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Abstract

Learning time-series models is useful for many applications, such as simulation and
forecasting. In this study, we consider the problem of actively learning time-series
models while taking given safety constraints into account. For time-series mod-
eling we employ a Gaussian process with a nonlinear exogenous input structure.
The proposed approach generates data appropriate for time series model learning,
i.e. input and output trajectories, by dynamically exploring the input space. The
approach parametrizes the input trajectory as consecutive trajectory sections, which
are determined stepwise given safety requirements and past observations. We ana-
lyze the proposed algorithm and evaluate it empirically on a technical application.
The results show the effectiveness of our approach in a realistic technical use case.

1 Introduction

Active model learning deals with the problem of sequential data labeling for learning an unknown
function. Data points are sequentially selected for labeling such that the information required for
approximating the unknown function is maximized, according to some measures. The overall goal is
to create an accurate model without having to supply more data than necessary and, thereby reducing
the annotation effort and measurement costs. Active learning has been well studied for classification
tasks, e.g. for image labeling [12], but in the field of regression, the active learning approach, related
to the optimal experimental design problem [8], is not yet widespread.

For actively learning time-series models representing physical systems, the data has to be generated
such that the relevant dynamics can be captured. In practice, the physical system needs to be excited
by dynamically moving around in the input space using input trajectories, such that the collected
data, i.e. input and output trajectories, contain as much information about the dynamics as possible.
Commonly used input trajectories include sinusoidal functions, ramps and step functions, white noise,
etc. [13, 17]. When employing input excitation on physical systems, however, additional aspects of
safety need to be considered. The excitation must not damage the physical system while dynamically
exploring the input space, making it crucial to identify safe regions where dynamic excitation can be
performed.

In this paper we consider the problem of safe exploration for active learning of time-series models.
The goal is to generate input trajectories and output measurements which are informative for learning
time-series models. To do so, our input trajectories are parametrized in consecutive sections, e.g.
as consecutive piecewise ramps or splines. These consecutive sections of the input trajectory are
determined stepwise in an explorative approach. Given observations, the next trajectory sections are
determined by maximizing an information gain criterion with respect to the model. In this paper,
we employ a Gaussian process with a nonlinear exogenous structure as the time-series model for
which an appropriate exploration criterion is desired. An additional Gaussian process model is
simultaneously used for predicting safe input regions, given safety requirements. The sections of
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the input trajectory are determined by solving a constraint optimization problem, taking the safety
prediction into account. The main contributions of the paper can be summarized as:

• We formulate an active learning setting for learning time-series models with dynamic
exploration, in the context of the Gaussian process framework.

• We incorporate the safety aspect into the exploration mechanism and derive a criterion
appropriate for the dynamic exploration of the input space with trajectories.

• We provide a theoretical analysis of the algorithm, and empirically evaluate the proposed
approach on a realistic technical use case.

The remainder of the paper is organized as follows. In Section 2, we provide an overview on related
work. In Section 3, we introduce the algorithm for safe active learning of time-series models. Section
4 provides a theoretical analysis, and in Section 5, we highlight our empirical evaluations in learning
time-series model in several settings. The Appendix contains the proofs of the theoretical analysis
section and some more experimental investigations.

2 Related Work

Most existing work for safe exploration in unknown environments is in the reinforcement learning
setting [16, 10, 9]. For example, the safe exploration in finite MDP relies on the restriction of suitable
policies, ensuring ergodicity at a user-defined safety level [16]. In [10], the ergodic assumption for
the MDPs is dropped by introducing fatal absorbing states. In [9], the authors consider the use of a
multi-armed, risk-aware bandit setting to prevent hazards when exploring different tasks. Strategies
for exploring unknown environments have also been reflected in the framework of global optimization
with Gaussian processes [1, 23, 11]. For example, [11] propose an efficient submodular exploration
criterion for near-optimal sensor placements, i.e. for discrete input spaces. In [1], a framework
is presented which yields a compromise between exploration and exploitation through confidence
bounds. In [23], the authors show that under reasonable assumptions, strong exploration guarantees
can be given for Bayesian optimization with Gaussian processes.

Safe exploration using Gaussian processes (GP) has also been considered in the past, such as for safe
active learning [20] and safe Bayesian optimization [2, 24]. In [24], for example, a two-steps process
is proposed for a safe exploration and efficient exploitation of identified safe areas. In safe active
learning, [20] proposes a method for safe exploration based on the GP variance for stationary, i.e.
pointwise, measurements. In contrast to the work by [20], we consider the setting of safe dynamical
exploration, i.e. using trajectory-wise measurements. This setting is especially useful when actively
learning time-series models.

The problem of active learning for time-series models has not yet been considered extensively in
the machine learning literature. Work on related topics is mostly in the field of online design of
experiments, e.g. [6]. In [6], the authors employ a parametric model for learning dynamical processes,
in which the data for model learning is obtained by exploring using the Fisher information matrix.
In contrast to their work, we explore unknown environments by employing a criterion defined for
the non-parametric GP model, while also taking into account safety requirements. Furthermore, our
proposed exploration scheme is rigorously analyzed providing further algorithmic insights.

3 Safe Active Learning for Time-Series Modeling

Our goal is to approximate an unknown function f :X⊂Rd → Y ⊂R. In the case of time-series
models, e.g. the well-established nonlinear exogenous (NX) model, the input space consists of
discretized values of the so-called manipulated variables [3]. Thus, xk at time k can be given as

xk =(uk,uk−1, . . . ,uk−d2+1) ,

where (uk)k, uk ∈ Rd2 , represents the discretized manipulated trajectory. Here, d1 is the dimension
of the system’s input space, d2 the dimension of the NX structure, and d = d2 · d1. In practice, the
elements uk are measured from physical systems and need not be equidistant, however, for notational
convenience we assume equidistance in this setting. In general, the manipulated trajectories are
continuous signals and can be explicitly controlled. In the model learning setting, we observe data in
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the form of n consecutive piecewise trajectories Df
n ={τ i,ρi}ni=1, where the input trajectory τ i is a

matrix and consists of m input points of dimension d, i.e. τ i =(xi
1, . . . ,x

i
m)∈Rd×m. The output

trajectory ρi contains m corresponding output measurements, i.e. ρi =(yi1, . . . , y
i
m)∈Rm.

The considered problem is to determine the next piecewise trajectory τn+1 as input excitation to the
physical system such that the information gain of Df

n+1 – with respect to modeling f – is increased.
At the same time, τn+1 should be determined subject to given safety constraints. In this section we
elaborate on the setting and describe the algorithm. The definition of the considered information gain
and corresponding analysis are provided in Section 4.

3.1 Modeling Trajectories with Gaussian Processes

We employ a Gaussian Process (GP) model to approximate the function f (see [19] for more
details). A GP is specified by its mean function µ(x) and covariance function k(xi,xj), i.e. f(xi)∼
GP(µ(xi), k(xi,xj)). Given noisy observations of input and output trajectories, the joint distribution
according to the GP prior is given as

p (P n|T n) = N
(
P n|0,Kn+σ2I

)
,

where P n∈Rn·m is a vector concatenating output trajectories and T n∈Rn·m×d a matrix containing
input trajectories. The covariance matrix is represented byKn∈Rn·m×n·m. In this paper, we employ
the Gaussian kernel as the covariance function, i.e. k(xi,xj)=σ2

f exp(− 1
2 (xi−xj)

TΛ2
f (xi−xj)),

which is parametrized by θf = (σ2
f ,Λ

2
f ). Furthermore, we have a zero vector 0∈Rn·m as mean,

an n · m-dimensional identity matrix I , and σ2 as output noise variance (see [19]). Given the
joint distribution, the predictive distribution p(ρ∗|τ ∗,Df

n) for a new piecewise trajectory τ ∗ can be
expressed as

p(ρ∗|τ ∗,Df
n) = N (ρ∗|µ(τ ∗),Σ(τ ∗)) , (1)

with
µ(τ ∗) = k(T n, τ

∗)T (Kn+σ2I)−1P n ,

Σ(τ ∗) = k∗∗(τ ∗, τ ∗)− k(T n, τ
∗)T (Kn+σ2I)−1k(T n, τ

∗) ,
(2)

where k∗∗ ∈ Rm×m is a matrix with k∗∗ij = k(xi,xj). The matrix k ∈ Rn·m×m contains kernel
evaluations relating τ ∗ to the previous n input trajectories. As the covariance matrix Kn is fully
occupied, the input points x are fully correlated within a piecewise trajectory, as well as across
different trajectories; this enables the exploitation of high capacity correlations. However, due to the
potentially large dimension n·m, inverting the matrixKn+σ2I can be infeasible. GP approximation
techniques can be employed, e.g. using sparse inducing inputs or variational approaches [18, 22, 26].

3.2 Modeling the Safety Condition

The safety status of the system is described by an unknown function g : X⊂Rd → Z⊂R, mapping
an input point x to a safety value z, which acts as a safety indicator. The values z are computed
using information from the system, and are designed such that all values equal or greater than zero
are considered safe for the corresponding input x. Example 1 shows a construction for computing z
values. More examples can be found in the evaluation in Section 5.
Example 1 (A safety indicator for a high-pressure fluid system). In a high-pressure fluid system, we
can measure the pressure ψ for a given input state x. Additionally, we know the value of the maximal
pressure ψmax which can act on the physical system. Given the current pressure ψ, the safety values
z can be computed as

z(ψ) = 1− exp((ψ − ψmax)/λp) , (3)
where λp describes the decline, when ψ increases towards ψmax.

Note that z is continuous and, intuitively, indicates the distance of a given point x from the unknown
safety boundary in the input space. Thus, given the function g – or an estimate of it – we can evaluate
the level of safety for a trajectory τ . We consider a trajectory as safe, if the probability that its safety
values z are greater than zero is sufficiently large, i.e.∫

z1,...,zm≥0

p(z1, . . . , zm|τ ) dz1, . . . , zm > 1− α ,
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with α ∈ (0, 1] representing the threshold for considering τ unsafe. Given data Dg
n ={τ i, ζi}ni=1,

with ζi =(zi1, . . . , z
i
m)∈Rm, we employ a GP to approximate the function g. The predictive distribu-

tion p(ζ∗|τ ∗,Dg
n) given a piecewise trajectory τ ∗ is then computed as

p(ζ∗|τ ∗,Dg
n) = N

(
ζ∗|µg(τ ∗),Σg(τ ∗)

)
, (4)

with µg(τ ∗) and Σg(τ ∗) being the corresponding mean and covariance. The quantities µg and Σg

are computed as shown in Eq. (2), then with Zn∈Rn·m as the target vector concatenating all ζi. By
employing a GP for approximating g, the safety condition ξ(τ ) for a trajectory τ can be computed as

ξ(τ ) =

∫
z1,...,zm≥0

N
(
ζ|µg(τ ),Σg(τ )

)
dz1, . . . , zm > 1− α . (5)

In general, the computation of ξ(τ ) is analytically intractable, and thus needs to rely on some
approximation, such as Monte-Carlo sampling or expectation propagation [15].

3.3 The Algorithm

In the previous sections, we elaborated on the modeling of the predictive distribution and the safety
condition for a given piecewise trajectory τ in the input space. For efficiently choosing an optimal
τ , the trajectory needs to be appropriately parametrized. The most straightforward possibility is to
parametrize in the input space. We illustrate the trajectory parametrization in the following Example
2, using ramp parameterization.
Example 2 (Consecutive ramps as piecewise trajectory). A ramp can be parametrized with its start
and end point. As the start point is the last point of the previous trajectory, the end point η is the only
free quantity, and therefore a ramp can be parametrized as

τ (η) = (x1(η), . . . ,xm(η))

with for 1 ≤ k ≤ m : xk(η) =

(
u0 +

k

m
(η − u0), . . . ,u0 +

k − d2 + 1

m
(η − u0)

)
(6)

where u0 is the start point of the ramp. For k−i ≥ 0, the manipulated input variable is on the
currently planned trajectory, and for k− i < 0 it can be read from the list of already executed
trajectories.

Given a trajectory parametrization with its predictive distribution in Eq. (1) and safety condition in
Eq. (5), the next piecewise trajectory τn+1(η∗) can be obtained by solving the following constrained
optimization problem

η∗ = argmaxη∈Π I (Σ(η)) (7)

s.t. ξ (η) > 1− α , (8)

where η represents our trajectory parametrization, Π is domain of the manipulated variable, and I an
optimality criterion we will discuss later. As shown in Eq. (7), we employ the predictive variance
Σ from Eq. (1) for the exploration, which is common in the active learning setting, especially
in combination with a GP model [20, 14]. In contrast to previous work, due to the nature of the
considered trajectory, we have a covariance matrix Σ instead of the variance value usually employed
in the active learning and Bayesian optimization setting [23]. The covariance matrix is mapped
by an optimality criterion I to a real number, as indicated by Eq. (7). Various optimality criteria
can be used for I, as discussed in the system identification literature [8]. For example, I can be
the determinant, equivalent to maximizing the volume of the predictive confidence ellipsoid of the
multi-normal distribution, the trace, equivalent to maximizing the average predictive variance, or the
maximal eigenvalue, equivalent to maximizing the largest axis of the predictive confidence ellipsoid
[8].

The constraint in Eq. (8) represents a probabilistic safety criterion, motivated by our probabilistic
modeling approach for the safety. The probabilistic approach flexibly allows us to control the trade-off
between exploration speed and safety consideration. For example, a 100% safe exploration would
keep the algorithm from leaving the initial safe area and, hence, would not lead to an exploration of
new areas. On the other hand, a 0% safe exploration will explore without any safe considerations
which will result in many safety violations. This trade-off provides the users an additional degree of
freedom, depending on how much they “trust” the behavior of their physical systems.
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Algorithm 1 Safe Active Learning for Time-Series Modeling
1: Input: Safety threshold 0≤α≤1

2: Initialization: Collect n0 safe trajectories, i.e. Df,g
0 ={τ i,ρi, ζi}ni=1 with n=n0.

3: for k = 1 to N do
4: Update regression model approximating f using Df

k−1 ={τ i,ρi}ni=1, according to Eq. (1)
5: Update safety model approximating g using Dg

k−1 ={τ i, ζi}ni=1, according to Eq. (4)
6: Determine new piecewise trajectory τn+1, by optimizing η according to Eq. (7 and 8)
7: Execute τn+1 on the physical system, while measuring ρn+1 and ζn+1

8: Include new trajectories into Df
k−1 and Dg

k−1 with n=n+1.
9: end for

10: Update and return regression model and safety model

Algorithm 1 summarizes the basic steps of the proposed algorithm, which needs to be initialized by n0

safe trajectories. In practice, the initial trajectories are located in a small, safe region chosen before-
hand using prior knowledge. The incremental updates of the GP models for new data, i.e. steps 4 and
5 in Algorithm 1, can be efficiently performed, e.g. through rank-one updates [21]. The optimization
problem in Eq. (7) can be solved using gradient-based optimization approaches, e.g. [4, 5]. In this
paper, we employ the NX-structure in combination with the GP model for time-series modeling.
However, this approach can also be extended to the general nonlinear auto-regressive exogenous
case [3], i.e. a GP with NARX input structure xk =(yk, yk−1, . . . , yk−q, uk, uk−1, . . . , uk−d). In
this case, for optimization and planning of the next piecewise trajectories, one can use the predictive
mean of p(ρ|τ ,Df

n) as surrogate for yk. Note that the input excitation is still performed through the
manipulated variable uk in the case of NARX.

4 Theoretical Results

In this section, we provide some results on the theoretical analysis of the proposed approach. First, we
investigate the safety aspect of the algorithm. In Section 4.2, we provide a bound on the decay rate of
the predictive variances for the case when the criterion I is a determinant, i.e. I (Σ(η))=det (Σ(η)).
The proofs can be found in the Appendix.

4.1 Safe Exploration

To satisfy the safety requirements, it is necessary to bound the probability of failures during explo-
ration. Theorem 1 provides an upper bound on the probabilities for unsafe trajectories.
Theorem 1. Let us assume that we have recorded n0 initial safe trajectories, and that their observa-
tions are enough to model g well, in the sense that our GP quantifies the uncertainty of predictions
for g correctly, i.e. P (µg − νσg ≤ z ≤ µg + νσg) = Erf(ν/

√
2) for all ν ≥ 0. Let δ ∈ [0, 1] be

the desired failure probability when determining the next N consecutive piecewise trajectories. Set
α=δ/N and let this α be the probability bound for a trajectory being unsafe (as in Eq. (5)). Then,
the iterative exploration for the next N trajectories is unsafe with probability at most δ, i.e.

P
(
∪n0+N
i=n0+1

{
g(xi

j)<0 for some 1 ≤ j ≤ m|ξ(τ i)>1−α
})
≤ δ.

Theorem 1 supplies us with a useful rule of thumb to select α for sequentially determining the next
N trajectories.

4.2 Decay of Predictive Variance

The remainder of the analysis is to show that the proposed exploration scheme makes the predictive
uncertainty Σ decrease as n increases. In this paper we use the determinant of Σ as an exploration
criterion, which has been shown to have a close relationship to the information gain [14, 23], defined
as the mutual information I .

First, we point out that this relationship still holds true in case of trajectories as observations.
Subsequently, we introduce the maximum information gain as an upper bound, which can further be
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used to show the decrease of the predictive uncertainty. Lemma 1 clarifies the relationship between
determinant and mutual information. Let us denote the predictive variance after recording i−1
trajectories as Σi−1(τ i), Σ0(τ 1) = k∗∗(τ 1, τ 1), and set ρ̃i =

(
f(xi

1), . . . , f(xi
m)
)
.

Lemma 1. The mutual information I({ρi}ni=1; {ρ̃i}ni=1) can be related to the predictive co-variances
Σi−1(τi) as follows

I ({ρi}ni=1; {ρ̃i}ni=1) = 1/2

n∑
i=1

log |Im + σ−2Σi−1(τ i)|

Next, we introduce the maximum information gain after observing n trajectories as γn :=
max{τ i}ni=1⊂XmI({ρi}ni=1; {ρ̃i}ni=1), (see Srinivas et al. [23] for more details). The maximum
information gain is the information which could be gathered when exploring the system in a non-
iterative way, by optimally designing all trajectories simultaneously (which is in practice hard as
it would require a solution of a high dimensional optimization problem, and would not allow us to
incorporate safety information from observations during the experiment). According to Srinivas et al.
([23], Theorem 5) the maximum information gain satisfies γn = O

(
log(n)d+1

)
, i.e. the maximum

information grows slower than the number of additional trajectories. This will be crucial later on, but
first we investigate the relation between the determinant of the covariance and γn. Using Lemma 1
the determinant of the covariance can be bounded, as given in Lemma 2.

Lemma 2. After observing n trajectories {τ i}ni=1 (according to Eq. (7)), the determinant of the
covariance is upper bounded by

1

n

n∑
i=1

|Σi−1(τ i)| ≤ C
γn
n
,

where Σi−1 is the predictive variance computed using the previous i−1 trajectories, γn is the
maximum information gain, and C=2σ2m

f /log(1 + σ−2mσ2m
f ) is a constant.

The first step in proving Lemma 2 is to upper bound the predictive variance using the mutual
information via Lemma 1. Subsequently, the mutual information is upper bounded by γn. Using
Lemma 2 and Theorem 5 in [23], we can provide a decay rate on the average determinant of predictive
variances.

Theorem 2. Let {τ̃ i}ni=1 be n arbitrary trajectories within a compact and convex domain X , and k
be a kernel function such that k(·, ·) ≤ 1. If Σi−1 come from our exploration scheme Eq. (7) (i.e.
without safety considerations), then we have

1

n

n∑
i=1

|Σi−1(τ̃ i)| = O
(

log(n)d+1

n

)
.

We sketch the proof here: as our algorithm (without safety considerations) always chooses the
trajectory with the highest determinant (D criterion), the average determinant of an actively learned
scheme is always higher than or equal to the average determinant of an arbitrary scheme. Therefore,
1
n

∑n
i=1 |Σi−1(τ̃ i)| ≤ 1

n

∑n
i=1 |Σi−1(τ i)|, which is O(log(n)d+1/n) when employing Lemma 2

and the Theorem 5 of [23].

By Theorem 2, for any sequence of trajectories, the average of the determinants of their predictive
covariances tends to zero. As the determinant corresponds to the volume of the confidence ellipsoid,
we can conclude that the average volume of confidence ellipsoids tends to zero as well, indicating
that on average, our predictions become precise. However, as the safety constraint in Eq. (8) changes
at every iteration, we extend the statement of Theorem 2:

Theorem 3. Let us assume that there exists a compact and convex domain X , and a kernel function k
such that k(·, ·) ≤ 1, that covers the whole area which is explorable (independent of whether it is safe
or not). Then, the statement of Theorem 2 still holds for our Algorithm 1 with iteration-dependent
safe areas Si.

Theorem 3 guarantees the decay of averaged determinants of covariances during safe exploration.
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Figure 1: The columns show the progress of the approximation of f (inlay) and the identified safety region
(main figure) at different iterations. Each iteration corresponds to a consecutive planning of a new piecewise
trajectory (here: 2D ramp). As shown by the results, the current estimation of the safe region (green area)
gradually covers the actual safe area (red line), and the approximation error gradually decreases (as shown in the
subfigures). An illustrative video showing all iterations can be found in the Appendix.

5 Evaluations

In section 5.1 we illustrate the proposed approach using synthetic models, comparing our safe active
learning approach (SAL-NX) with random selection using safety constraints. Subsequently, we
employ the approach to learn a dynamics model of a physical, high-pressure fluid system in Section
5.2. For simplicity we employ ramps for the piecewise trajectory parametrization, but other curve
parameterizations could also be used instead, e.g. spline parameterization. The form of the input
trajectory has an impact on the excitation of the system, as comprehensively studied in the field of
system identification [17].

5.1 Simulated Experiments

Experiment 1 In this experiment, a toy example is employed to illustrate the concept of input
space exploration with piecewise trajectories and safe region detection. A function f : R2→ R,
f(x)=(x(1)−2)2+(x(1)−2)(x(2)−2)+(x(2)−2)2 with x=(x(1), x(2)) is used as the ground-truth.
An observation is given by y = f(x)+ε with ε ∼ N (0, 1). The safe region is characterized by
g :R2→R with g(x)=(x(1)−5)2+(x(1)−5)(x(2)−5)+(x(2)−5)2. The safety indicator z is given
as z=−0.005 · g(x)+1+ς with ς ∼ N (0, 1). It is considered to be safe for z>0, otherwise unsafe.

We proceed as shown in Algorithm 1, where the piecewise trajectories are parametrized as 2D-ramps
with 5 discretization points (i.e. m= 5, see Example 2). We start with 10 initial safe trajectories
and consecutively determine new piecewise trajectories in the input space X , while also collecting
outputs y and computing safety indicator values z. As the exploration progresses, the approximation
of f and g becomes more and more accurate, as shown in Fig. 1. The current estimation of the
safe region (green area) gradually covers the actual safe area, and the approximation error gradually
decreases (as shown in the subfigures). An illustrative video showing all iterations can be found in
the Appendix.

Experiment 2 In this experiment, we learn a time-series model given as a GP with NX-structure.
We have two manipulated variables u(1)

k and u(2)
k at time k. The NX-structure is determined to be

xk =(u
(1)
k , u

(2)
k , u

(1)
k−1, u

(2)
k−1), an input space with d= 4. The ground-truth models of f and g are

provided in the Appendix. The piecewise trajectory is again parametrized as 4D-ramps with m=5.
We initialize the models using 10 collected piecewise ramps in a safe area, and start exploring in the
input space. For a fair comparison, we benchmark the proposed algorithm against a random selection
with safe constraints of next piecewise trajectories. Instead of optimizing the ramp parameter η
as shown in Eq. (7) and (8), we randomly select η and pick the first one which fulfills the safety
constraint ξ(η) > 1−α. Fig. 2 shows the results of the comparison of the proposed approach
(SAL-NX) with random selection.

The results in Fig. 2 show that SAL-NX continuously improves the model approximation (shown
as RMSE) and provides fast coverage of safe regions. The models for f and g are updated after
every iteration by including new sample points. The hyperparameters can be estimated beforehand
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Figure 2: The first two pictures from the left show the comparison of the SAL-NX (red line) with random
selection (blue line). SAL-NX yields faster convergence in model approximation (left picture) and coverage of
safe regions (right picture), while having less variance and outliers (indicated as small circles). The last two
pictures show the impact of the safety threshold α. The left picture shows the RMSE of SAL-NX for 4 different
values of α. The right picture shows the model approximation error as RMSE (red line) and percentage of unsafe
trajectories (blue line) as a function of α. All pictures show boxplots over 5 repetitions.

or updated after every iteration. For the required number of initial trajectories, we refer to the
lower bound as given in [20]. For computing the safety condition ξ(τ ) from Eq. (5), we employ
Monte-Carlo sampling. Our experiments are performed on a desktop computer. The algorithm is
sufficiently fast for real-time applications.

In this experiment, we also compare our exploration approach with the one proposed in [6], however,
without safety requirements in order to cope with the setting from [6]. We adapt their criterion based
on the Fisher information for our GP model by employing the GP mean function. Additionally,
we also compare the decrease in RMSE of the Fisher information based criterion to the decrease
in RMSE of our algorithm. The results can be found in the Appendix 7.4 and show a competitive
performance of our approach.

5.2 Learning a Surrogate Model of the High-Pressure Fluid System

The Use Case As a realistic technical use case, we employ the approach to actively learn a surrogate
model of a high-pressure fluid injection system, as shown in Figure 3. Such systems are widely
used in industry, e.g. in the automotive domain for injection of fuel into the combustion engine [25].

Fluid

Rail Pressure ψk

Engine Speed nk

Actuation vk

Figure 3: High-pressure fluid injection sys-
tem with controllable inputs vk , nk and mea-
sured output ψk (picture taken from [25]).

The physical injection system is controlled by an actuation
signal vk and the speed of an external engine nk, for every
time step k. The goal is to obtain a surrogate model pre-
dicting the rail pressure ψk, which determines the amount
of fluid coming out of the outlets. Due to the nature of the
fluid and the mechanical components, the dynamics of the
whole system are nonlinear, and thus model learning is
an appropriate alternative compared to analytical models.
However, generating the data for learning a time series
surrogate model by varying the actuation signal and en-
gine speed is not simple, as an inappropriate combination
of them would result in hazardously high rail pressures,
damaging the physical system.

Learning Time-Series Surrogate Models Due to the safety requirements and the fact that
the safety boundary is not known beforehand, our safe active learning approach is very ap-
propriate for approximating the dynamics model. The employed NX-structure is chosen to be
xk =(nk, nk−1, nk−2, nk−3, vk, vk−1, vk−3). We again parameterize with piecewise ramps in this
7D input space. The safety indicator value z is computed as shown in Example 1, with ψmax =18 MPa
being the maximally allowed rail pressure. It should be noted that here z is computed as a function of
the target output ψ, in constrast to the experiments in Section 5.1, where z is a function of the input.
We initialize the model with 25 trajectories sampled around a safe point chosen by a domain expert.
Subsequently, we start exploring the input space dynamically, considering both the safety constraint
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Figure 4: The first two pictures from the left show the comparison of the SAL-NX (red line) with random
selection with safe constraints (blue line), with respect to model approximation and coverage of safe regions.
Here, α=0.5 and 250 trajectories are planned. The last two pictures show the impact of the safety threshold
α on the approximation error, and failures during exploration. The results are displayed as a boxplot over 5
repetitions.

and the model information gain, while measuring the actuation and speed signals as input and the rail
pressure as output.

Figure 4 shows the results after exploring the input space with 250 consecutive ramp trajectories, each
consisting of m=5 discretization points. We update the hyperparameters after every iteration. We
compare our SAL-NX approach with the random selection, as described in the previous experiment.
The figure also shows the impact of varying the threshold value α on both the model approximation
error and the percenteage of selected unsafe trajectories. In practice, the execution of the trajectories
on the physical system is interrupted, when the system notices a violation of the maximal pressure
ψmax. The selected piecewise trajectory is then indicated as unsafe. For the evaluation of the
coverage (second picture from the left), the “ground-truth” safe region is estimated beforehand with
an extensive procedure.

6 Conclusions

In this paper we present an approach for active learning of a time-series model, given as a GP model
with NX-structure. In this setting, the exploration is performed while taking safety requirements into
account. For the successful application of the algorithm, it is crucial that the system can be actively
controlled by a set of inputs and a safety signal can be observed during the system’s operation. The
proposed approach is evaluated on toy examples, as well as on a realistic technical use case. The
results show that this approach is appropriate for real-world applications, especially, in the industrial
setting, where safety is a key requirement during operation.
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