�1,+1}U . We therefore consider the corresponding
semi-supervised risk function:

Rsemi
� (w,X,y,Xu,q) = R�(w,X,y) +

UX

i=1

qi�(x
>
i w) + (1� qi)�(�x>

i w) , (2)

where q 2 [0, 1]U are what we will refer to as responsibilities, indicating the unknown and possibly
‘soft’ membership of each object to a class. For instance, if the true labels were known these would
correspond to ‘hard’ responsibilities qtrue 2 {0, 1}U and the semi-supervised risk formulation
becomes equal to the supervised risk formulation in Equation (1), where the sum is now over the L
labeled objects and the U objects for which we did not have a label.

3 Limits of Safe Semi-supervision

Even though we know the true labeling of the unlabeled objects in Equation (2) belongs to some
q 2 {0, 1}U , we do not know which one. Now, a semi-supervised procedure wsemi is safe if it is
guaranteed to attain a loss on the labeled and unlabeled objects equal to or lower than the supervised
solution for all possible labelings of the data, since this is guaranteed to include the true labeling of
the unlabeled objects. We first formalize this definition of safety, then consider the cases of hard and
soft labeling, and come to our negative results: for many loss functions safe semi-supervision is, in
fact, not possible. Positive results follow in Section 4.

3.1 Hard labeling

Let D� denote the difference in terms of the chosen loss � on a set of objects between a new classifier
w and the supervised classifier wsup for some set of responsibilities for the unlabeled data:

D�(w,wsup,X,y,Xu,q) = Rsemi
� (w,X,y,Xu,q)�Rsemi

� (wsup,X,y,Xu,q) .

The true unknown labels can, in principle, correspond to any q 2 {0, 1}U . For a semi-supervised
classifier wsemi to be safe we therefore need that:

max
q2{0,1}U

D�(wsemi,wsup,X,y,Xu,q)  0 . (3)

If the inequality is strict for at least one instantiation of q, the semi-supervised solution is different
from the supervised solution and potentially better. Is it possible to construct some semi-supervised
strategy that has this guaranteed improvement over the supervised solution for margin-based surrogate
losses? The following theorem gives a condition under which this strict improvement is never possible.
Theorem 1. Let wsup be a minimizer of R�(w,X,y) and assume it is unique. If � is a decreas-
ing margin-based loss function, meaning �(a) � �(b) for a  b, then there is no safe semi-
supervised procedure which guarantees Equation (3) while having at least one q⇤ 2 {0, 1}U for
which D�(wsemi,wsup,X,y,Xu,q⇤) < 0 .
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Proof. We are going to prove this by contradiction. Assume D�(wsemi,wsup,X,y,Xu,q⇤) < 0
and define M to be R�(wsemi,X,y)�R�(wsup,X,y). The latter is the difference in the supervised
objective function between the semi-supervised and supervised classifier. Based on our assumption
we can now write

M+
UX

i=1

q⇤i (�(x
>
i wsemi)� �(x>

i wsup)) (4)

+ (1� q⇤i )(�(�x>
i wsemi)� �(�x>

i wsup)) < 0 .

Let Ai = �(x>
i wsemi)��(x>

i wsup) and Bi = �(�x>
i wsemi)��(�x>

i wsup). Since � is decreasing,
either Ai � 0 and Bi  0, or Ai  0 and Bi � 0. Set qnewi = 1 in the former case and qnewi = 0 in
the latter. Then, when using qnew instead of q⇤ in Equation (4), the sum will be non-negative. Also,
M > 0, because wsup is the unique minimizer of R�(w,X,y) and wsemi 6= wsup. We therefore
have that

D�(wsemi,wsup,X,y,Xu,q
new) > 0 .

which contradicts Equation (3).

Remark 1. Alternatively, we can drop the requirement that wsup is the unique minimizer of
R�(w,X,y) by requiring the loss functions to be strictly decreasing.

3.2 Beyond Hard Labelings

In Equation (3) we considered improvement over all hard labelings of the unlabeled data. Alternatively
we could also consider improvements for the larger set of all soft assignments of objects to classes,
defining safety to mean

max
q2[0,1]U

D�(wsemi,wsup,X,y,Xu,q)  0 . (5)

If there is at least one q 2 [0, 1]U for which the inequality is strict, the semi-supervised solution is
potentially better than the supervised solution. There are several reasons why this is an interesting
relaxation to consider. First of all, it requires the semi-supervised solution to guarantee improvements
for a larger class of responsibilities than just the hard labelings, meaning it becomes more difficult
to construct a procedure with this property. If a procedure guarantees improvement in this sense, it
implies it also works for all possible hard labelings. Secondly, it corresponds to a scenario different
from the hard labeling where there is uncertainty in the labels of the unlabeled objects. And lastly,
the convex constraint makes the problem more amenable to analysis.

The set of classifiers induced by all different responsibilities turns out to be a useful concept in the
remainder of this paper.
Definition 1. The constraint set C� is the set of all possible classifiers that can be obtained by
minimizing the semi-supervised loss for any vector of responsibilities q assigned to the unlabeled
data, i.e.,

C� =

⇢
argmin

w
Rsemi

� (w,X,y,Xu,q)
���q 2 [0, 1]U

�
.

The following lemma provides an intermediary step towards our second negative result. It tells us
that no strict improvement is possible if the supervised solution is already part of the constraint set.
Lemma 1. If R�(w,X,y) is strictly convex and wsup 2 C�, then there is a soft assignment q⇤ such
that for every choice of semi-supervised classifier wsemi 6= wsup, D�(wsemi,wsup,X,y,Xu,q⇤) >
0.

Proof. As wsup 2 C� there is a soft labeling q⇤ such that wsup minimizes the semi-supervised
risk Rsemi

� (w,X,y,Xu,q⇤). This risk function is strictly convex because the supervised risk is
strictly convex and therefore wsup is its unique minimizer. This immediately implies that for every
wsemi 6= wsup, we have that Rsemi

� (wsemi,X,y,Xu,q⇤) > Rsemi
� (wsup,X,y,Xu,q⇤).
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For decreasing margin-based losses, we now show that we can always explicitly construct a q⇤, such
that the corresponding semi-supervised solution equals the original supervised one. With this, a result
similar to Theorem 1 for the soft-assignment guarantee directly follows, but first we formulate that
explicit construction of the necessary soft labeling.
Lemma 2. If � is a decreasing convex margin-based loss function where for each unlabeled object
x, the derivatives �0(�x>wsup) and �0(x>wsup) exist, we can recover wsup by minimizing the
semi-supervised loss by assigning responsibilities q 2 [0, 1]U as

q =
�0(�x>wsup)

�0(x>wsup) + �0(�x>wsup)
, (6)

if �0(x>wsup) + �0(�x>wsup) 6= 0, and any q 2 [0, 1] otherwise.

Proof. Consider the case where we have one unlabeled object x with responsibility q. The semi-
supervised objective then becomes

Rsemi
� (w) =R�(w,X,y)

+ q�(x>w) + (1� q)�(�x>w) .

Since � is convex, to guarantee that wsup is still a global minimizer of Rsemi
� , we need to find a

q 2 [0, 1] that causes the gradient of this objective, evaluated in wsup, to remain equal to zero:
rwRsemi

� (wsup) =0+ q�0(x>wsup)x

� (1� q)�0(�x>wsup)x

=0

(7)

where �0 denotes the derivative of �(a) with respect to a. As long as �0(x>wsup)+�0(�x>wsup) 6=
0, we can explicitly solve for q to get

q =
�0(�x>wsup)

�0(x>wsup) + �0(�x>wsup)
. (8)

If � is a decreasing loss, then
�0(a)  0

and for each object 0  q  1. If �0(x>wsup) + �0(�x>wsup) = 0, because � is decreasing, we
know both �0(x>wsup) = 0 and �0(�x>wsup) = 0 and so any q is allowed to satisfy (7), including
0  q  1. Since 0  q  1 for each object individually, we can do it for all objects to get a vector
of responsibilities q 2 [0, 1]U .

Now that we have shown by a constructive argument that for decreasing margin-based losses it always
holds that wsup 2 C�, the following result is straightforward.
Theorem 2. Let � be a decreasing convex margin-based loss function and wsup be the unique
minimizer of a strictly convex R�(w,X,y) and suppose for each unlabeled object x, the deriva-
tives �0(�x>wsup) and �0(x>wsup) exist. There is no semi-supervised classifier wsemi for which
Equation (5) holds, while having at least one q⇤ for which D�(wsemi,wsup,X,y,Xu,q⇤) < 0.

Proof. This follows directly from Lemma 1 and Lemma 2.

Remark 2. The requirement to have a strictly convex supervised risk function can be relaxed. What
we basically need in the proof is that wsup is the unique optimizer for Rsemi

� (w,X,y,Xu,q⇤).
Nevertheless, unlike, for instance, a hinge loss that is not regularized by something like a 2-norm of
the weight vector, many interesting objective functions are strictly convex.

This result means that for decreasing loss functions it is impossible to construct a semi-supervised
learner that is different from the supervised learner and, in terms of its surrogate loss on the full
training data, is never outperformed by the supervised solution. In other words, if the semi-supervised
classifier is taken to be different from the supervised classier, there is always the risk that there is a
true labeling of the unlabeled data for which the loss of the semi-supervised learner on the full data
becomes larger than the loss of the supervised one.

Is it unexpected that semi-supervised learning cannot be done safely in this strict setting? For whom
it is not, it may then come as a surprise that there are margin-based losses for which it is actually
possible to construct safe semi-supervised learners.
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4 Possibilities for Safe SSL

If we look beyond the decreasing losses, and consider those that can increase as well, we may yet
be able to get a classifier that is guaranteed to be better than the supervised solution in terms of the
surrogate loss, even in the pessimistic regime. When can we expect safe semi-supervised learning to
allow for improvements of its supervised counterpart? And if improvements are possible, how then
do we construct an actual classifier that does so in a safe way?

To construct a semi-supervised learner that at least is guaranteed to never be worse, we need to find
wsemi, the w that minimizes D�(w,wsup,X,y,Xu,q) for all possible q. This corresponds, more
precisely, to the following minimax problem:

min
w

max
q2[0,1]U

D�(w,wsup,X,y,Xu,q) . (9)

This is a formulation similar to the one used by Loog (2016), where instead of margin-based losses,
the loss functions are log-likelihoods of a generative model. It is clear that Equation (9) can never be
larger than 0. This simply indicates that we can always find a semi-supervised learner that is at least
as good as the supervised one, by simply sticking to the supervised solution. To show that we can do
better than that, consider the following.

If Rsemi
� is convex in w, then since the objective is linear in q and [0, 1]U is a compact space we can

invoke (Sion, 1958, Corrolary 3.3), which states that the value of the minimax problem is equal to the
value of the maximin problem:

max
q2[0,1]U

min
w

D�(w,wsup,X,y,Xu,q) . (10)

Assume the function D� is strictly convex in w for every fixed q. Now suppose wsup is not in C�. In
that case, the inner minimization in Equation (10) is always strictly smaller than 0 for each q because
of the strict convexity of the loss. This means that Equation (10) is strictly smaller than 0 and in turn
the same holds for Equation (9).

So, if wsup /2 C�, wsemi will strictly improve upon wsup.

4.1 Some Sufficient Conditions

So all that is required to show that the procedure just described leads to an improved classifier is
therefore that wsup /2 C�. For an unlabeled data set consisting of a single sample x, this is readily
done by reconsidering the proof of Lemma 2 and the argument in the previous paragraph. In particular,
rewriting Equation (7), we can conclude the following:
Lemma 3. Let Xu = x> and � be a margin-based loss function where the derivatives �0(�x>wsup)
and �0(x>wsup) exist and Rsemi

� be strictly convex. If there is no q 2 [0, 1] such that

(�0(x>wsup) + �0(�x>wsup))xq = (�0(�x>wsup))x

then wsup /2 C� so wsemi has to be different from wsup and, therefore, the former has to improve
over the latter.

The case in which U > 1 turns out to be hard to fully characterize. Again starting from Equation (7),
we can state that if there is no q 2 [0, 1]U such that

UX

i=1

qi�
0(x>

i wsup)xi � (1� qi)�
0(�x>

i wsup)xi = 0

then the gradient evaluated in the supervised solution of the objective function over all training data
is not zero and so the semi-supervised solution is different, therefore improving over the supervised
solution. But this result is hardly insightful. For one, it is unclear if this at all happens when U > 1.
We do, however, have a sufficient condition that leads the semi-supervised learner to improve over
the supervised counterpart. For this, we consider convex, margin-based losses � that are decreasing
to the left of 1 and to the right of 1 start to increase, as for instance, in the cases of the quadratic or
absolute loss. So these losses increasingly penalize overestimation of the label value of every object.
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Table 1: Margin-based loss functions and their corresponding responsibilities

Name �(yx>wsup) q(x>wsup) Range

Logistic
p
2 log(1 + exp(�yx>wsup)) (1 + exp(�x>wsup))

�1 (0, 1)

Hinge max(1� yx>wsup, 0)

8
><

>:

1
2 , if � 1 < x>wsup < 1

1, if x>wsup > 1

0 if x>wsup < �1

{0, 1
2 , 1}

Exponential exp(�yx>wsup)
exp(x>wsup)

exp(�x>wsup)+exp(x>wsup)
(0, 1)

Quadratic (1� yx>wsup)
2 1

2 (x
>wsup + 1) (�1,1)

Absolute |1� yx>w|
(

1
2 , if � 1 < yx>wsup < 1

No solution, otherwise
{ 1
2}

Theorem 3. Let

�0(a)

⇢
 0, if a  1
> 0, if a > 1,

and Rsemi
� be strictly convex. If, for all x 2 Xu, |x>wsup| is larger than 1, then wsemi 6= wsup. That

is, we get an improved semi-supervised estimator if all points in Xu are outside of the margin.

The restriction that all points should be outside of the margin is, of course, rather strong. But,
as indicated, the requirement is only sufficient and certainly not necessary. The proof, as well as
an alternative condition for improvement for the quadratic loss are provided in the supplementary
material.

5 Examples

Table 1 shows the implied responsibilities q(x>wsup) for loss functions corresponding to a number
of well-known classifiers. The table contains both examples of decreasing losses and losses that also
strictly increase. In this first group, the range of the responsibilities will always be between [0, 1],
meaning the (partial) labels of the unlabeled data can always be set in such a way that the supervised
solution is obtained from the semi-supervised objective function. This in turn implies that no safe
semi-supervised method exists for these losses. This shows, for instance, that it is not possible to
construct a safe semi-supervised version of the support vector machine or for logistic regression. In
the second case (for quadratic and absolute losses) it is not always possible to set the responsibilities
in such a way as to recover the supervised solution and a safe semi-supervised classifier is sometimes
possible.

A more thorough description of these examples, as well as a more precise characterization for when
to expect improvements in case of the quadratic loss, is provided in the supplementary material.

6 Discussion

As Seeger (2001) and others have argued, for diagnostic methods, where p(y|x) gets modeled directly
and not through modeling the joint distribution p(y,x), semi-supervised learning without additional
assumptions should be impossible because the parameters of p(y|x) and p(x) are a priori independent.
Considering why these methods do not allow for safe semi-supervised versions offers a different
understanding of why this claim may or may not be true. While our results applied to logistic
regression corroborates their claim, the quadratic loss shows a counterexample. This shows that
for losses that strictly increase over some interval, even safe improvements can be possible in the
diagnostic setting. One important strength of our analysis is that we also consider the minimization
of loss functions that may not induce a correct probability. It is the decreasingness of the loss,
rather than correspondence to a probabilistic model that determines whether safe semi-supervised
learning is possible. Moreover, some of the losses for which safe semi-supervised learning is possible
are successfully applied in supervised learning in practice and it is therefore interesting that safe
semi-supervised versions exist.
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Our results also might seem to contradict the result by Sokolovska et al. (2008) (and, by extension
Kawakita & Takeuchi (2014)) that, when the supervised model is misspecified, a particular semi-
supervised adaptation of logistic regression has an asymptotic variance that is at least as small as
supervised logistic regression. In this work, however, we cover the pessimistic setting where a
semi-supervised learner needs to outperform the supervised learner for all possible labelings in a
finite sample setting. This is a much stricter requirement than the asymptotic result in (Sokolovska
et al., 2008).

The (negative) result presented here is in line with the conclusions of Ben-David et al. (2008), who
show that the worst-case sample complexity of a supervised learner is at most a constant factor higher
than that of any semi-supervised approach for a classifier over the real line, and they conjecture
this result holds in general. Darnstädt et al. (2013) prove that a slightly altered and more precise
formulation of this conjecture holds when hypothesis classes have finite VC-dimension, while they
show that it does not hold for more complex hypothesis classes. Whereas these works consider
generalization bounds on the error rate in the PAC learning framework, in our work, we considered
a more conservative or pessimistic setting of safe semi-supervised learning, while considering
performance on a finite sample in terms of the surrogate loss. This leads to an alternative explanation
why these (strict) improvements are not possible for some losses, similar to the claim in Ben-David
et al. (2008). It also leads, however, to the contrasting conclusion that for some losses, these
improvements are possible (even when the VC dimension is finite), which contradicts the claim of
Ben-David et al. (2008) that improvements are not possible unless strong assumptions about the
distribution of the labels are made.

The improvement guarantee, in terms of classification accuracy, of the safe semi-supervised SVM
by Li & Zhou (2015) depends on the assumption that the true labeling of the objects is given by
one of the low-density separators that their algorithm finds. In our analysis we avoid making such
assumptions. The consequence of this is that all possible labelings have to be considered, not just
those corresponding to a low-density separator. If their low-density assumptions holds, their method
provides one way of making use of this information to guarantee safe improvements. As we have
demonstrated, however, in a worst case sense no such guarantees can be given, at least in terms of the
semi-supervised objective considered in our work. Without making these untestable assumptions, our
results show a safe semi-supervised support vector machine is impossible.

For loss functions that are strictly increasing over some interval, safe improvement is possible. One
could ascribe this fact to a peculiar property of these losses: they give increasingly higher loss even
if the sign of the decision function is correct. The improvements in terms of the loss that we get
may therefore not be useful for classification, since they may be in a part of the loss function where
the surrogate loss already forms a bad approximation to the {0, 1}-loss. In the supervised case,
however, surrogate losses like the quadratic loss generally give decent performance in terms of the
error rate, e.g. competitive with SVMs (Rifkin et al., 2003). It is therefore not surprising either that
its pessimistic semi-supervised counterpart has also shown increased performance (Krijthe & Loog,
2017a,b).

7 Conclusion

We have shown that for the class of convex margin-based losses, the fact whether they are decreasing
or not plays a key role in whether they admit safe semi-supervised procedures. In particular, we have
shown that, without making additional assumptions, it is impossible to construct safe semi-supervised
procedures for decreasing losses by deriving what partial assignment of the unlabeled objects leads to
the recovery of the supervised classifier from a semi-supervised objective. This subsequently implied
that if we choose any semi-supervised procedure that deviates from the supervised solution, there
is some labeling of the unlabeled objects (which could be the true labeling) for which it decreases
performance. While this means that for many supervised procedures it is impossible to construct a
safe semi-supervised learner in this strict sense, some losses do admit such solutions. A less strict
guarantee might admit performance improvement by aiming for semi-supervised solutions that in
expectation rather than on any particular dataset, outperform their supervised counterparts.

The stark reality is that if one sticks to strictly safe semi-supervised learning, besides opportunities
for some surrogate losses, there are clear limits to the development of such procedures.
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