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Abstract

In this paper, we provide a theoretical understanding of word embedding and its
dimensionality. Motivated by the unitary-invariance of word embedding, we pro-
pose the Pairwise Inner Product (PIP) loss, a novel metric on the dissimilarity
between word embeddings. Using techniques from matrix perturbation theory, we
reveal a fundamental bias-variance trade-off in dimensionality selection for word
embeddings. This bias-variance trade-off sheds light on many empirical observa-
tions which were previously unexplained, for example the existence of an optimal
dimensionality. Moreover, new insights and discoveries, like when and how word
embeddings are robust to over-fitting, are revealed. By optimizing over the bias-
variance trade-off of the PIP loss, we can explicitly answer the open question of
dimensionality selection for word embedding.

1 Introduction

Word embeddings are very useful and versatile tools, serving as keys to many fundamental prob-
lems in numerous NLP research [Turney and Pantel, 2010]. To name a few, word embeddings
are widely applied in information retrieval [Salton, 1971, Salton and Buckley, 1988, Sparck Jones,
1972], recommendation systems [Breese et al., 1998, Yin et al., 2017], image description [Frome
et al., 2013], relation discovery [Mikolov et al., 2013c] and word level translation [Mikolov et al.,
2013b]. Furthermore, numerous important applications are built on top of word embeddings. Some
prominent examples are long short-term memory (LSTM) networks [Hochreiter and Schmidhuber,
1997] that are used for language modeling [Bengio et al., 2003], machine translation [Sutskever
et al., 2014, Bahdanau et al., 2014], text summarization [Nallapati et al., 2016] and image caption
generation [Xu et al., 2015, Vinyals et al., 2015]. Other important applications include named entity
recognition [Lample et al., 2016], sentiment analysis [Socher et al., 2013] and so on.

However, the impact of dimensionality on word embedding has not yet been fully understood. As
a critical hyper-parameter, the choice of dimensionality for word vectors has huge influence on the
performance of a word embedding. First, it directly impacts the quality of word vectors - a word
embedding with a small dimensionality is typically not expressive enough to capture all possible
word relations, whereas one with a very large dimensionality suffers from over-fitting. Second,
the number of parameters for a word embedding or a model that builds on word embeddings (e.g.
recurrent neural networks) is usually a linear or quadratic function of dimensionality, which directly
affects training time and computational costs. Therefore, large dimensionalities tend to increase
model complexity, slow down training speed, and add inferential latency, all of which are constraints
that can potentially limit model applicability and deployment [Wu et al., 2016].

Dimensionality selection for embedding is a well-known open problem. In most NLP research, di-
mensionality is either selected ad hoc or by grid search, either of which can lead to sub-optimal
model performances. For example, 300 is perhaps the most commonly used dimensionality in vari-
ous studies [Mikolov et al., 2013a, Pennington et al., 2014, Bojanowski et al., 2017]. This is possibly
due to the influence of the groundbreaking paper, which introduced the skip-gram Word2Vec model
and chose a dimensionality of 300 [Mikolov et al., 2013a]. A better empirical approach used by
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some researchers is to first train many embeddings of different dimensionalities, evaluate them on a
functionality test (like word relatedness or word analogy), and then pick the one with the best em-
pirical performance. However, this method suffers from 1) greatly increased time complexity and
computational burden, 2) inability to exhaust all possible dimensionalities and 3) lack of consensus
between different functionality tests as their results can differ. Thus, we need a universal criterion
that can reflect the relationship between the dimensionality and quality of word embeddings in order
to establish a dimensionality selection procedure for embedding methods.

In this regard, we outline a few major contributions of our paper:

1. We introduce the PIP loss, a novel metric on the dissimilarity between word embeddings;

2. We develop a mathematical framework that reveals a fundamental bias-variance trade-off
in dimensionality selection. We explain the existence of an optimal dimensionality, a phe-
nomenon commonly observed but lacked explanations;

3. We quantify the robustness of embedding algorithms using the exponent parameter «, and
establish that many widely used embedding algorithms, including skip-gram and GloVe,
are robust to over-fitting;

4. We propose a mathematically rigorous answer to the open problem of dimensionality selec-
tion by minimizing the PIP loss. We perform this procedure and cross-validate the results
with grid search for LSA, skip-gram Word2Vec and GloVe on an English corpus.

For the rest of the paper, we consider the problem of learning an embedding for a vocabulary of

size n, which is canonically defined as V = {1,2,--- ,n}. Specifically, we want to learn a vector
representation v; € R? for each token i. The main object is the embedding matrix £ € R"*,
consisting of the stacked vectors v;, where E; . = v;. All matrix norms in the paper are Frobenius

norms unless otherwise stated.

2 Preliminaries and Background Knowledge

Our framework is built on the following preliminaries:

1. Word embeddings are unitary-invariant;

2. Most existing word embedding algorithms can be formulated as low rank matrix approxi-
mations, either explicitly or implicitly.

2.1 Unitary Invariance of Word Embeddings

The unitary-invariance of word embeddings has been discovered in recent research [Hamilton et al.,
2016, Artetxe et al., 2016, Smith et al., 2017, Yin, 2018]. It states that two embeddings are essentially
identical if one can be obtained from the other by performing a unitary operation, e.g., a rotation. A
unitary operation on a vector corresponds to multiplying the vector by a unitary matrix, i.e. v’ = vU,
where UTU = UUT = Id. Note that a unitary transformation preserves the relative geometry of
the vectors, and hence defines an equivalence class of embeddings. In Section 3, we introduce the
Pairwise Inner Product loss, a unitary-invariant metric on embedding similarity.

2.2 Word Embeddings from Explicit Matrix Factorization

A wide range of embedding algorithms use explicit matrix factorization, including the popular La-
tent Semantics Analysis (LSA). In LSA, word embeddings are obtained by truncated SVD of a signal
matrix M which is usually based on co-occurrence statistics, for example the Pointwise Mutual In-
formation (PMI) matrix, positive PMI (PPMI) matrix and Shifted PPMI (SPPMI) matrix [Levy and
Goldberg, 2014]. Eigen-words [Dhillon et al., 2015] is another example of this type.

Caron [2001], Bullinaria and Levy [2012], Turney [2012], Levy and Goldberg [2014] described a
generic approach of obtaining embeddings from matrix factorization. Let M be the signal matrix
(e.g. the PMI matrix) and M = UDV7 be its SVD. A k-dimensional embedding is obtained by
truncating the left singular matrix U at dimension k, and multiplying it by a power of the trun-
cated diagonal matrix D, i.e. E = Ul:kD?:k,l:k for some « € [0,1]. Caron [2001], Bullinaria



and Levy [2012] discovered through empirical studies that different o works for different language
tasks. In Levy and Goldberg [2014] where the authors explained the connection between skip-gram
Word2Vec and matrix factorization, « is set to 0.5 to enforce symmetry. We discover that « controls
the robustness of embeddings against over-fitting, as will be discussed in Section 5.1.

2.3 Word Embeddings from Implicit Matrix Factorization

In NLP, two most widely used embedding models are skip-gram Word2Vec [Mikolov et al., 2013c]
and GloVe [Pennington et al., 2014]. Although they learn word embeddings by optimizing over some
objective functions using stochastic gradient methods, they have both been shown to be implicitly
performing matrix factorizations.

Skip-gram Skip-gram Word2Vec maximizes the likelihood of co-occurrence of the center word
and context words. The log likelihood is defined as

n i+w ew

Z Z log(o(v] vi)), where o(z) = e

i=0 j=i—w,j#1i

Levy and Goldberg [2014] showed that skip-gram Word2Vec’s objective is an implicit symmetric
factorization of the Pointwise Mutual Information (PMI) matrix:

p (Ui > Uj )
p(vi)p(v;)

Skip-gram is sometimes enhanced with techniques like negative sampling [Mikolov et al., 2013b],
where the signal matrix becomes the Shifted PMI matrix [Levy and Goldberg, 2014].

PMIij = log

GloVe Levy et al. [2015] pointed out that the objective of GloVe is implicitly a symmetric factor-
ization of the log-count matrix. The factorization is sometimes augmented with bias vectors and the
log-count matrix is sometimes raised to an exponent «y € [0, 1] [Pennington et al., 2014].

3 PIP Loss: a Novel Unitary-invariant Loss Function for Embeddings

How do we know whether a trained word embedding is good enough? Questions of this kind cannot
be answered without a properly defined loss function. For example, in statistical estimation (e.g.
linear regression), the quality of an estimator § can often be measured using the I loss E[||0 — 6* 2]
where 6* is the unobserved ground-truth parameter. Similarly, for word embedding, a proper metric
is needed in order to evaluate the quality of a trained embedding.

As discussed in Section 2.1, a reasonable loss function between embeddings should respect the
unitary-invariance. This rules out choices like direct comparisons, for example using || E; — F»|| as
the loss function. We propose the Pairwise Inner Product (PIP) loss, which naturally arises from the
unitary-invariance, as the dissimilarity metric between two word embeddings:

Definition 1 (PIP matrix). Given an embedding matrix £ € R"*¢, define its associated Pairwise
Inner Product (PIP) matrix to be
PIP(E) = EET

It can be seen that the (i, j)-th entry of the PIP matrix corresponds to the inner product between the
embeddings for word ¢ and word j, i.e. PIP; ; = (v;, v]->. To compare E; and Es, two embedding
matrices on a common vocabulary, we propose the PIP loss:

Definition 2 (PIP loss). The PIP loss between Eq and FE is defined as the norm of the difference
between their PIP matrices

IPIP(Ey) — PIP(E)| = |EAEY — B> B3 || = Z o, 0f") = i, o))
Note that the i-th row of the PIP matrix, v; ET = ({(v;,v1), -+ , (vi,v,)), can be viewed as the rela-
tive position of v; anchored against all other vectors {vy, - - - , v,, }. In essence, the PIP loss measures

the vectors’ relative position shifts between E; and Es, thereby removing their dependencies on any
specific coordinate system. The PIP loss respects the unitary-invariance. Specifically, if Fy = E3U



where U is a unitary matrix, then the PIP loss between F; and F is zero because EQEQT =F; ElT .
In addition, the PIP loss serves as a metric of functionality dissimilarity. A practitioner may only
care about the usability of word embeddings, for example, using them to solve analogy and related-
ness tasks [Schnabel et al., 2015, Baroni et al., 2014], which are the two most important properties
of word embeddings. Since both properties are tightly related to vector inner products, a small PIP
loss between E; and F leads to a small difference in £; and FE5’s relatedness and analogy as the
PIP loss measures the difference in inner products'. As a result, from both theoretical and prac-
tical standpoints, the PIP loss is a suitable loss function for embeddings. Furthermore, we show
in Section 4 that this formulation opens up a new angle to understanding the effect of embedding
dimensionality with matrix perturbation theory.

4 How Does Dimensionality Affect the Quality of Embedding?

With the PIP loss, we can now study the quality of trained word embeddings for any algorithm that
uses matrix factorization. Suppose a d-dimensional embedding is derived from a signal matrix M
with the form f,, 4(M) 2 U.1:aD5y 1.4 where M = UDVT is the SVD. In the ideal scenario, a
genie reveals a clean signal matrix M (e.g. PMI matrix) to the algorithm, which yields the oracle
embedding F = f, 4(M). However, in practice, there is no magical oil lamp, and we have to
estimate M (e. g. empirical PMI matrix) from the training data, where M =M+ Zis perturbed
by the estimation noise Z. The trained embedding E= fa, k(M ) is computed by factorizing this

noisy matrix. To ensure E is close to F, we want the PIP loss |[EET — EET|| to be small. In
particular, this PIP loss is affected by k, the dimensionality we select for the trained embedding.

Arora [2016] discussed in an article about a mysterious empirical observation of word embeddings:
“... A striking finding in empirical work on word embeddings is that there is a sweet spot for the
dimensionality of word vectors: neither too small, nor too large”*. He proceeded by discussing two
possible explanations: low dimensional projection (like the Johnson-Lindenstrauss Lemma) and the
standard generalization theory (like the VC dimension), and pointed out why neither is sufficient for
explaining this phenomenon. While some may argue that this is caused by underfitting/overfitting,
the concept itself is too broad to provide any useful insight. We show that this phenomenon can be
explicitly explained by a bias-variance trade-off in Section 4.1, 4.2 and 4.3. Equipped with the PIP
loss, we give a mathematical presentation of the bias-variance trade-off using matrix perturbation
theory. We first introduce a classical result in Lemma 1. The proof is deferred to the appendix,
which can also be found in Stewart and Sun [1990].

Lemma 1. Let X, Y be two orthogonal matrices of R"*™. Let X = [Xo, X;] and Y = [Yp, 7] be
the first & columns of X and Y respectively, namely X, Yy € R”** and k < n. Then
X0 X5 — oYy || = cl| Xg Ya|

where ¢ is a constant depending on the norm only. ¢ = 1 for 2-norm and v/2 for Frobenius norm.

As pointed out by several papers [Caron, 2001, Bullinaria and Levy, 2012, Turney, 2012, Levy and
Goldberg, 2014], embedding algorithms can be generically characterized as E' = Uy.y,. DY), 1., for

some « € [0, 1]. For illustration purposes, we first consider a special case where o = 0.

4.1 The Bias Variance Trade-off for a Special Case: o« = 0

The following theorem shows how the PIP loss can be naturally decomposed into a bias term and a
variance term when o = 0:

Theorem 1. Let E € R"*4 and E € R™** be the oracle and trained embeddings, where k£ < d.
Assume both have orthonormal columns. Then the PIP loss has a bias-variance decomposition

|PIP(E) — PIP(E)|® = d — k + 2| ET E*|)?

Proof. The proof utilizes techniques from matrix perturbation theory. To simplify notations, denote
Xo=E,Yy=FE,andlet X = [X, X1], Y = [Yp, Y1] be the complete n by n orthogonal matrices.

'A detailed discussion on the PIP loss and analogy/relatedness is deferred to the appendix
*http://www.offconvex.org/2016/02/14/word-embeddings-2/



Since k < d, we can further split X, into X ; and X o, where the former has k columns and the
latter d — k. Now, the PIP loss equals

IEE" — EE"||” =[|X01 X0, — Yoy + Xo,2X02]

=) X0.1 X1 — Yo¥5 | + 1| Xo0,2Xg o[ + 2(Xo0,1 X5 1 — YoYy', Xo,2Xq )
Do [Xo, XallP +d — k — 20%Y5", Xo X0 o)
=2||Y5 Xoz|? +2Y5 X1|* +d — k — 2(YoYy', Xo0,2Xg 2)
=d—k+2|Yy X1|? =d—k+2|ETE?

where in equality (a) we used Lemma 1. O

The observation is that the right-hand side now consists of two parts, which we identify as bias and
variance. The first part d — k is the amount of lost signal, which is caused by discarding the rest d — k
dimensions when selecting k& < d. However, || E7 EL || increases as k increases, as the noise perturbs
the subspace spanned by FE, and the singular vectors corresponding to smaller singular values are
more prone to such perturbation. As a result, the optimal dimensionality k* which minimizes the
PIP loss lies in between 0 and d, the rank of the matrix M.

4.2 The Bias Variance Trade-off for the Generic Case: o € (0, 1]

In this generic case, the columns of F, E are no longer orthonormal, which does not satisfy the
assumptions in matrix perturbation theory. We develop a novel technique where Lemma 1 is applied
in a telescoping fashion. The proof of the theorem is deferred to the appendix.

Theorem 2. Let M = UDVT, M = UDVT be the SVDs of the clean and estimated signal
matrices. Suppose E = U.71:de‘:d’1:d is the oracle embedding, and £ = leikD?:lc,l:k is the
trained embedding, for some k < d. Let D = diag()\;) and D = diag();), then

d k k
IPIP(E) — PIP(E)[| <, | D X4 | D (A = X)2 4+ V23 (A = NI U ien |

i=k+1 i=1 i=1

As before, the three terms in Theorem 2 can be characterized into bias and variances. The first term
is the bias as we lose part of the signal by choosing £ < d. Notice that the embedding matrix £
consists of signal directions (given by U) and their magnitudes (given by D). The second term is
the variance on the magnitudes, and the third term is the variance on the directions.

4.3 The Bias-Variance Trade-off Captures the Signal-to-Noise Ratio

We now present the main theorem, which shows that the bias-variance trade-off reflects the “signal-
to-noise ratio” in dimensionality selection.

Theorem 3 (Main theorem). Suppose M = M + Z, where M is the signal matrix, symmetric with

spectrum {)\i}le. Z is the estimation noise, symmetric with iid, zero mean, variance o2 entries.
Forany 0 < o < 1 and k < d, let the oracle and trained embeddings be

E = U‘,lidD[lx:d,lzda E = ﬁ’,l:kbik,lzk
where M = UDV™, M =UDVT are the SVDs of the clean and estimated signal matrices. Then

1. When a = 0,

r<k,s>d

E[|EET—EET||]g\/d—k+2a2 > (A =x)?

2. When0< a <1,

k

k
SONTEEVRY A =N [ DD (A=A
i=1

i=1 r<i<s

d
Z A 4+ 2v/2nao

i=k+1

E[|EE" — EET|] <




Proof. We sketch the proof for part 2, as the proof of part 1 is simpler and can be done with the
same arguments. We start by taking expectation on both sides of Theorem 2:

d k k
E[|EE" — EET|] S\j D A+ EJ Do =222 4 V2 Y (N = AR DE(TT U ],
=1

i=k+1 =1

The first term involves only the spectrum, which is the same after taking expectation. The second
term is upper bounded using Lemma 2 below, derived from Weyl’s theorem. We state the lemma,
and leave the proof to the appendix.

Lemma 2. Under the conditions of Theorem 3,

E, Z(A?a A2%)2 < 2/2nao, A‘*a 2
i=1 i= 1

For the last term, we use the Sylvester operator technique by Stewart and Sun [1990]. Our result is
presented in Lemma 3, and the proof of which is discussed in the appendix.

Lemma 3. For two matrices M and M =M+ Z, denote their SVDs as M = UDVT and

M = UDVT. Write the left singular matrices in block form as U = [Uy, U], U = [Up, U3}, and
similarly partition D into diagonal blocks Dy and D;. If the spectrum of Dy and D; has separation

A
Op = min Ai—Nit=Xe—A >0
k 1§i§k~,k<j§n{ ‘ it k k+l ’

and Z has iid, zero mean entries with variance o2, then

E[|Uf Uoll] < o > A

1<i<k<j<n

Now, collect results in Lemma 2 and Lemma 3, we obtain an upper bound approximation for the
PIP loss:

d k k
E[|[EET — BET[) < \| D Mo +2v2nao, | Y N2+ vV2) (A= M)o [ Y (A= A2
i=k41 i=1 i=0 r<i<s
O

which completes the proof.

Theorem 3 shows that when dimensionality is too small, too much signal power (specifically, the
spectrum of the signal M) is discarded, causing the first term to be too large (high bias). On the
other hand, when dimensionality is too large, too much noise is included, causing the second and
third terms to be too large (high variance). This explicitly answers the question of Arora [2016].

5 Two New Discoveries

In this section, we introduce two more discoveries regarding the fundamentals of word embedding.
The first is the relationship between the robustness of embedding and the exponent parameter «, with
a corollary that both skip-gram and GloVe are robust to over-fitting. The second is a dimensionality
selection method by explicitly minimizing the PIP loss between the oracle and trained embeddings®.
All our experiments use the Text8 corpus [Mahoney, 2011], a standard benchmark corpus used for
various natural language tasks.

5.1 Word Embeddings’ Robustness to Over-Fitting Increases with Respect to «
Theorem 3 provides a good indicator for the sensitivity of the PIP loss with respect to over-
parametrization. Vu [2011] showed that the approximations obtained by matrix perturbation theory

are minimax tight. As k increases, the bias term /3% A4 decreases, which can be viewed as a
zeroth-order term because the arithmetic means of singular values are dominated by the large ones.

3Code can be found on GitHub: https://github.com/ziyin-dl/word-embedding-dimensionality-selection



As a result, when k is already large (say, the singular values retained contain more than half of the
total energy of the spectrum), increasing k has only marginal effect on the PIP loss.

On the other hand, the variance terms demonstrate a first-order effect, which contains the difference
of the singular values, or singular gaps. Both variance terms grow at the rate of )\i'kl with respect
to the dimensionality % (the analysis is left to the appendix). For small )\, (i.e. \p < 1), the rate
)\ia_l increases as « decreases: when o < 0.5, this rate can be very large; When 0.5 < a < 1,
the rate is bounded and sub-linear, in which case the PIP loss will be robust to over-parametrization.
In other words, as o becomes larger, the embedding algorithm becomes less sensitive to over-fitting
caused by the selection of an excessively large dimensionality k. To illustrate this point, we compute
the PIP loss of word embeddings (approximated by Theorem 3) for the PPMI LSA algorithm, and
plot them for different o’s in Figure 1a.

” Relative PIP Error Predictions for different o Gorrelation with Human Labels for Different o, Test Set is wordsim353 Correlation with Human Labels for Different a, Test Set is mturk77

— a=0 — =00 — 0
— a=0.25
wH — az05

4=0.75
— a=10

with Human Labels

Correlation

(a) Theorem 3 (b) WordSim353 Test (c) MTurk771 Test

Figure 1: Sensitivity to over-parametrization: theoretical prediction versus empirical results

Our discussion that over-fitting hurts algorithms with smaller @ more can be empirically verified.
Figure 1b and 1c display the performances (measured by the correlation between vector cosine sim-
ilarity and human labels) of word embeddings of various dimensionalities from the PPMI LSA
algorithm, evaluated on two word correlation tests: WordSim353 [Finkelstein et al., 2001] and
MTurk771 [Halawi et al., 2012]. These results validate our theory: performance drop due to over-
parametrization is more significant for smaller a.

For the popular skip-gram [Mikolov et al., 2013b] and GloVe [Pennington et al., 2014], o equals
0.5 as they are implicitly doing a symmetric factorization. Our previous discussion suggests that
they are robust to over-parametrization. We empirically verify this by training skip-gram and GloVe
embeddings. Figure 2 shows the empirical performance on three word functionality tests. Even with
extreme over-parametrization (up to & = 10000), skip-gram still performs within 80% to 90% of op-
timal performance, for both analogy test [Mikolov et al., 2013a] and relatedness tests (WordSim353
[Finkelstein et al., 2001] and MTurk771 [Halawi et al., 2012]). This observation holds for GloVe as
well as shown in Figure 3.

Word2Vec Accuracy on C (Question Anser) Word2Vec Accuracy on Similarity (wordsim353) Word2Vec Accuracy on Similarity (mturk771)

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Dimensions " Dimensions Dimensions

(a) Google Analogy Test (b) WordSim353 Test (c) MTurk771 Test

Figure 2: skip-gram Word2Vec: over-parametrization does not significantly hurt performance

5.2 Optimal Dimensionality Selection: Minimizing the PIP Loss

The optimal dimensionality can be selected by finding the k* that minimizes the PIP loss between
the trained embedding and the oracle embedding. With a proper estimate of the spectrum D = {\}¢
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Figure 3: GloVe: over-parametrization does not significantly hurt performance

and the variance of noise o2, we can use the approximation in Theorem 3. Another approach is to use

the Monte-Carlo method where we simulate the clean signal matrix A/ = U DV and the noisy signal
matrix M = M + Z. By factorlzmg M and M, we can simulate the oracle embedding £ = UD*®
and trained embeddings Ek = U. 1 le ek in which case the PIP loss between them can be
directly calculated. We found emplrlcally that the Monte-Carlo procedure is more accurate as the
simulated PIP losses concentrate tightly around their means across different runs. In the following
experiments, we demonstrate that dimensionalities selected using the Monte-Carlo approach achieve
near-optimal performances on various word intrinsic tests. As a first step, we demonstrate how one
can obtain good estimates of {\;}¢ and o in 5.2.1.

5.2.1 Spectrum and Noise Estimation from Corpus

Noise Estimation We note that for most NLP tasks, the signal matrices are estimated by count-
ing or transformations of counting, including taking log or normalization. This holds for word
embeddings that are based on co-occurrence statistics, e.g., LSA, skip-gram and GloVe. We use a
count-twice trick to estimate the noise: we randomly split the data into two equally large subsets,
and get matrices My = M + Zy, My = M + Z5 in R™*"  where Z;, Z5 are two independent copies
of noise with variance 202. Now, M; — My = Z, — Z, is a random matrix with zero mean and
variance 402, Our estimator is the sample standard deviation, a consistent estimator:

5= My, — M
G QFH 1 — Mo

Spectral Estimation Spectral estimation is a well-studied subject in statistical literature [Cai et al.,
2010, Candes and Recht, 2009, Kong and Valiant, 2017]. For our experiments, we use the well-
established universal singular value thresholding (USVT) proposed by Chatterjee [2015].

Ai = (\i —20v/n) 4

where )\, is the i-th empirical singular value and o is the noise standard deviation. This estimator is
shown to be minimax optimal [Chatterjee, 2015].

5.2.2 Dimensionality Selection: LSA, Skip-gram Word2Vec and GloVe

After estimating the spectrum {\;}{ and the noise o, we can use the Monte-Carlo procedure de-
scribed above to estimate the PIP loss. For three popular embedding algorithms: LSA, skip-gram
Word2Vec and GloVe, we find their optimal dimensionalities £* that minimize their respective PIP
loss. We define the sub-optimality of a particular dimensionality & as the additional PIP loss com-
pared with k*: | ELEl — EET|| — || B+ E)-" — EET||. In addition, we define the p% sub-optimal
interval as the interval of dimensionalities whose sub-optimality are no more than p% of that of a
1-D embedding. In other words, if k is within the p% interval, then the PIP loss of a k-dimensional
embedding is at most p% worse than the optimal embedding. We show an example in Figure 4.

LSA with PPMI Matrix For the LSA algorithm, the optimal dimensionalities and sub-optimal
intervals around them (5%, 10%, 20% and 50%) for different « values are shown in Table 1. Figure
4 shows how PIP losses vary across different dimensionalities. From the shapes of the curves, we
can see that models with larger « suffer less from over-parametrization, as predicted in Section 5.1.



We further cross-validated our theoretical results with intrinsic functionality tests on word related-
ness. The empirically optimal dimensionalities that achieve highest correlations with human labels
for the two word relatedness tests (WordSim353 and MTurk777) lie close to the theoretically se-
lected k*’s. All of them fall in the 5% interval except when o = 0, in which case they fall in the
20% sub-optimal interval.

PIP Error Ground Truth

PIP Errc

@a=0 ®b)a=0.5 C©a=1

Figure 4: PIP loss and its bias-variance trade-off allow for explicit dimensionality selection for LSA

Table 1: Optimal dimensionalities for word relatedness tests are close to PIP loss minimizing ones

«a PIPargmin | 5% interval | 10% interval | 20% interval | 50% interval | WS353 opt. | MT771 opt.

0 214 [164,289] [143,322] [115,347] [62,494] 127 116
0.25 138 [95,190] [78,214] [57,254] [23,352] 146 116
0.5 108 [61,177] [45,214] [29,280] [9,486] 146 116
0.75 90 [39,206] [27,290] [16,485] [5,1544] 155 176

1 82 [23,426] [16,918] [9,2204] [3,2204] 365 282

Word2Vec with Skip-gram For skip-gram, we use the PMI matrix as its signal matrix [Levy
and Goldberg, 2014]. On the theoretical side, the PIP loss-minimizing dimensionality £* and the
sub-optimal intervals (5%, 10%, 20% and 50%) are reported in Table 2. On the empirical side, the
optimal dimensionalities for WordSim353, MTurk771 and Google analogy tests are 56, 102 and 220
respectively for skip-gram. They agree with the theoretical selections: one is within the 5% interval
and the other two are within the 10% interval.

Table 2: PIP loss minimizing dimensionalities and intervals for Skip-gram on Text8 corpus

[ Surrogate Matrix [ argmin | +5% interval [ +10% interval [ +20% interval | +50% interval | WS353 [ MT771 | Analogy |
[Skip-gram (PMD) | 120 | [67218] | 482691 | 1293651 | 196791 | 56 | 102 | 220 |

GloVe For GloVe, we use the log-count matrix as its signal matrix [Pennington et al., 2014]. On
the theoretical side, the PIP loss-minimizing dimensionality k* and sub-optimal intervals (5%, 10%,
20% and 50%) are reported in Table 3. On the empirical side, the optimal dimensionalities for
WordSim353, MTurk771 and Google analogy tests are 220, 860, and 560. Again, they agree with
the theoretical selections: two are within the 5% interval and the other is within the 10% interval.

Table 3: PIP loss minimizing dimensionalities and intervals for GloVe on Text8 corpus

[ Surrogate Matrix [ argmin | +5% interval [ +10% interval | +20% interval | +50% interval | WS353 [ MT771 | Analogy |
‘ GloVe (log-count) 719 [290,1286] [160,1663] [55,2426] [5,2426] 220 860 560 ‘

The above three experiments show that our method is a powerful tool in practice: the dimensionali-
ties selected according to empirical grid search agree with the PIP-loss minimizing criterion, which
can be done simply by knowing the spectrum and noise standard deviation.

6 Conclusion

In this paper, we present a theoretical framework for understanding vector embedding dimension-
ality. We propose the PIP loss, a metric of dissimilarity between word embeddings. We focus on
embedding algorithms that can be formulated as explicit or implicit matrix factorizations including
the widely-used LSA, skip-gram and GloVe, and reveal a bias-variance trade-off in dimensionality
selection using matrix perturbation theory. With this theory, we discover the robustness of word
embeddings trained from these algorithms and its relationship to the exponent parameter «. In addi-
tion, we propose a dimensionality selection procedure, which consists of estimating and minimizing
the PIP loss. This procedure is theoretically justified, accurate and fast. All of our discoveries are
concretely validated on real datasets.
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