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Abstract

Estimating individual treatment effect (ITE) is a challenging problem in causal
inference, due to the missing counterfactuals and the selection bias. Existing ITE
estimation methods mainly focus on balancing the distributions of control and
treated groups, but ignore the local similarity information that provides meaning-
ful constraints on the ITE estimation. In this paper, we propose a local similarity
preserved individual treatment effect (SITE) estimation method based on deep
representation learning. SITE preserves local similarity and balances data distri-
butions simultaneously, by focusing on several hard samples in each mini-batch.
Experimental results on synthetic and three real-world datasets demonstrate the
advantages of the proposed SITE method, compared with the state-of-the-art ITE
estimation methods.

1 Introduction

Estimating the causal effect of an intervention/treatment at individual-level is an important problem
that can benefit many domains including health care [12, 1], digital marketing [6, 34, 24], and
machine learning [10, 37, 21, 23, 20]. For example, in the medical area, many pharmaceuticals
companies have developed various anti-hypertensive medicines and they all claim to be effective
for high blood pressure. However, for a specific patient, which one is more effective? Treatment
effect estimation methods are necessary to answer the above question, and it leads to better decision
making. Treatment effect could be estimated at either the group-level or individual-level. In this
paper, we focus on the individual treatment effect (ITE) estimation.

Two types of studies are usually conducted for estimating the treatment effect, including the ran-
domized controlled trials (RCTs) and observational study. In RCTs, the treatment assignment is
controlled, and thus the distributions of treatment and control groups are known, which is a de-
sired property for treatment effect estimation. However, conducting RCTs is expensive and time-
consuming, sometimes it even faces some ethical issues. Unlike RCTs, observational study directly
estimates treatment effects from the observed data, without any control on the treatment assign-
ment. Owing to the easy access of observed data, observational studies, such as the potential out-
come framework [27] and causal graphical models [26, 35], have been widely applied in various
domains [15, 38, 12].

Estimating individual treatment effect from observational data faces two major challenges, missing
counterfactuals and treatment selection bias. ITE is defined as the expected difference between the
treated outcome and control outcome. However, a unit can only belong to one group, and thus the
outcome of the other treatment (i.e., counterfactual) is always missing. Estimating counterfactual
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outcomes from observed data is a reasonable way to address this issue. However, selection bias
makes it more difficult to infer the counterfactuals in practice. For instance, in the uncontrolled
cases, people have different preferences to the treatment, and thus there could be considerable dis-
tribution discrepancy across different groups. The distribution discrepancy further leads to an inac-
curate estimation of counterfactuals.

To overcome the above challenges, some traditional ITE estimation methods use the treatment as-
signment as a feature, and train regression models to estimate the counterfactual outcomes [11].
Several nearest neighbor based methods are also adopted to find the nearby training samples, such
as k-NN [8], propensity score matching [27], and nearest neighbor matching through HSIC cri-
teria [5]. Besides, some tree and forest based methods [7, 33, 4, 3] view the tree and forests as an
adaptive neighborhood metric, and estimate the treatment effect at the leaf node. Recently, represen-
tation learning approaches have been proposed for counterfactual inference, which try to minimize
the distribution difference between treated and control groups in the embedding space [30, 18].

State-of-the-art ITE estimation methods aim to balance the distributions in a global view, however,
they ignore the local similarity information. As similar units shall have similar outcomes, it is
of great importance to preserve the local similarity information among units during representation
learning, which decreases the generalization error in counterfactual estimation. This point has also
been confirmed by nearest neighbor based methods. Unfortunately, in recent representation learning
based approaches, the local similarity information may not be preserved during distribution balanc-
ing. On the other hand, nearest neighbor based methods only consider the local similarity, but cannot
balance the distribution globally. Our proposed method combines the advantages of both of them.

In this paper, we propose a novel local similarity preserved individual treatment effect estimation
method (SITE) based on deep representation learning. SITE maps mini-batches of units from the
covariate space to a latent space using a representation network. In the latent space, SITE preserves
the local similarity information using the Position-Dependent Deep Metric (PDDM), and balances
the data distributions with a Middle-point Distance Minimization (MPDM) strategy. PDDM and
MPDM can be viewed as a regularization, which helps learn a better representation and decrease
the generalization error in estimating the potential outcomes. Implementing PDDM and MPDM
only involves triplet pairs and quartic pairs of units respectively from each mini-batch, which makes
SITE efficient for large-scale data. The proposed method is validated on both synthetic and real-
world datasets, and the experimental results demonstrate its advantages brought by preserving the
local similarity information.

2 Methodology

2.1 Preliminary

Individual treatment effect (ITE) estimation aims to examine whether a treatment T affects the
outcome Y (i) of a specific unit i. Let xi ∈ Rd denote the pre-treatment covariates of unit i, where
d is the number of covariates. Ti denotes the treatment on unit i. In the binary treatment case, unit i
will be assigned to the control group if Ti = 0, or to the treated group if Ti = 1.

We follow the potential outcome framework proposed by Neyman and Rubin [29, 31]. If the treat-
ment Ti has not been applied to unit i (also known as the out-of-sample case [30]), Y (i)

0 is called the
potential outcome of treatment Ti = 0 and Y (i)

1 the potential outcome of treatment Ti = 1. On the
other hand, if the unit i has already received a treatment Ti (i.e., the within-sample case [30]), YTi

is the factual outcome, and Y1−Ti
is the counterfactual outcome. In observational study, only the

factual outcomes are available, while the counterfactual outcomes can never been observed.

The individual treatment effect on unit i is defined as the difference between the potential treated
and control outcomes1:

ITEi = Y
(i)
1 − Y (i)

0 . (1)

The challenge to estimate ITEi lies on how to estimate the missing counterfactual outcome. Exist-
ing counterfactual estimation methods usually make the following important assumptions [17].

1Some works [30] define ITE as the form of CATE: ITEi = E(Y
(i)
1 |x)− E(Y

(i)
0 |x).

2



Figure 1: Framework of similarity preserved individual treatment effect estimation (SITE).

Assumption 2.1 (SUTVA). The potential outcomes for any unit do not vary with the treatment as-
signed to other units, and, for each unit, there are no different forms or versions of each treatment
level, which lead to different potential outcomes [17].

Assumption 2.2 (Consistency). The potential outcome of treatment t equals to the observed out-
come if the actual treatment received is t.

Assumption 2.3 (Ignorability). Given pretreatment covariates X, the outcome variables Y0 and Y1
is independent of treatment assignment, i.e., (Y0, Y1) ⊥⊥ T |X .

Ignorability assumption makes the ITE estimation identifiable. Though it’s hard to prove the sat-
isfaction of the assumption, the researchers can make the assumption more plausible if the pre-
treatment covariates include the variables that affect both the treatment assignment and the outcome
as much as possible. This assumption is also called “no unmeasured confounder”.

Assumption 2.4 (Positivity). For any set of covariates x, the probability to receive treatment 0 or
1 is positive, i.e., 0 < P (T = t|X = x) < 1,∀t and x.

This assumption is also named as population overlapping [9]. If for some values of X , the treatment
assignment is deterministic (i.e., P (T = t|X = x) = 0 or 1), we would lack the observations of
one treatment group, such that the counterfactual outcome is unlikely to be estimated. Therefore,
positivity assumption guarantees that the ITE can be estimated.

2.2 Motivation

Balancing distributions of control group and treated group has been recognized as an effective strat-
egy for counterfactual estimation. Recent works have applied distribution balancing constraints to
either the covariate space [16] or latent space [18, 23].

Moreover, we assume that similar units would have similar outcomes. This assumption has been well
justified in many classical counterfactual estimation methods such as the nearest neighbor matching.
To satisfy this assumption in the representation learning setting, the local similarity information
should be well preserved after mapping units from the covariate space X to the latent space Z .
One straightforward solution is to add a constraint on similarity matrices constructed in X and Z .
However, constructing similarity matrices and enforcing such a “global” constraint is very time
and space consuming, especially for a large amount of units in practice. Motivated by the hard
sample mining approach in the image classification area [14], we design an efficient local similarity
preserving strategy based on triplet pairs.

2.3 Proposed Method

We propose a local similarity preserved individual treatment effect estimation (SITE) method based
on deep representation learning. The key idea of SITE is to map the original pre-treatment covariate
space X into a latent space Z learned by deep neural networks. Particularly, SITE attempts to en-
force two special properties on the latent space Z , including the balanced distribution and preserved
similarity.
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Figure 2: Triple pairs selection for PDDM in a mini-batch.

The framework of SITE is shown in Figure 1, which contains five major components: representation
network, triplet pairs selection, position-dependent deep metric (PDDM), middle point distance
minimization (MPDM), and the outcome prediction network. To improve the model efficiency,
SITE takes input units in a mini-batch fashion, and triplet pairs could be selected from every mini-
batch. The representation network learns latent embeddings for the input units. With the selected
triplet pairs, PDDM and MPDM are able to preserve the local similarity information and meanwhile
achieve the balanced distributions in the latent space. Finally, the embeddings of mini-batch are fed
forward to a dichotomous outcome prediction network to get the potential outcomes.

The loss function of SITE is as follows:

L =LFL + βLPDDM + γLMPDM + λ||W ||2, (2)

where LFL is the factual loss between the estimated and observed factual outcomes. LPDDM and
LMPDM are the loss functions for PDDM and MPDM, respectively. The last term is L2 regularization
on model parameters W (except the bias term).

Next, we describe each component of SITE in detail.

2.3.1 Representation Network

Inspired by [18], a standard feed-forward network with dh hidden layers and the rectified linear unit
(ReLU) activation function is built to learn latent representations from the pre-treatment covariates.
For the unit i, we have zi = f(xi), where f(·) denotes the representation function learned by the
deep network.

2.3.2 Triplet Pairs Selection

Given a mini-batch of input units, SITE selects six units according to the propensity scores. Propen-
sity score is the probability that a unit receives the treatment [28, 22]. For unit i, the propensity score
si is defined as si = P

(
ti = 1|X = xi

)
. It’s obvious that si ∈ [0, 1]. If si is close to 1, more treated

units should be distributed around the unit i in the covariate space. Analogously, if si is close to 0,
more control units are available near the unit i. Moreover, if si is close to 0.5, a mixture of both
control and treated units can be found around the unit i. Thus, propensity score can kind of reflect
the relative location of units in the covariate space, and we choose it as the indicator to select six
data points. We use the logistic regression to calculate the propensity score [27].

Selecting three pairs of units in each mini-batch involves three steps, as shown in the left part of
Figure 2.

• Step 1: Choose data pair (xî,xĵ) s.t.

(̂i, ĵ) = argmin
i∈T ,j∈C

|si − 0.5|+ |sj − 0.5|, (3)

where T and C denote the treated group and control group, respectively. xî and xĵ are the closest
units in the intermediate region where both control and treated units are mixed.

• Step 2: Choose (xk̂,xl̂) s.t.

k̂ = argmax
k∈C

|sk − sî|, l̂ = argmax
l
|sl − sk̂|. (4)
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xk̂ is the farthest control unit from xî, and is on the margin of control group with plenty of control
units.

• Step 3: Choose (xm̂,xn̂) s.t.

m̂ = argmax
m∈T

|sm − sĵ |, n̂ = argmax
n

|sn − sm̂|. (5)

xk̂ is the farthest control unit from xî, and is on the margin of control group with plenty of control
units.

The pair (̂i, ĵ) lies in the intermediate region of control and treated groups. Pairs (k̂, l̂) and (m̂, n̂) are
located on the margins that are far away from the intermediate region. The selected triplet pairs can
be viewed as hard cases. Intuitively, if the desired property of preserved similarity can be achieved
for the hard cases, it will hold for other cases as well. Thus, we focus on preserving such a property
for the hard cases (e.g., triplet pairs) in the latent space, and employ PDDM to achieve this goal.

2.3.3 Position-Dependent Deep Metric (PDDM)

PDDM was originally proposed to address the hard sample mining problem in
image classification [14]. We adapt this design to the counterfactual estima-
tion problem. In SITE, the PDDM component measures the local similarity of
two units based on their relative and absolute positions in the latent space Z .

Figure 3: PDDM Structure.

The PDDM learns a metric that makes
the local similarity of (zi, zj) in the la-
tent space close to their similarity in the
original space. The similarity Ŝ(i, j) is
defined as:

Ŝ(i, j) = Wsh + bs, (6)

where h = σ(Wc[
u1

||u1||2 ,
v1

||v1||2 ]T +

bc), u = |zi − zj |, v =
|zi+zj |

2 , u1 = σ(Wu
u
||u||2 + bu), v1 = σ(Wv

v
||v||2 + bv). Wc, Ws,

Wv , Wu, bc, bs, bv and bu are the model parameters. σ(·) is a nonlinear function such as ReLU.
As shown in Figure 3, the PDDM structure first calculates the feature mean vector v and the ab-
solute position vector u of the input (zi, zj), and then feeds v and u to the fully connected layers
separately. After normalization, PDDM concatenates the learned vectors u1 and v1, and feeds it to
another fully connected layer to get the vector h. The final similarity score Ŝ(, ) is calculated by
mapping the score h to theR1 space.

The loss function of PDDM is as follows:

LPDDM = 1
5

∑
î,ĵ,k̂,l̂,m̂,n̂

[
(Ŝ(k̂, l̂)− S(k̂, l̂))2 + (Ŝ(m̂, n̂)− S(m̂, n̂))2 + (Ŝ(k̂, m̂)− S(k̂, m̂))2

+(Ŝ(̂i, m̂)− S(̂i, m̂))2 + (Ŝ(ĵ, k̂)− S(ĵ, l̂))2
]
,

(7)
where S(i, j) = 0.75| si+sj

2 −0.5|− | si−sj2 |+0.5. Similar to the design of the PDDM structure, the
true similarity score S(i, j) is calculated using the mean and the difference of two propensity scores.
The loss function LPDDM measures the similarity loss on five pairs in each mini batch: the pairs lo-
cated in the margin area of the mini batch, i.e., (zk, zl) and (zm, zn); the pair that is most dissimilar
among the selected points, i.e., (zk, zm); the pairs located in the margin of the control/treated group,
i.e., (zj , zk) and (zi, zm). As shown in Figure 2, minimizing LPDDM on the above five pairs helps
to preserve the similarity when mapping the original data into the representation space.

By using the PDDM structure, the similarity information within and between each of the pairs
(zk̂, zl̂), (zm̂, zn̂), and (zk̂, zn̂) will be preserved.

2.3.4 Middle Point Distance Minimization (MPDM)

To achieve balanced distributions in the latent space, we design the middle point distance minimiza-
tion (MPDM) component in SITE. MPDM makes the middle point of (zî, zm̂) close to the middle
point of (zĵ , zk̂). The units zî and zĵ are located in a region where the control and treated units
are sufficient and mixed. In other words, they are the closest units from treated and control groups

5



Figure 4: The effect of balancing distributions and preserving local similarity by using the proposed
SITE method.

separately that lie in the intermediate zone. Meanwhile, zk̂ is the farthest control unit from the
margin of the treated group, and zm̂ is the farthest treated unit from the margin of control group.
We use the middle points of (zî, zm̂) and (zĵ , zk̂) to approximate the centers of treated and control
groups, respectively. By minimizing the distance of two middle points, the units in the margin area
are gradually made close to the intermediate region. As a result, the distributions of two groups will
be balanced.

The loss function of MPDM is as follows:

LMPDM =
∑

î,ĵ,k̂,m̂

(zî+zm̂

2 − zĵ+zk̂

2

)2
. (8)

The MPDM balances the distributions of two groups in the latent space, while the PDDM preserves
the local similarity. A 2-D toy example shown in Figure 4 vividly demonstrates the combined effect
of MPDM and PDDM. Four units xî, xĵ , xk̂ and xm̂ are the same as what we choose in Figure 2.
Figure 4 shows that MPDM makes the units that belong to treated group close to the control group,
and PDDM restricts the way that the two groups close to each other. PDDM preserves the similarity
information between xk̂ and xm̂. xk̂ and xm̂ are the farthest data points in the treated and control
groups. When MPDM makes two groups approaching each other, PDDM ensures that the data
points xk̂ and xm̂ are still the farthest, which prevents MPDM squeezing all data points into one
point.

2.3.5 Outcome Prediction Network

With the components PDDM and MPDM, SITE is able to learn latent representations zi that balance
the distributions of treated/control groups and preserve the local similarity of units in the original
covariate space. Finally, the outcome prediction network is employed to estimate the outcome ŷ(i)ti
by taking zi as input. Let g(·) denote the function learned by the outcome prediction network. We
have ŷ(i)ti = g(zi, ti) = g(f(xi), ti).

The factual loss function is as follows:

LFL =

N∑
i=1

(ŷ
(i)
ti − y

(i)
ti )2 =

N∑
i=1

(g(f(xi), ti)− y(i)ti )2, (9)

where y(i)ti is the observed outcome.

2.3.6 Implementation and Joint Optimization

The representation network and outcome prediction network are standard feed-forward neural net-
works with Dropout [32] and ReLU activation function. The overall loss function of SITE in Eq.(2)
can be jointly optimized. Adam [19] is adopted to solve the optimization problem. The PDDM and
MPDM are calculated on triplet pairs during every batch.
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Table 1: Performance comparison on IHDP and Jobs Dataset.
IHDP (

√
EPEHE) Jobs (Rpol)

Method Within-sample Out-of-sample Within-sample Out-of-sample

OLS/LR1 10.761± 4.350 7.345± 2.914 0.310± 0.017 0.279± 0.067
OLS/LR2 10.280± 3.794 5.245± 0.986 0.228± 0.012 0.733± 0.103

HSIC-NNM [5] 2.439± 0.445 2.401± 0.367 0.291± 0.019 0.311± 0.069
PSM [27] 7.188± 2.679 7.290± 3.389 0.292± 0.019 0.307± 0.053
k-NN [8] 4.432± 2.345 4.303± 2.077 0.230± 0.016 0.262± 0.038

Causal Forest [33] 4.732± 2.974 4.095± 2.528 0.232± 0.018 0.224± 0.034

BNN [18] 3.827± 2.044 4.874± 2.850 0.232± 0.008 0.240± 0.012
TARNet [30] 0.729± 0.088 1.342± 0.597 0.228± 0.004 0.234± 0.012

CFR-MMD [30] 0.663± 0.068 1.202± 0.550 0.213± 0.006 0.231± 0.009
CFR-WASS [30] 0.649± 0.089 1.152± 0.527 0.225± 0.004 0.225± 0.010

SITE (Ours) 0.604± 0.093 0.656± 0.108 0.224± 0.004 0.219± 0.009

3 Experiment

3.1 Experiment on Real Dataset

Datasets. Due to the missing counterfactual outcomes in reality, it is hard to measure the individual
treatment effect estimation on traditional observational datasets. In order to evaluate the proposed
method, we conduct the experiment on three datasets with different settings. IHDP and Jobs dataset
are adopted in [30], one of the state-of-art methods. IHDP dataset aims to estimate the effect of
specialist home visits on infant’s future cognitive test scores, and Jobs dataset aims to estimate the
effect of job training on employee status. Details about the IHDP and Jobs datasets are provided in
the supplementary material. The twins dataset comes from the all twins birth in the USA between
1989 − 1991 [2]. We focus on the same sex twin-pairs whose weights are less than 2000g. Each
record contains 40 pre-treatment covariates related to the parents, the pregnancy and the birth. The
treatment T = 1 is viewed as being the heavier one in the twins, and T = 0 is being the lighter one.
The outcome is the mortality after one year. After eliminating the records containing missing fea-
tures, the final dataset contains 5409 records. In this setting, both treated and control outcomes can
be observed. In order to create the selection bias, we execute the following procedures to selectively
choose one of the twins as the observation and hide the other: Ti|xi ∼ Bern(Sigmoid(wTx + n)),
where wT ∼ U((−0.1, 0.1)40×1) and n ∼ N (0, 0.1).

Baselines. We compare the proposed method with the following three groups of baselines. (1) Re-
gression based methods: Least square Regression with the treatment as feature (OLS/LR1), separate
linear regressors for each treatment group (OLS/LR2); (2) Nearest neighbor matching based meth-
ods: Hilbert-Schmidt Independence Criterion based Nearest Neighbor Matching (HSIC-NNM) [5],
Propensity score match with logistic regression (PSM) [27], k-nearest neighbor (k-NN) [8]; (3) Tree
and forest based method: Causal Forest [33]. (4) Representation learning based methods: Balancing
neural network (BNN) [18], counterfactual regression with MMD metric (CFR-MMD) [30], coun-
terfactual regression with Wasserstein metric (CFR-WASS) [30], and Treatment-Agnostic Repre-
sentation Network (TARNet) [30].

Performance Measurement. On IHDP dataset, the Precision in Estimation of Hetero-
geneous Effect (EPEHE) [13] is adopted as the performance metric, where EPEHE =
1
N

∑N
i=1(E

(y
(i)
0 ,y

(i)
1 )∼PY|xi

[
y
(i)
0 − y

(i)
1

]
−(ŷ

(i)
0 − ŷ

(i)
1 ))2; On jobs dataset, the policy riskRpol [30]

is used as the metric, which is defined as: Rpol = 1−
(
E[Y1|π(x) = 1]P(π(x) = 1)+E[Y0|π(x) =

0]P(π(x) = 0)
)
, where π(x) = 1 if ŷ1− ŷ0 > 0 and π(x) = 0, otherwise. The policy risk measures

the expected loss if the treatment is taken according to the ITE estimation. For PEHE and policy
risk, the smaller value is, the better the performance. On the Twins dataset, the class is imbalanced,
so we adopt area over ROC curve(AUC) on outcomes as the performance measure, as suggested in
[25]. The larger AUC is, the better the performance.
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On each dataset, we consider both the within-sample case and out-of-sample case [30]. In the former
case, the observed outcome is available, while in the latter case, only the pre-treatment covariates
are available. In the within-sample case, the performance metric is measured on the training dataset,
and the out-of-sample case is on the test dataset. Since we never use the ground truth ITE during
the training procedure, performance metric is a meaningful metric in both the within-sample and
out-of-sample cases.

Results Analysis 2. Tables 1 and 2 show the performance of 10 realizations of our method and base-
lines on three datasets. SITE achieves the best performance on the IHDP and Twins datasets, and on
the Jobs dataset, SITE achieves similar results to the best baseline. It confirms that preserving the lo-
cal similarity information during representation learning can help better estimate the counterfactual
outcomes and ITE.

Generally speaking, the representation learning based methods perform better than the linear re-
gression based and nearest neighbor matching based methods. The regression-based methods are
not specially designed to deal with counterfactual inference, so the performance is affected by
the selection bias. The nearest neighbor based methods incorporate the similarity information

Table 2: Performance comparison on twins dataset.

Twins (AUC)

Method Within-sample Out-of-sample

OLS/LR1 0.660± 0.005 0.500± 0.028
OLS/LR2 0.660± 0.004 0.500± 0.016

HSIC-NNM [5] 0.762± 0.011 0.501± 0.017
PSM [27] 0.500± 0.003 0.506± 0.011
k-NN [8] 0.609± 0.010 0.492± 0.012

BNN [18] 0.690± 0.008 0.676± 0.008
TARNet [30] 0.849± 0.002 0.840± 0.006

CFR-MMD [30] 0.852± 0.001 0.840± 0.006
CFR-WASS [30] 0.850± 0.002 0.842± 0.005

SITE (Ours) 0.862± 0.002 0.853± 0.006

to overcome the selection bias, but they
only use the observed outcomes of neigh-
bors in the other group as their counter-
factual outcomes, which might be inaccu-
rate and unreliable.

Among the representation learning based
methods, our proposed method outper-
forms all other baselines. The meth-
ods considering balancing distributions
(BNN, CFR MMD, CFR WASS, and the
proposed method) obtain better perfor-
mance than the method without balanc-
ing property (TARNet). BNN balances
the distributions of two treatment groups
in the representation space and views the
treatment ti as a feature. While TARNet
doesn’t have any regularization in the rep-
resentation space, and its outcome predic-
tion network is dichotomous. CFR-MMD
and CFR-WASS have the same dichotomous outcome prediction networks, but they use different in-
tegral probability metrics to balance the distributions. The results of BNN, CFR MMD, CFR WASS,
and the proposed method SITE indicate that balancing the distributions of different treatment groups
indeed helps reduce the negative effect of selection bias.

Compared with CFR-MMD and CFR-WASS, our proposed method SITE not only considers the bal-
ancing property (MPDM), but also preserves the local similarity information in the original feature
space (PDDM). It is observed that on the IHDP dataset, SITE significantly improves the results in
both within-sample case and out-of-sample case. On Jobs and Twins datasets, the performance of
SITE are comparable with the best baseline. The results on three datasets demonstrate the effective-
ness of preserving local similarity information in the latent space. Moreover, with the specifically
designed PDDM and MPDM structures, SITE can efficiently calculate the similarity information
and balance the distributions of different treatment groups. The PDDM and MPDM structures only
require the selected triplet pairs, which avoids handling the entire dataset. By jointly considering
distribution balancing and similarity preserving, the proposed method can effectively and efficiently
estimate the individual treatment effect.

Experiments on PDDM and MPDM. PDDM (for local similarity preserving) and MPDM (for
balancing) aim to reduce the generalization error when inferring the potential outcomes. As SITE
assumes that similar units shall have similar treatment outcomes, PDDM and MPDM are able to
preserve the local similarity information and meanwhile achieve the balanced distributions in the
latent space. In order to further comfirm the effect of PDDM and MPDM, we compare SITE with
SITE-without-PDDM and SITE-without-MPDM on all the three datasets. Table 3 shows the re-

2The code of SITE is available at https://github.com/Osier-Yi/SITE.
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sults. It can be observed that SITE outperforms the baselines without PDDM or MPDM structures.
Therefore, the two structures, PDDM and MPDM, are necessary to improve the ITE estimation.

Table 3: Experiment on PDDM & MPDM: Performance Comparison on Three Datasets.
Dataset SITE SITE-without-PDDM SITE-without-MPDM

IHDP (EPEHE) Within-sample 0.604± 0.093 0.635± 0.127 0.859± 0.093

Out-of-sample 0.656± 0.108 0.685± 0.128 1.416± 0.476

Jobs (Rpol)
Within-sample 0.224± 0.004 0.233± 0.004 0.222± 0.003

Out-of-sample 0.219± 0.009 0.234± 0.012 0.234± 0.009

Twins (AUC) Within-sample 0.862± 0.002 0.770± 0.033 0.796± 0.040

Out-of-sample 0.853± 0.006 0.776± 0.033 0.788± 0.040

3.2 Experiment on Synthetic Dataset

12 48 110 195

KL divergence

0

0.2

0.4

0.6

0.8

1
CFR-MMD

CFR-WASS

TARNet

SITE

Figure 5: Performance Comparison on
Synthetic Dataset.

Data Generation. To evaluate the robustness of
SITE, we design experiments on a synthetic dataset.
Following the settings in [36], the synthetic data
are generated as follows: we generate 5000 control
samples from N(010×1, 0.5 × (Σ + ΣT )) and 2500
treated samples from N(µ1, 0.5 × (Σ + ΣT )), where
Σ ∼ U((−1, 1)10×10). By varying the value of µ1,
data with different levels of selection bias are gener-
ated. Kullback-Leibler divergence (KL divergence) is
adopted to measure the selection bias. The larger the
KL divergence is, the smaller the overlapping of sim-
ulated control and treated groups is, and the larger
the selection bias is. The outcome is generated as
y|x ∼ (wTx + n), where w ∼ U((−1, 1)10×2), and
n ∼ N(02×1, 0.1× I2×2).

Result Analysis. We compare the proposed method with the most competitive baselines, TARNet,
CFR-MMD and CFR-WASS. The mean and variance of the EPEHE on 10 realizations are reported
in Figure 5. It is observed from the figure that SITE consistently outperforms baseline methods
under different levels of divergence.

4 Conclusion

In this paper, we present an efficient deep representation learning method for estimating individual
treatment effect. The proposed method jointly preserves the local similarity information and bal-
ances the distributions of control and treated groups. Experimental results on the IHDP, Jobs and
Twins datasets show that, in most cases, our method achieves better performance than the state-
of-the-art. Extensive evaluation of our method further validates the benefits of preserving local
similarity in ITE estimation.
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