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Abstract

We study the set of continuous functions that admit no spurious local optima
(i.e. local minima that are not global minima) which we term global functions.
They satisfy various powerful properties for analyzing nonconvex and nonsmooth
optimization problems. For instance, they satisfy a theorem akin to the fundamental
uniform limit theorem in the analysis regarding continuous functions. Global
functions are also endowed with useful properties regarding the composition of
functions and change of variables. Using these new results, we show that a class of
nonconvex and nonsmooth optimization problems arising in tensor decomposition
applications are global functions. This is the first result concerning nonconvex
methods for nonsmooth objective functions. Our result provides a theoretical
guarantee for the widely-used ¢; norm to avoid outliers in nonconvex optimization.

1 Introduction

A recent branch of research in optimization and machine learning consists in proving that simple
and practical algorithms can solve nonconvex optimization problems. Applications include, but are
not limited to, neural networks [40, |44], dictionary learning [1. 2], deep learning [39, [50]], mixed
linear regression [49] 43]], and phase retrieval [46l 21]]. In this paper, we focus our attention on
matrix completion/sensing [30, 24, |38]] and tensor recovery/decomposition [} 14, 131} 135]]. Matrix
completion/sensing aims to recover an unknown positive semidefinite matrix M of known size n
and rank r from a finite number of linear measurements modeled by the expression (A;, M) :=
trace(A; M), i = 1,...,m, where the symmetric matrices Ay, ..., A, of size n are known. It is
assumed that the measurements contain noise which can modeled as b; := (A;, M) + ¢; where €; is
a realization of a random variable. When the noise is Gaussian, the maximum likelihood estimate of
M can be recast as the nonconvex optimization problem
m

inf Z ((A;, M) —b;)*  subjectto rank(M) =r (1)

Mo
where M = 0 stands for positive semidefinite. One can remove the rank constraint and obtain a
convex relaxation. It can then be solved via semidefinite programming after the reformulation of the
objective function in a linear way. However, the computational complexity of the resulting problem
is high, which makes it impractical for large-scale problems. A popular alternative is due to Burer
and Monteiro [18 [12]]:
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This nonlinear Least-Squares (LS) problem can be solved efficiently and on a large-scale with the
Gauss-Newton method for instance. It has received a lot of attention recently due to the discovery
in [30, [10] stating that the problem admits no spurious local minima (i.e. local minima that are
not global minima) under certain conditions. These require adding a regularizer and satisfying the
restricted isometry property (RIP) [20]. We raise the question of whether this also holds in the case of
Laplacian noise, which is a better model to account for outliers in the data. The maximum likelihood
estimate of M can be converted to the Least-Absolute Value (LAV) optimization problem
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The nonlinear problem can be solved efficiently using nonconvex methods (for some recent work,
see [36]). For example, one may adopt the famous reformulation technique for converting ¢; norms
to linear functions subject to linear inequalities to cast the above problem as a smooth nonconvex
quadratically-constrained quadratic program [13]]. However, the analysis of this result has not been
addressed in the literature - all ensuing papers (e.g. [29, 52} 8]) on matrix completion since the
aforementioned discovery deal with smooth objective functions.

Consider y € R™ and assume r = 1. On the one hand, in the fully observable caseﬂ with M = yyT,
the above nonconvex LS problem (2)) consists in solving
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for which there are no spurious local minima with high probability when ¢; ; are i.i.d. Gaussian
variables [30]]. On the other hand, in the full observable case, the LAV problem (3)) aims to solve
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Although the LS problem has nice properties with Gaussian noise, we observe that stochastic gradient
descent (SGD) fails to recover the matrix M = yy” in the presence of large but sparse noise. In
contrast, SGD can perfectly recover the matrix by solving the LAV problem even when the sparse
noise ¢; ; has a large amplitude. Figures|Ta|and[Tb|show our experiments for n = 20 and n = 50 with
the number of noisy elements ranging from 0 to n2. See Appendix [5.1|for our experiment settings.
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Figure 1: Experiments with sparse noise

Upon this LAV formulation hinges the potential of nonconvex methods to cope with sparse noise
and with Laplacian noise. There is no result on the analysis of the local solutions of this nons-
mooth problem in the literature even for the noiseless case. This could be due to the fact that the
optimality conditions for the smooth reformulated version of this problem in the form of quadratically-
constrained quadratic program are highly nonlinear and lead to an exponential number of scenarios.

!This corresponds to the case where the sensing matrices Ay, . .., A,» have all zeros terms apart from one
element which is equal to 1.



As such, the goal of this paper is to prove the following proposition, which as the reader will see, is a
significant hurdle. It addresses the matrix noiseless case and more generally the case of a tensor of
order d € N.

Proposition 1.1. The function f1 : R™ — R defined as
filx) = Z [Ty oo iy — Yiy - Yiy| (6)

has no spurious local minima.

A direct consequence of Proposition[I.T]is that one can perform the rank-one tensor decomposition
by minimizing the function in Proposition[I.1|using a local search algorithm (e.g. [19]). Whenever
the algorithm reaches a local minimum, it is a globally optimal solution leading to the desired
decomposition. Existing proof techniques, e.g. [29} 130, 24, 38} 15, 4] 31} 35]], are not directly useful
for the analysis of the nonconvex and nonsmooth optimization problem stated above. In particular,
results on the absence of spurious local minima neural networks with a Rectified Linear Unit (ReLU)
activation function pertain to smooth objective functions (e.g. [48}14]). The Clarke derivative [22} [23]]
provides valuable insight (see Lemma [3.1)) but it is not conclusive. In order to pursue the proof
(see Lemma[3.2)), we propose the new notion of global function. Unlike the previous approaches, it
does not require one to exhibit a direction of descent. After some successive transformations, we
reduce the problem to a linear program. It is then obvious that there are no spurious local minima.
Incidentally, global functions provide a far simpler and shorter proof to a slightly weaker result, that
is to say, the absence of spurious strict local minima. It eschews the Clarke derivative all together
and instead considers a sequence of converging differentiable functions that have no spurious local
minima (see Proposition [3.1). In fact, this technique also applies if we substitute the ¢; norm with the
£~ norm (see Proposition [3.2)).

The paper is organized as follows. Global functions are examined in Section [2]and their application
to tensor decomposition is discussed in Section[3] Section[]concludes our work. The proofs may be
found in the supplementary material (Section [5|of the supplementary material).

2 Notion of global function

n
Given an integer n, consider the Euclidian space R™ with norm ||z||2 := , [ > 27 along with a subset
\/ i=1

S C R™. The next two definitions are classical.

Definition 2.1. We say that x € S is a global minimum of f : S — Rifforally € S\ {z}, it
holds that f(x) < f(y).

Definition 2.2. We say that x € S is a local minimum (respectively, strict local minimum) of
f 8 — Rifthere exists ¢ > 0 such that for all y € S\ {x} satisfying ||z — y||2 < ¢ it holds that

f(@) < f(y) (respectively, f(x) < f(y))-

We introduce the notion of global functions below.

Definition 2.3. We say that f : S — R is a global function if it is continuous and its local minima
are all global minima. Define G(S) as the set of all global functions on S.

In the following, we compare global functions with other classes of functions in the literature,
particularly those that seek to generalize convex functions.

When the domain S is convex, two important proper subsets of G(.5) are the sets of convex and strict
quasiconvex functions. Convex functions (respectively, strict quasiconvex [27, 26]) are such that
FOz+ (1= \)y) < Af(2)+ (1— ) f(y) (respectively, f(Az + (1 — A)y) < max{f(x), f(y)}) for
all z,y € S (withz # y) and 0 < A < 1. To see why these are proper subsets, notice that the cosine
function on [0, 47] is a global function that is neither convex nor strict quasiconvex. In dimension
one, global and strict quasiconvex functions are very closely related. Indeed, when the domain is
convex and compact (i.e. an interval [a, b] where a, b € R), it can be shown that a function is strict
quasiconvex if and only if it is global and has a unique global minimum. However, this is not true in
higher dimensions, as can be seen in Figure b]in Appendix [5.2} or in the existing literature, i.e. in



[25] or in [9l Figure 1.1.10]. It is also not true in dimension one if we remove the assumption that the
domain is compact (consider f(z) := (22 4+ z*)/(1 + 2*) defined on R and illustrated in Figure [42]

in Appendix [5.2).

When the domain S is not necessarily convex, a proper subset of G(.5) is the set of star-convex
functions. For a star-convex function f, there exists € S such that f(Az+(1—-X)y) < Af(z)+(1—
A)f(y)forally € S\ {z} and 0 < A < 1. Again, the cosinus function on [0, 47] is a global function
that is not star-convex. Another interesting proper subset of G(.5) is the set of functions for which,
informally, given any point, there exists a strictly decreasing path from that point to a global minimum.
This property is discussed in [47, P.1] (see also [28]) to study the landscape of loss functions of
neural networks. Formally, the property is that for all z € S such that f(z) > inf,cg f(y), there
exists a continuous function g : [0, 1] — S such that g(0) = z, g(1) € argmin{f(y) | y € S}, and
t € [0,1] — f(g(t)) is strictly decreasing (i.e. f(g(t1)) > f(g(t2))if 0 < ¢; < t2 < 1). Not all
global functions satisfy this property, as illustrated by the function in Figure da] For instance, there
exists no strictly decreasing path from x = —3 to the global minimizer 0. However, in the funtion in
Figure {ib]in Appendix [5.2] there exists a strictly decreasing path from any point to the unique global
minimizer. One could thus think that if S is compact, or if f is coercive, then one should always
be able to find a strictly decreasing path. However, there need not exist a strictly decreasing path in
general. Consider for example the function defined on ([—1,1] \ {0}) x [—1, 1] as follows

[P0~ ) (sin () +1) if 0<a<1,
{12|x1|3 (sin (—ﬁ) + 1) - 2} 3 +
B T O o R B e Pt
thrP (sn (=) + 1) a2 = thrP (sn (~r) +1)

The function and its differential can readily be extended continuously to [—1,1] x [—1, 1]. This
is illustrated in Figure |6ain Appendix This yields a smootlﬂ global function for which there
exists no strictly decreasing path from the point z = (0, 1/2) to a global minimizer (i.e. any point
in [-1,1] x {—1}). We find this to be rather counter-intuitive. To the best of our knowledge, no
such function has been presented in past literature. Hestenes [32] considered the function defined on
[—1,1] x [=1,1] by f(z1,22) := (v3 — 273) (29 — 427) (see also [9} Figure 1.1.18]). It is a global
function for which the point z = (0,0) (which is not a global minimizer) admits no direction of
descent, i.e. d € R? such thatt € [0,1] — f(z + td) is strictly decreasing. However, it does
admit a strictly decreasing path to a global minimizer, i.e. ¢ € [0,1] — (@t, t2), along which
the objective equals — %t‘*. This is unlike the function exhibited in Figur As a byproduct, our
function shows that the generalization of quasiconvexity to non-convex domains described in [6),
Chapter 9] is a proper subset of global functions. This generalization was proposed in [41]] and further
investigated in [[7, (33} 34} 15,16, [17]]. It consists in replacing the segment used to define convexity
and quasiconvexity by a continuous path.

Finally, we note that there exists a characterization of functions whose local minima are global,
without requiring continuity as in global functions. It is based on a certain notion of continuity
of sublevel sets, namely lower-semicontinuity of point-to-set mappings [51, Theorem 3.3]. We
will see below that continuity is a key ingredient for obtaining our results. We do not require
more regularity precisely because one of our goals is to study nonsmooth functions. Speaking of
which, observe that global functions can be nowhere differentiable, contrary to convex functions [[11}
Theorems 2.1.2 and 2.5.1]. Consider for example the global function defined on |0, 1] x ]0, 1] by
flxy,x2) :=|229 — 1] Z::f) s(2"x1)/2™ where s(z) := min, ey | — n/ is the distance to nearest
integer. For any fixed x5 # 0, the function 1 € [0,1] — f(z1,22)/|z2| is the Takagi curve
[45L 13} 37] which is nowhere differentiable. It can easily be deduced that the bivariate function is
nowhere differentiable. This is illustrated in Figure [6b]

In the following, we review some of the properties of global functions. Their proofs can be found in
the appendix. We begin by investigating the composition operation.

*In fact, one could make it infinitely differentiable by using the exponential function in the construction, but
it is more cumbersome.



Proposition 2.1 (Composition of functions). Consider f : S — R. Let ¢ : f(S) — R denote
a strictly increasing function where f(S) is the range of f. It holds that f € G(S) if and only if

pofeg(s)

However, the set of global functions is not closed under composition of functions in general. For
instance, f(x) := |z| and g(z) := max(—1, |z| — 2) are global functions on R, but f o g is not global
function on R.

Proposition 2.2 (Change of variables). Consider f : S — R, a subset S’ C R", and a homeomor-
phism ¢ : S — S’ (i.e. continuous bijection with continuous inverse). It holds that f € G(S) if and
onlyif f o~ € G(S).

Next, we consider what happens if we have a sequence of global functions. Figure 2ashows that the
sequence of global functions (red dotted curves) pointwise converges to a function with a spurious
local minimum (blue curve). Figure 2b|shows that uniform convergence also does not preserve the
property of being a global function: all points on the middle part of the limit function (blue curve) are
spurious local minima. However, it suggests that uniform convergence preserves a slightly weaker
property than being a global function. Intuitively, the limit should behave like a global function
except that it may have “flat” parts. We next formalize this intuition. To do so, we consider the
notions of global minimum, local minimum, and strict local minimum (Definition @ and Definition
[2.2), which apply to points in R"™, and generalize them to subsets of R™. We will borrow the notion
of neighborhood of a set (uniform neighborhood to be precise, see Definition [2.3]).
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Figure 2: Convergence of a sequence of global functions

Definition 2.4. We say that a subset X C S is a global minimum of f : S — R ifinfx f <
infs\x f

We note in passing the following two propositions. We will use them repeatedly in the next section.
The proofs are omitted as they follow directly from the definitions.

Proposition 2.3. Assume that the following statements are true:
1. X C Sis a global minimum of f;
2. feg(X);
3. f does not have any local minima on S \ X.

Then, f € G(S).

Note that the first assumption is needed; otherwise the function may not be global because it could
take a smaller value at a non local min outside X (possible when S is unbounded).

Proposition 2.4. If f : S — R is a global function on global minima (X, )ac A for some index set
A, then it is a global function on ¢ 4 Xa-

We proceed to generalize the definition of local minimum.



Definition 2.5. We say that a compact subset X C S is local minimum (respectively, strict local
minimum) of f : S — R if there exists € > 0 such that for all v € X and forally € S\ X

satisfying ||z — y||2 < € it holds that f(x) < f(y) (respectively, f(x) < f(y)).

The above definitions are distinct from the notion of valley proposed in [47, Definition 1]. The latter
is defined as a connected component{|of a sublevel set (i.e. {x € S| f(z) < a} for some o € R).
Local minima and strict local minima need not be valleys, and vice-versa. One may easily check
that when the set is a point, i.e. X = {z} with z € S, the two definitions above are the same as the
previous definitions of minimum (Definition [2.]and Definition[2.2). They are therefore consistent. It
turns out that the notion of global function (Definition does not change when we interpret it in
the sense of sets. We next verify this claim.

Proposition 2.5 (Consistency of Definition[2.3). Let f : S — R denote a continuous function. All
local minima are global minima in the sense of points if only if all local minima are global minima in
the sense of sets.

We are ready to define a slightly weaker notion than being a global function.

Definition 2.6. We say that f : S — R is a weakly global function if it is continuous and if all strict
local minima are global minima in the sense of sets.

The generalization from points to sets in the definition of a minimum is justified here, as can be seen
in Figure All strict local minima are global minima in the sense of points. However, X = [a, ]
with ¢ &~ —2.6 and b = —1 is a strict local minimum that is not a global minimum. Indeed,
infx f =6 > 1 = infg\ x f. Hence, the function is not weakly global.

Figure 3: All strict local minima are global minima in the sense of points but not in the sense of sets.

We next make the link with the intuition regarding the flat part in Figure [2b}

Proposition 2.6. If f : S — R is a weakly global function, then it is constant on all local minima
that are not global minima.

We are interested in functions that are potentially defined on all of R™ (i.e. unconstrained optimization)
or on subsets S C R that are not necessarily compact (i.e. general constrained optimization). We
therefore need to borrow a slightly more general notion than uniform convergence [42] page 95,
Section 3].

Definition 2.7. We say that a sequence of continuous functions fr, : S — Rk = 1,2,...,
converges compactly towards [ : S — R if for all compact subsets K C S, the restrictions of [ to
K converge uniformly towards the restriction of f to K.

We are now ready to state a result regarding the convergence of a sequence of global functions and an
important property that is preserved in the process.

3Note that the neighborhood of a compact set is always uniform.
A subset C' C S is connected if it is not equal to the union of two disjoint nonempty closed subsets of S. A
maximal connected subset (ordered by inclusion) of S is called a connected component.



Proposition 2.7 (Compact convergence). Consider a sequence of functions (fi.)ren and a function
frall from'S C R™ to R. If
fx — [ compactly @)

and if fi. are global functions on S, then f is a weakly global function on S.

Note that the proofs in this section are not valid if we replace the Euclidian space by an infinite-
dimensional metric space. Indeed, we have implicitely used the fact that the unit ball is compact in
order for the uniform neighborhood of a minimum to be compact.

3 Application to tensor decomposition

Global functions can be used to prove the following two significant results on nonlinear functions
involving ¢; norm and /., norm, as explained below.

Proposition 3.1. The function f1 : R™ — R defined as

n

fl(x) = Z |$i1...$id—yi1...yid| (8)

i1,eenig=1

is a weakly global function; in particular, it has no spurious strict local minima.

Proof. The functions
n

folz) = Z |Tiy oo @iy — Yiy iy P 9)

i1,0058a=1

for p — 1 with p > 1 form a set of global functions that converge compactly towards the function
f1. This is illustrated in Figure[5)in Appendix[5.2|forn = d = 2 and y = (1, —3/4). The desired
result then follows from Proposition To see why each f), is a global function, observe that f, is
differentiable with the first-order optimality condition as follows:

n

. . . . g ) N ) .o ) |p=2
§ Tiy oo Tig_y (Tiy oo Tiy T~ Yiy o Yig o Yi)|Tiy - Tig T — Yiy - Yig_, Yil =0
i1eigo1=1

forall i € {1,...,n}. Note that each term in the sum converges towards zero if the expression inside
the absolute value converges towards zero, so that the equation is well-defined. Consider a local
minimum x € R"”; then, x must satisfy the above first-order optimality condition. If y; = 0, then the
above equation readily yields z; = 0. This reduces the problem dimension from n variables ton — 1
variables, so without loss of generality we may assume that y; # 0, ¢ = 1,...,m. After a division,
observe that the following equation is satisfied

n T T T T T T p—2
Z |yi1"'yid—1|p ll ,ld1< ll .ldlt_:l) “ %dilt—l =0
a1 =1 Yiv o Yigr \Yir -+ Yig Yiy - Yig
forall t € {z1/y1,...,%n/yn}. Bach term with ;, ...x;,_, # 0 in the above sum is a strictly
increasing function of ¢ € R since it is the derivative of the strictly convex function
gt) =\ziy .o iyt —Yiy - Yiy_, | (10)

The point 2 = 0 is not a local minimum (y is a direction of descent of f, at 0), and thus z # 0. As a
result, the above sum is a strictly increasing function of ¢ € R. Hence, it has at most one root, that is
tosay t = x1/y; = - - - = T, /yn. Plugging in, we find that t¢ = 1. If d is odd, then 2 = y and if d
is even, then z = £y. To conclude, any local minimum z is a global minimum of f,. O

Proposition 3.2. f., : R" — R defined as
foolz) = 1<Z_1ma)£:d<n |y o iy — Yy - Yiy| (11)

is a weakly global function; in particular, it has no spurious strict local minima.



n
Proof. The functions h,(x) := < > @iy e ®iy, — Yiy - -yiy|P | for p — 400 form a set
i1yereria=1
of global functions that converge compactly towards the function f.,. We know that each h,, is a

global function by applying Proposition|2.1|to (9) with the fact that ()% is increasing for nonnegative
arguments. O

Note that the functions in Proposition[3.1]and Proposition[3.2]are a priori utterly different, yet both
proofs are essentially the same. This highlights the usefulness of the new notion of global functions.

Remark 3.1. The notion of weakly global functions explains that one can perform tensor decomposi-
tion by minimizing the nonconvex and nonsmooth functions in Proposition[3.1|and Proposition[3.2]
with a local search algorithm. Whenever the algorithm reports a strict local minimum, it is a globally
optimal solution.

In order to strengthen the conclusion in Proposition [3.1]and to establish the absence of spurious local
minima, we propose the following two lemmas. Using Proposition [2.3]and these two lemmas, we
arrive at the stronger result stated in Proposition

Lemma 3.1. If x € R" is a first-order stationary point of f1 in the sense of the Clarke derivative,
then the following statements hold:

1. Ify; = 0forsomei € {1,...,n}, thenx; = 0;

2. Foralliy,. .. ig € {1,...,n}, it holds that "4 < 1.

Tiq
Yiy--Yig

/A

Proof. Similar in spirit to the proof of Proposition the ratios t € {x1/y1,...,2n/yn} for a
first-order stationary point must all be the roots of an increasing (set-valued) “staircase function". We
then obtain the results by analyzing the relation between the roots and the jump points of the staircase
function. See Appendix [5.8]for the complete proof. O

Note that the above lemma only uses the first-order optimality condition (in the sense of Clarke
derivative) without any direction of decent.

Remark 3.2. One cannot show that there are no spurious local minima with only the first-order

Ty —

n
optimality condition (in the Clarke derivative sense). In fact, any x € R"™ satisfying >_ |y;
i=1

Yi
and % < 1ljoralliy,... iq € {1,...,n}, is afirst-order stationary point, but is not a local
ip--Yig
minimum.
Lemma 3.2. Ify; . ..y, # 0, define the set
S::{xeR” Lin B g Vil,...,ide{l,...,n}}. (12)
yil R yld

Then, f1 € G(9).
Proof. We provide a sketch here, and the complete proof is deferred to Appendix [5.9] The

n d n
objective function on S is equal to fi(z) = (Z |y7> - (Z ly:

d
Zi | Define the set

i=1 =1 ¥

S i={zeR" |zy...x;, <1, Viy,...,iqg € {1,...,n} }. When d is an odd number, the

composition and change of variables properties of global functions (Propositions [2.1]and [2.2) imply

that f; is a global function on S if and only if foaa(z) = — >\, |yi|x; € G(S’). Similarly, when d

is an even number, f is a global function if and only if feven(z) = — (31 |yi\a:i)2 € G(95"). For the
case when d is odd, we apply the Karush-Kuhn-Tucker conditions to restrict attention to the positive
orthant and conclude by showing its association with a linear program. For the case when d is even,
we divide the set S’ into two subsets: S N {z| >, |y;|z; > 0} and S" N {z| >, |yilz; < 0}.
Observe that feyen(2) is a global function on each of the subset by associating each subset with a
linear program. Then, Proposition 2.3 establishes the result. O

The two previous lemmas prove Proposition[I.T} the notion of global function is used to the prove the
latter.



4 Conclusion

Nonconvex optimization appears in many applications, such as matrix completion/sensing, tensor
recovery/decomposition, and training of neural networks. For a general nonconvex function, a
local search algorithm may become stuck at a local minimum that is arbitrarily worse than a global
minimum. We develop a new notion of global functions for which all local minima are global
minima. Using certain properties of global functions, we show that the set of these functions include
a class of nonconvex and nonsmooth functions that arise in matrix completion/sensing and tensor
recovery/decomposition with Laplacian noise. This paper offers a new mathematical technique for
the analysis of nonconvex and nonsmooth functions such as those involving ¢; norm and ¢, norm.
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