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Abstract

Similarity search is a fundamental problem in computing science with various
applications and has attracted significant research attention, especially in large-
scale search with high dimensions. Motivated by the evidence in biological science,
our work develops a novel approach for similarity search. Fundamentally different
from existing methods that typically reduce the dimension of the data to lessen
the computational complexity and speed up the search, our approach projects the
data into an even higher-dimensional space while ensuring the sparsity of the data
in the output space, with the objective of further improving precision and speed.
Specifically, our approach has two key steps. Firstly, it computes the optimal
sparse lifting for given input samples and increases the dimension of the data
while approximately preserving their pairwise similarity. Secondly, it seeks the
optimal lifting operator that best maps input samples to the optimal sparse lifting.
Computationally, both steps are modeled as optimization problems that can be
efficiently and effectively solved by the Frank-Wolfe algorithm. Simple as it is, our
approach has reported significantly improved results in empirical evaluations, and
exhibited its high potentials in solving practical problems.

1 Introduction

Similarity search refers to the problem of finding a subset of objects which are similar to a given query
from a specific dataset. As a fundamental problem in computing science, it has various applications in
information retrieval, pattern classification, data clustering, etc., and has attracted significant research
attention in the literature [21, 9].

More specifically and of particular research interest, recent work in similarity search focuses on the
large-scale high-dimensional problems. To lessen the computational complexity, a popular approach
is to firstly reduce the dimension of the data, and then apply the nearest neighbor search or the space
partitioning methods effectively on the reduced data. To efficiently reduce the dimension of large
volume datasets, the locality sensitive hashing method is widely used [11, 3, 7], with quite successful
results.

Very recently, with biological evidence from the fruit fly’s olfactory circuit, people have shown the
possibility of increasing the data dimension instead of reducing it as a general hashing scheme. For
example, the fly algorithm projects each input data sample to a higher-dimensional output space with
a random sparse binary matrix. Then after competitive learning, the algorithm returns a sparse binary
vector in the output space. Comparing with the locality sensitive hashing method, similarity search
based on the sparse binary vectors has reported improved precision and speed in a series of empirical
studies [8].

Motivated by the biological evidence and the idea of dimension expansion, our work proposes a
unified framework for dimension expansion and applies it in similarity search. The framework has
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two key components. The optimal sparse lifting is a sparse binary vector representation of the input
samples in a higher-dimensional space, such that the pairwise similarity between the samples can
be roughly preserved. The sparse lifting operator is a sparse binary matrix that best maps the input
samples to the optimal sparse lifting. Computationally, both components can be efficiently and
effectively obtained by solving optimization problems with the Frank-Wolfe method.

To verify the effectiveness of the proposed work, we carried out a series of experiments. It was found
that, for given data, our approach could produce the optimal sparse lifting and the sparse lifting
operator with high quality. It reported consistently and significantly improved precision and speed
in similarity search applications on various datasets. And hence our work provides a solution for
practical applications.

The paper is organized as follows. Section 2 reviews the related work. Section 3 introduces our
model and the algorithm. Section 4 reports the empirical experiments and results, followed by the
discussion and conclusion in Section 5.

2 Related work

2.1 Similarity search and locality sensitive hashing

Similarity search aims to find similar objects to a given query among potential candidate objects,
according to certain pairwise similarity or distance measures [5, 21]. The complexity of accurately
determining the similar objects depends heavily on both the number of candidates to evaluate and
the dimension of the data [17]. Computing the similarities or distances seems straightforward, but
unfortunately could often become prohibitive if the number of candidate objects is large or the
dimension of the data is high.

To ensure the tractability of calculating pairwise distances for large-scale problems in high-
dimensional spaces, approximate methods have to be sought, among which the locality sensitive
hashing (LSH) method is routinely applied [11, 7, 3, 4]. The LSH method provides an approximate
distance-preserving mapping of points from the input space to the output space. The output space
usually has a much lower dimension than the input space, so that the speed of nearest neighbors
search can be significantly improved.

To realize an LSH mapping, one common way is to compute random projections of the data samples by
multiplying the input vectors with a random dense matrix of various types [3, 11]. Strong theoretical
bounds exist and guarantee that the good locality can be preserved through such random projections
[15, 1, 2].

2.2 Biological evidence of dimension expansion and the fly algorithm

Biological discovery in animals’ neural systems keeps motivating new studies in the design of
computer algorithms [16, 8, 24]. Take the fruit fly’s olfactory circuit as an example. It has d = 50
Olfactory Receptor Neuron (ORN) types, each of which has different sensitivity and selectivity for
different odors. The ORNs are connected to 50 Projection Neurons (PNs). The distribution of firing
rates across the PN types has roughly the same mean for all odors and concentrations, and therefore
the dependence on the concentration disappears. The PNs are projected to d’ = 2,000 Kenyon Cells
(KCs) through sparse connections. One KC receives the firing rates from about six PNs and then sums
them up [6]. With the strong feedback from a single inhibitory neuron, most KCs become inactive
except for the highest-firing 5%. In this way a sparse tag composed of active and inactive KCs for
each odor is generated [28, 19, 23].

The fly algorithm was designed by simulating the odor detection procedure of the fruit fly, which
achieved quite successful results in practice [8]. Denote by X € R¥*™ the m input samples of d-
dimensional zero-centered vectors. The inputs are mapped into hashes of d’ (usually > d) dimensions,
by multiplying X with a randomly generated sparse binary matrix . Then a winner-take-all strategy
is applied on the output. For each vector in WX, the elements with the highest £ = 100 values are set
to one, and all others zero out. In this way, a sparse binary representation (denoted by Y & R xm)
in a space with a higher dimension is obtained. In short, comparing with the LSH method which
reduces the data dimension, the fly algorithm increases it, while ensuring the sparsity of the data in
the higher-dimensional output space.



3 Models

3.1 The optimal sparse lifting framework

We are interested in the problem of seeking sparse binary output vectors for given input data samples,
where the output dimension is larger or much larger than the input dimension. We expect that the
pairwise similarity relationship of the data in the input space can be kept as much as possible by the
new vectors in the output space. Moreover, if the optimal output vectors are available for a small
portion of input samples, we are also interested in the problem of approximately obtaining such a
representation for other samples, but in a computationally economical way.

Mathematically, we model the two problems into a unified optimal sparse lifting framework as
follows. Let X € R4*™ be a matrix of input data samples in the d-dimensional space. We consider
to minimize the objective function

1
FOVY) = SIWX = Y5+ S|IXTX =YY, (M)

where W € R% >4 and Y € R *™ are subject to some constraints; in particular, both are required to
be sparse. Here, the first term aims to ensure Y ~ W X 2, and the second term seeks to approximately
preserve pairwise similarities between the input samples. In the function, o > 0 is a balance
parameter.

In general, we expect d’ > d. Therefore, the output Y is called sparse lifting of the input X, and the
matrix W is called sparse lifting operator. For simplicity of discussion, the adjective “sparse” may
be dropped from time to time in the sequel.

In addition to sparsity constraint on W, we would like W to be binary with exactly c ones in
each row. If we relax the binary constraint into the unit interval constraint, then W should satisfy,
component-wise,

Wld = C]_d/, 0 S W S 1. (2)

Similar constraints can be imposed on Y as well, for example,
YT]—d’ = klm; 0 < Y < 1 (3)

with the hope that each column of Y has exactly k ones. But if the primary goal is to obtain a good
W using the training dataset, fewer constraints on Y could be preferable.

Computationally, the problem formulated in Eq. (1) can be naturally solved via alternating mini-
mization. Fix W and solve for Y’; then fix Y and solve for IW; and repeat the process. A simplified
approach that performs well in practice just does one round alternating minimization using the
¢, (0 < p < 1) pseudo-norm to promote sparsity and binarization. Denote by WV and ) the feasible
regions of W and Y defined in Eq. (2) and Eq. (3) respectively. We solve

1 2
g$§HXtY*YﬁWF+VMWW 4)

to get the optimal sparse lifting Y, ; then we solve
1 2
in - |[WX -Y. Wi, ,
min o | =+ 81w, (5)

to get the optimal lifting operator W,. Here the term “optimal” is used loosely.

We call the first step of solving Eq. (4) the (sparse) lifting step, and the second step of solving Eq. (5)

the (sparse) lifting operator step.

Given the optimal lifting operator W, the optimal lifting of an input vector x can be estimated by
d .

y=(y1, -, ya) € {0,1}" with

(6)

)1 if (Wex), is among the largest k entries in W.x;
Yi=3 0 otherwise.

>We may also consider to enforce Y &~ pW X instead where p > 0 is a scaling parameter.



Algorithm 1 miny HXTX - YTYH?: st. Y eynio, 1}d’Xm
: Given X, Y% € Y,4Y > 0
2
tLet L(Y,7) = 5 [[XTX =YY + V1,
cfork=0,1,2,---,K do
Compute S¥+1 := argmingcy (S, Vy L (yk’ 7k)>
Update Ykl .= ( — %ﬁ) Yk + ki—msk_i_l
Choose yF+1 > ~F
end for
return Y X+!
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3.2 Algorithm

A number of optimization algorithms are applicable to solve the two minimization problems for-
mulated in Eq. (4) and Eq. (5). Our current study resorts to the Frank-Wolfe algorithm, which is
an iterative first-order optimization method for constrained optimization [10, 13]. In each iteration,
the algorithm considers a linear approximation of the objective function, and moves towards a
minimizer of the linear function. An important advantage of the algorithm is that, for constrained
optimization problems, it only needs the solution of a linear program over the feasible region in each
iteration, thereby eliminating the need of projecting back to the feasible region, which can often be
computationally expensive. Simple as it is, the algorithm provides quite good empirical results in our
applications (ref. Section 4).

Based on the Frank-Wolfe algorithm, a simple iterative solution for minimizing Eq. (4) is shown in
Algorithm 1. If we do not consider the increase of the balance parameter  in line 6, it becomes the
standard Frank-Wolfe algorithm. In each iteration of the algorithm, the major computation comes from
solving a linear program in line 4. Although in our study the linear program may involve a million or
more variables, it can be solved very efficiently with modern optimization techniques [27]. The value
of the balance parameter  increases monotonically with each iteration (e.g. YX1 = 1.1 x v%),
which makes the solution of the output matrix Y tend to be sparse and binary.

From the computational complexity point of view, minimizing Eq. (5) for the optimal lifting operator
W is much simpler than minimizing Eq. (4). The problem can be tackled in almost the same way as
in Algorithm 1. Therefore we omit the detailed discussion.

3.3 Optimal lifting vs. random lifting

The fly algorithm uses a randomly generated data transform matrix W to map the dense input X to
W X in a higher-dimensional space, followed by a sparsification and binarization process. Similarly
to the LSH algorithm, there exists theoretical guarantee that the projection W X preserves the /5
distances of input vectors in expectation [15, 8]. However when the sparsification and binarization
process is taken into consideration, no strong theoretical results are known any more.

Although motivated with the same biological characteristics in the fly olfactory circuit, our work
studies the problem from a very different viewpoint. There exist two key novelties. Our work
formalizes the process of the fly algorithm into a data-transform paradigm of sparse lifting. The input
vectors are lifted to sparse binary vectors in a higher-dimensional space, and the feature values are
replaced by their high energy concentration locations which are further encoded in the sparse binary
representation.

A more significant novelty lies in the principle of projecting from the input space to the output space.
The fly algorithm randomly generates the projection matrix W and can be regarded as a random
lifting method. Randomness exists when deciding the concentration locations due to the random
generation mechanism of W. At the same time, although the biological connection from Projection
Neurons to Kenyon Cells is still not completely clear, very recent electron microscopy images of the
animal’s brain have reported evidence that the connection is not random [29]. Comparatively, our
proposed framework in Section 3.1 models the projection as an optimization problem which actually
reduces such randomness. Along this optimal lifting viewpoint, many modeling and algorithmic
issues could potentially arise.
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Figure 1: The quality of the optimal lifting on MNIST dataset. Left: The relative deviation from
the input similarities. The optimal lifting (denoted by LIFTING) preserves the pairwise similarity
even better than the ground truth (denoted by RESIZE) which were generated with the techniques of
industry standard. Right: Visualization of the /ifting results as images. The first and the third rows are
the ground truth images with 80 x 80 pixels. The second and the fourth rows are the lifting results
re-ordered by a permutation matrix.

4 Evaluation

4.1 Experimental objectives and general settings

To evaluate the effectiveness of the proposed approach, we carried out a series of experiments.
Specifically, we had an experiment to illustrate the effectiveness of the optimal sparse lifting (ref.
Section 4.2), an experiment with the same scenario of similarity search as in [8] to demonstrate the
empirical superiority of the proposed optimal lifting operator (ref. Section 4.3), and an experiment
to show the running speed comparison in a query application (ref. Section 4.4). The following
benchmarked datasets were used in the experiments.

o SIFT: SIFT descriptors of images used for similarity search (d = 128) [14].
e GLOVE: Pre-trained word vectors based on the GloVe algorithm (d = 300) [25].
e MNIST: 28 x 28 images of handwritten digits in 256-grayscale pixels (d = 784) [18].

Besides, we also used a much larger WIKI dataset in a query application, which includes word vectors
generated on the May 2017 dump of wikipedia 3 by the GloVe algorithm. There are 400, 000 vectors
in the WIKI dataset and each vector has 500 dimensions.

The evaluation included the empirical comparison of our work against the fly algorithm and the LSH
algorithm (by random dense projection). Besides, the autoencoder algorithm [12] is also included in
our study. An autoencoder is an artificial neural network used for unsupervised learning of codings.
It is implemented as one hidden layer connecting one input layer and one output layer. The output
layer has the same number of nodes as the input layer. An autoencoder is trained to reconstruct its
own inputs. Usually the hidden layer has a much lower dimension than the input layer. Therefore the
feature vector learned in the hidden layer can be regarded as a compressed representation of the input
samples.

We implemented and tested all the algorithms on the MATLAB platform. Our approach used /IBM
ILOG CPLEX Optimizer as the underlying linear program solver.

4.2 Optimal lifting

The first experiment was carried out to evaluate the performance of the optimal lifting step. We hope
to know if the model and the matrix factorization algorithm (ref. Algorithm 1) could well preserve
the pairwise similarity between the input data samples. In the experiment, we randomly chose 5, 000
grayscale images (denoted by X with each column vector X; being an image) from the MNIST
dataset as the input data, and resized each image to 80 x 80 pixels using the cubic interpolation
method, and then binarized each resized image with light pixels and dark pixels only by the Otsu’s

*https://dumps.wikimedia.org/



method [22]. These 80 x 80 binary images generated from the industry standard techniques were
regarded as the ground truth in this experiment, which is denoted by a matrix G’ with each column
G; being a binary image vector.

With the same set of input images, we normalized each vector X; to be of length v/k; where k;
is the number of light pixels in ;. After obtaining the optimal lifting (denoted by Y, ) of these
images in an 80 x 80-dimensional output space by Algorithm 1, we recorded the relative deviation of
XXy, o . [x"x-aal, o,

XTX and compared it with the deviation in the ground truth XX Obviously,
a smaller deviation value indicates a higher quality of preserving pairwise similarities between input
samples.

The results are shown in Fig. 1 (left). From the results, we can see that our algorithm produced
high-quality factorization results for X7 X. The relative deviation of the optimal lifting from the
input is even significantly (about 20%) smaller than that of the ground truth.

Besides 80 x 80-dimensional images, we also tested the performance of the proposed approach
with different dimensions of 10 x 10, 20 x 20 and 40 x 40 respectively *. On 40 x 40 images, the
improvement of the relative deviation from the optimal lifting is very similar to that of 80 x 80. On
20 x 20 images, the optimal lifting is roughly similar to the ground truth. On 10 x 10 images, the
improvement becomes again quite evident. The optimal lifting produced a relative deviation that is
only half of the ground truth. All these results verified the effectiveness of Algorithm 1, and hence
the effectiveness of the optimal lifting step in keeping pairwise similarities of the data.

The results of the optimal lifting can be visualized in an intuitive way. To do this, we computed a

permutation matrix P, via minimizing ||PY, — G ||fm with respect to P by the Frank-Wolfe algorithm,
and then depicted each vector in P, Y, as a binary image. Part of the results are shown in Fig. 1
(right). In the figure, the first and the third rows are the 80 x 80 binary images of the ground truth,
and the second and the fourth rows are the corresponding images from P.Y,. From the results, we
can see that the lifting results mostly keep the shape of the images and can be recognized easily by
the human being, while preserving the pairwise similarity with higher quality.

4.3 Similarity search

The second experiment aimed to evaluate the performance of the proposed optimal lifting framework
in similarity search applications by comparing its accuracies against the fly and related algorithms.
In the experiment, a subset of 10, 000 samples from each dataset were used as the testing set. All
samples were normalized to have zero mean. In one run, all samples were used as a query in turn.
For each query, we computed its 100 nearest neighbors among all other samples in the input space as
the ground truth. Then we computed its 100 nearest neighbors in the output space and compared the
results with the ground truth. The ratio of common neighbors was recorded, and averaged over all
samples as the precision of each run.

For our proposed approach, we randomly selected 5, 000 different samples from each dataset as the
training set. Sparse binary vectors (i.e. the optimal lifting) of these training samples were firstly
generated with Algorithm 1 and then used to train the optimal lifting operator W.,.

For the fly and the LSH algorithms, 100 runs were carried out with randomly generated projection
matrices. The mean average precision over the 100 runs and the standard deviation were recorded
[20]. For the optimal lifting approach, only one run was executed and recorded. As a comparison, we
also collected the results of the autoencoder algorithm (denoted by AUTOENC) [12], with which the
hidden representation size is set equal to the hash length (i.e., the k). The autoencoder algorithm was
trained with the same samples as our optimal lifting approach.

The results are depicted in Fig. 2. In all sub-figures, the horizontal axis shows different hash lengths
(k =2,4,8, 16, 32 respectively). For the fly and the optimal lifting algorithms, the output dimensions
are set to d’ = 20 x k and d’ = 2, 000 respectively. The vertical axis shows the one-run precisions of
the optimal lifting and the autoencoder algorithms, and the mean average precisions and the standard
deviations of the fly and the LSH algorithms over 100-runs. From the results it can be seen that,
consistent with the results shown in [8, 26], the output vectors from the fly algorithm outperformed

*For the 10 x 10 and 20 x 20 experiments, the dimension is actually reduced and it can’t be called as “lifting”.
However, it does not prevent us from testing the algorithm’s performance under these settings.
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Figure 2: Empirical comparison of similarity search precisions on different datasets. The hori-
zontal axis is the hash length (k). The vertical axis is the (mean) average precision on 10, 000 testing
samples. Error bars of fly/LSH indicate standard deviation over 100 trials. The embedding dimensions
(not applicable to the autoencoder algorithm) are d’ = 20 X k in the first row and d = 2, 000 in the
second row.

the vectors from the LSH algorithm in most experiments; while our optimal lifting approach reported
further and significantly improved results in all experiments. The improvement on the GLOVE
dataset is especially evident. All these results confirmed the benefits brought by seeking the optimal
projection matrix W, instead of randomizing one.

The dense vectors generated from the autoencoder algorithm also improved the search precision over
the vectors from the fly and the LSH algorithms on most experiments. Compare the results of the
optimal lifting with the autoencoder. On SIFT and MNIST datasets, it can be seen that, when the hash
length is small (k = 2, 4, 8), the superiority of the optimal lifting is quite evident. When increasing
the hash length to £ = 16 and 32, the precisions of the autoencoder catch up, which tend to be quite
similar as the optimal lifting. On GLOVE dataset, however, the improvement of our approach is still
consistently significant.

4.4 Running speed

As a practical concern, we also measured the running time of the proposed approach, including both
the training time and the query time, and compared with other algorithms. The running time was
recorded on WIKI dataset with 400, 000 word vectors in d = 500 dimensions.

The training time of our approach includes the optimization time for both matrices Y, and W.,. To
reduce the influence from parallel execution, only one CPU core was allowed in the experiment. The
results are shown in Fig. 3 (left), and compared with the training time of the autoencoder algorithm.
We can see that, with 5,000 training samples and 2, 000 output dimensions, our training time is
around 15 minutes for different hash lengths (k), which is slower than the autoencoder algorithm on
hash lengths of 2 and 4 but faster on hash lengths of 16 and 32. With 20 x & output dimensions, our
approach runs magnitude faster than the autoencoder algorithm on all hash lengths.

The query time was measured by searching for 100 nearest neighbors out of the 400, 000 words for
10, 000 query words with one CPU core. We reported the total query time on the output vectors of
the LSH, autoencoder and optimal lifting algorithms respectively. As a baseline, the query time in the
original input space is also shown (denoted by NO_HASH). From the results in Fig. 3 (right), we
can see that the vectors from the optimal lifting approach reported significantly better speed over the
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Figure 3: Comparison of training and query time of the algorithms on WIKI dataset with 5, 000
training samples and 10, 000 query samples with a single CPU core. Left: training time; right:
query time. The horizontal axis is the hash length (k). The vertical axis is the time in seconds. The
embedding dimension is set to d’ = 20 x k and d’ = 2, 000 respectively.

others. It is magnitudes faster than searching in the original input space, and 4 to 9 times faster than
the vectors from the LSH and the autoencoder methods.

Considering the benefits of improved query precision and speed, the cost of computing the optimal
lifting and training the optimal lifting operator in our framework should be an acceptable overhead in
practical applications.

5 Conclusion

Fundamentally different from classical approaches that seek to reduce the data dimension for analysis,
our work promotes a general method for dimension expansion by a type of data transform called
optimal sparse lifting. In this transform, feature vectors of a dataset are lifted to sparse binary vectors
in a higher-dimensional space, and feature values are replaced by their “high energy concentration”
locations that are encoded in the sparse binary vectors. Our proof-of-concept experiments in similarity
search indicate that the proposed approach can significantly outperform, in terms of accuracy, the
random sparse lifting and the locality sensitive hashing methods.

Many modeling and algorithmic issues still remain to be studied for the proposed framework, as
promising as it appears to be. In addition, there are strong potentials to extend sparse lifting transforms
to other tasks in unsupervised learning and pattern recognition, in particular to clustering analysis and
data classification. To deepen understanding, further work will be necessary to study and compare
the proposed approach with existing methodologies.
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