
Norm matters: efficient and accurate normalization
schemes in deep networks

Elad Hoffer1∗, Ron Banner2∗, Itay Golan1∗, Daniel Soudry1
{elad.hoffer, itaygolan, daniel.soudry}@gmail.com

{ron.banner}@intel.com

(1) Technion - Israel Institute of Technology, Haifa, Israel
(2) Intel - Artificial Intelligence Products Group (AIPG)

Abstract

Over the past few years, Batch-Normalization has been commonly used in deep
networks, allowing faster training and high performance for a wide variety of
applications. However, the reasons behind its merits remained unanswered, with
several shortcomings that hindered its use for certain tasks. In this work, we present
a novel view on the purpose and function of normalization methods and weight-
decay, as tools to decouple weights’ norm from the underlying optimized objective.
This property highlights the connection between practices such as normalization,
weight decay and learning-rate adjustments. We suggest several alternatives to the
widely used L2 batch-norm, using normalization in L1 and L∞ spaces that can
substantially improve numerical stability in low-precision implementations as well
as provide computational and memory benefits. We demonstrate that such methods
enable the first batch-norm alternative to work for half-precision implementations.
Finally, we suggest a modification to weight-normalization, which improves its
performance on large-scale tasks. 2

1 Introduction

Deep neural networks are known to benefit from normalization between consecutive layers. This
was made noticeable with the introduction of Batch-Normalization (BN) [19], which normalizes
the output of each layer to have zero mean and unit variance for each channel across the training
batch. This idea was later developed to act across channels instead of the batch dimension in Layer-
normalization [2] and improved in certain tasks with methods such as Batch-Renormalization [18],
Instance-normalization [33] and Group-Normalization [38]. In addition, normalization methods are
also applied to the layer parameters instead of their outputs. Methods such as Weight-Normalization
[27], and Normalization-Propagation [1] targeted the layer weights by normalizing their per-channel
norm to have a fixed value. Instead of explicit normalization, effort was also made to enable self-
normalization by adapting activation function so that intermediate activations will converge towards
zero-mean and unit variance [21].

1.1 Issues with current normalization methods

Batch-normalization, despite its merits, suffers from several issues, as pointed out by previous work
[27, 18, 1]. These issues are not yet solved in current normalization methods.

∗Equal contribution
2Source code is available at https://github.com/eladhoffer/norm_matters

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://github.com/eladhoffer/norm_matters

Interplay with other regularization mechanisms. Batch normalization typically improves gener-
alization performance and is therefore considered a regularization mechanism. Other regularization
mechanisms are typically used in conjunction. For example, weight decay, also known as L2 regular-
ization, is a common method which adds a penalty proportional to the weights’ norm. Weight decay
was proven to improve generalization in various problems [24, 5, 4], but, so far, not for non-linear
deep neural networks. There, [40] performed an extensive set of experiments on regularization and
concluded that explicit regularization, such as weight decay, may improve generalization performance,
but is neither necessary nor, by itself, sufficient for reducing generalization error. Therefore, it is
not clear how weight decay interacts with BN, or if weight decay is even really necessary given that
batch norm already constrains the output norms [16]).

Task-specific limitations. A key assumption in BN is the independence between samples appearing
in each batch. While this assumption seems to hold for most convolutional networks used to classify
images in conventional datasets, it falls short when employed in domains with strong correlations
between samples, such as time-series prediction, reinforcement learning, and generative modeling.
For example, BN requires modifications to work in recurrent networks [6], for which alternatives such
as weight-normalization [27] and layer-normalization [2] were explicitly devised, without reaching
the success and wide adoption of BN. Another example is Generative adversarial networks, which
are also noted to suffer from the common form of BN. GAN training with BN proved unstable in
some cases, decreasing the quality of the trained model [28]. Instead, it was replaced with virtual-BN
[28], weight-norm [39] and spectral normalization [32]. Also, BN may be harmful even in plain
classification tasks, when using unbalanced classes, or correlated instances. In addition, while BN is
defined for the training phase of the models, it requires a running estimate for the evaluation phase
– causing a noticeable difference between the two [19]. This shortcoming was addressed later by
batch-renormalization [18], yet still requiring the original BN at the early steps of training.

Computational costs. From the computational perspective, BN is significant in modern neural
networks, as it requires several floating point operations across the activation of the entire batch for
every layer in the network. Previous analysis by Gitman & Ginsburg [11] measured BN to constitute
up to 24% of the computation time needed for the entire model. It is also not easily parallelized, as it
is usually memory-bound on currently employed hardware. In addition, the operation requires saving
the pre-normalized activations for back-propagation in the general case [26], thus using roughly twice
the memory as a non-BN network in the training phase. Other methods, such as Weight-Normalization
[27] have a much smaller computational cost but typically achieve significantly lower accuracy when
used in large-scale tasks such as ImageNet [11].

Numerical precision. As the use of deep learning continues to evolve, the interest in low-precision
training and inference increases [17, 36]. Optimized hardware was designed to leverage benefits
of low-precision arithmetic and memory operations, with the promise of better, more efficient
implementations [22]. Although most mathematical operations employed in neural-networks are
known to be robust to low-precision and quantized values, the current normalization methods are
notably not suited for these cases. As far as we know, this has remained an unanswered issue,
with no suggested alternatives. Specifically, all normalization methods, including BN, use an L2

normalization (variance computation) to control the activation scale for each layer. The operation
requires a sum of power-of-two floating point variables, a square-root function, and a reciprocal
operation. All of these require both high-precision to avoid zero variance, and a large range to avoid
overflow when adding large numbers. This makes BN an operation that is not easily adapted to
low-precision implementations. Using norm spaces other than L2 can alleviate these problems, as we
shall see later.

1.2 Contributions

In this paper we make the following contributions, to address the issues explained in the previous
section:

• We find the mechanism through which weight decay before BN affects learning dynamics:
we demonstrate that by adjusting the learning rate or normalization method we can exactly
mimic the effect of weight decay on the learning dynamics. We suggest this happens since

2

certain normalization methods, such as a BN, disentangle the effect of weight vector norm
on the following activation layers.

• We show that we can replace the standard L2 BN with certain L1 and L∞ based variations
of BN, which do not harm accuracy (on CIFAR and ImageNet) and even somewhat improve
training speed. Importantly, we demonstrate that such norms can work well with low
precision (16bit), while L2 does not. Notably, for these normalization schemes to work well,
precise scale adjustment is required, which can be approximated analytically.

• We show that by bounding the norm in a weight-normalization scheme, we can significantly
improve its performance in convnets (on ImageNet), and improve baseline performance in
LSTMs (on WMT14 de-en). This method can alleviate several task-specific limitations of
BN, and reduce its computational and memory costs (e.g., allowing to work with significantly
larger batch sizes). Importantly, for the method to work well, we need to carefully choose
the scale of the weights using the scale of the initialization.

Together, these findings emphasize that the learning dynamics in neural networks are very sensitive to
the norms of the weights. Therefore, it is an important goal for future research to search for precise
and theoretically justifiable methods to adjust the scale for these norms.

2 Consequences of the scale invariance of Batch-Normalization

When BN is applied after a linear layer, it is well known that the output is invariant to the channel
weight vector norm. Specifically, denoting a channel weight vector withw and ŵ = w/‖w‖2, channel
input as x and BN for batch-norm, we have

BN(‖w‖2ŵx) = BN(ŵx). (1)

This invariance to the weight vector norm means that a BN applied after a layer renders its norm
irrelevant to the inputs of consecutive layers. The same can be easily shown for the per-channel
weights of a convolutional layer. The gradient in such case is scaled by 1/‖w‖2:

∂BN(‖w‖2ŵx)
∂(‖w‖2ŵ)

=
1

‖w‖2
∂BN(ŵx)

∂(ŵ)
. (2)

When a layer is rescaling invariant, the key feature of the weight vector is its direction.

During training, the weights are typically incremented through some variant of stochastic gradient
descent, according to the gradient of the loss at mini-batch t, with learning rate η

wt+1 = wt − η∇Lt (wt) . (3)

Claim. During training, the weight direction ŵt = wt/‖wt‖2 is updated according to

ŵt+1 = ŵt − η ‖wt‖−2
(
I − ŵtŵ>t

)
∇L (ŵt) +O

(
η2
)

Proof. Denote ρt = ‖wt‖2. Note that, from eqs. 2 and 3 we have

ρ2t+1 = ρ2t − 2ηŵ>t ∇L (ŵt) + η2ρ−2t ‖∇L (ŵt)‖2

and therefore

ρt+1 = ρt

√
1− 2ηρ−2t ŵ>t ∇L (ŵt) + η2ρ−4t ‖∇L (ŵt)‖2

= ρt − ηρ−1t ŵ>t ∇L (ŵt) +O
(
η2
)
.

Additionally, from eq. 3 we have

ρt+1ŵt+1 = ρtŵt − η∇L (ŵtρt)

and therefore, from eq. 2,

ŵt+1 =
ρt
ρt+1

ŵt − η
1

ρt+1ρt
∇L (ŵt)

=
(
1 + ηρ−2t ŵ>t ∇L (ŵt)

)
ŵt − ηρ−2t ∇L (ŵt) +O

(
η2
)

= ŵt − ηρ−2t
(
I − ŵtŵ>t

)
∇L (ŵt) +O

(
η2
)
,

3

which proves the claim. �

Therefore, the step size of the weight direction is approximately proportional to

ŵt+1 − ŵt ∝
η

‖wt‖22
. (4)

in the case of linear layer followed by BN, and for small learning rate η. Note that a similar conclusion
was reached by van Laarhoven [34], who implicitly assumed ||wt+1|| = ||wt||, though this is only
approximately true. Here we show this conclusion is still true without such an assumption. This
analysis continues to hold for non-linear functions that do not affect scale, such as the commonly
used ReLU function. In addition, although stated for the case of vanilla SGD, similar argument can
be made for adaptive methods such as Adagrad [9] or Adam [20].

3 Connection between weight-decay, learning rate and normalization

We claim that when using batch-norm (BN), weight decay (WD) improves optimization only by
fixing the norm to a small range of values, leading to a more stable step size for the weight direction
(“effective step size”). Fixing the norm allows better control over the effective step size through the
learning rate η. Without WD, the norm grows unbounded [31], resulting in a decreased effective step
size, although the learning rate hyper-parameter remains unchanged.

10 20 30 40 50 60 70 80
Epoch

60

65

70

75

80

85

90

95

Te
st

 a
cc

ur
ac

y

WD on
WD off
WD off + LR Correction
LR sched replaced with Norm sched

Figure 1: The connection between norm,
effective step size and weight decay. WD
on/WD off was trained with/without weight
decay respectively. WD off correction was
trained without weight decay but with LR
correction as presented in Eq. 5. LR sched
replaced with Norm sched is based on WD
on norms but replacing LR scheduling with
norm scheduling. (VGG11, CIFAR-10)

We show empirically that the accuracy gained by us-
ing WD can be achieved without it, only by adjusting
the learning rate. Given statistics on norms of each
channel from a training with WD and BN, similar
results can be achieved without WD by mimicking
the effective step size using the following correction
on the learning rate:

η̂Correction = η
‖w‖22

‖w[WD on]‖
2

2

(5)

where w is the weights’ vector of a single channel,
and w[WD on] is the weights’ vector of the correspond-
ing channel in a training with WD. This correction
requires access to the norms of a training with WD,
hence it is not a practical method to replace WD but
just a tool to demonstrate our claim on the connection
between weights’ norm, WD and step size.

We conducted multiple experiments on CIFAR-10
[23] to show this connection. Figure 1 reports the test
accuracy during the training of all experiments. We
were able to show that WD results can be mimicked
with step size adjustments using the correction for-
mula from Eq. 5. In another experiment, we replaced
the learning rate scheduling with norm scheduling.
To do so, after every gradient descent step we normal-
ized the norm of each convolution layer channel to
be the same as the norm of the corresponding channel in training with WD and keep the learning
rate constant. When learning rate is multiplied by 0.1 in the WD training, we instead multiply the
norm by

√
10, leading to an effective step size of η

‖WWD on‖22
√
10

2 = 0.1 η
‖WWD on‖22

. As expected, when

applying the correction on step-size or replacing learning rate scheduling with norm scheduling, the
accuracy is similar to the training with WD throughout the learning process, suggesting that WD
affects the training process only indirectly, by modulating the learning rate. Implementation details
appear in supplementary material.

4

4 Alternative Lp metrics for batch norm

We suggested above that the main function of BN is to neutralize the effect of the preceding layer’s
weights. If this hypothesis is true, then other operations might be able to replace BN, as long as they
remain similarly scale invariant (as in eq. (1)) — and if we keep the same scale as BN. Following
this reasoning, we next aim to replace the use of L2 norm with scale-invariant alternatives which are
more appealing computationally and for low-precision implementations.

Batch normalization aims at regularizing the input so that sum of deviations from the mean would
be standardized according to the Euclidean L2 norm metric. For a layer with d−dimensional input
x = (x(1), x(2), ..., x(d)), L2 batch norm normalizes each dimension

x̂(k) =
x(k) − µk√
Var[x(k)]

, (6)

where µk is the expectation over x(k), n is the batch size and Var[x(k)] = 1
n ||x

(k) − µk||22.

The computation toll induced by
√
Var[x(k)] is often significant with non-negligible overheads on

memory and energy consumption. In addition, as the above variance computation involves sums
of squares, the quantization of the L2 batch norm for training on optimized hardware can lead to
numerical instability as well as to arithmetic overflows when dealing with large values.

In this section, we suggest alternative Lp metrics for BN. We focus on the L1 and L∞ due to their
appealing speed and memory computations. In our simulations, we were able to train models faster
and with fewer GPUs using the above normalizations. Strikingly, by proper adjustments of these
normalizations, we were able to train various complicated models without hurting the classification
performance. We begin with the L1-norm metric.

4.1 L1 batch norm.

For a layer with d−dimensional input x = (x(1), x(2), ..., x(d)), L1 batch normalization normalize
each dimension

x̂(k) =
x(k) − µk

CL1
· ||x(k) − µk||1/n

(7)

where µk is the expectation over x(k), n is the batch size and CL1
=
√
π/2 is a normalization term.

Unlike traditional L2 batch normalization that computes the average squared deviation from the mean
(variance), L1 batch normalization computes only the average absolute deviation from the mean. This
has two major advantages. First, L1 batch normalization eliminates the computational efforts required
for the square and square root operations. Second, as the square of an n-bit number is generally of 2n
bits, the absence of these square computations makes it much more suitable for low-precision training
that has been recognized to drastically reduce memory size and power consumption on dedicated
deep learning hardware [7].

As can be seen in equation 7, the L1 batch normalization quantifies the variability with the normal-
ized average absolute deviation CL1

· ||x(k) − µk||1/n. To calculate an appropriate value for the
constant CL1 , we assume the input x(k) follows Gaussian distribution N(µk, σ2). This is a common
approximation (e.g., Soudry et al. [30]), based on the fact that the neural input x(k) is a sum of many
inputs, so we expect it to be approximately Gaussian from the central limit theorem. In this case,
x̂(k) = (x(k) − µk) follows the distribution N(0, σ2). Therefore, for each example x̂(k)i ∈ x̂(k) it
holds that |x̂(k)i | follows a half-normal distribution with expectation E(|x̂(k)i |) = σ ·

√
2/π. Accord-

ingly, the expected L1 variability measure is related to the traditional standard deviation measure σ
normally used with batch normalization as follows:

E

[
CL1

n
· ||x(k) − µk||1

]
=

√
π/2

n
·
n∑
i=1

E[|x̂(k)i |] = σ.

Figure 2 presents the validation accuracy of ResNet-18 and ResNet-50 on ImageNet using L1 and
L2 batch norms. While the use of L1 batch norm is more efficient in terms of resource usage,

5

power, and speed, they both share the same classification accuracy. We additionally verified L1

layer-normalization to work on Transformer architecture [35]. Using an L1 layer-norm we achieved a
final perplexity of 5.2 vs. 5.1 for original L2 layer-norm using the base model on the WMT14 dataset.

We note the importance of CL1
to the performance of L1 normalization method. For example, using

CL1
helps the network to reach 20% validation error more than twice faster than an equivalent

configuration without this normalization term. With CL1 the network converges at the same rate and
to the same accuracy as L2 batch norm. It is somewhat surprising that this constant can have such
an impact on performance, considering the fact that it is so close to one (CL1 =

√
π/2 ≈ 1.25). A

demonstration of this effect can be found in the supplementary material (Figure 1).

We also note that the use of L1 norm improved both running time and memory consumption for
models we tested. These benefits can be attributed to the fact that absolute-value operation is
computationally more efficient compared to the costly square and sqrt operations. Additionally, the
derivative of |x| is the operation sign(x). Therefore, in order to compute the gradients, we only need
to cache the sign of the values (not the actual values), allowing for substantial memory savings.

4.2 L∞ batch norm

Another alternative measure for variability that avoids the discussed limitations of the traditional
L2 batch norm is the maximum absolute deviation. For a layer with d−dimensional input x =
(x(1), x(2), ..., x(d)), L∞ batch normalization normalize each dimension

x̂(k) =
x(k) − µk

CL∞(n) · ||x(k) − µk||∞
, (8)

where µk is the expectation over x(k), n is batch size and CL∞(n) is computed similarly to CL1
(n)

(derivation appears in appendix).

While normalizing according to the maximum absolute deviation offers a major performance advan-
tage, we found it somewhat less robust to noise compared to L1 and L2 normalization.

By replacing the maximum absolute deviation with the mean of ten largest deviations, we were able
to make normalization much more robust to outliers. Formally, let sn be the n-th largest value in S,
we define Top(k) as follows

Top(k) =
1

k

k∑
n=1

|sn|

Given a batch of size n, the notion of Top(k) generalizes L1 and L∞ metrics. Indeed, L∞ is precisely
Top(1) while L1 is by definition equivalent to Top(n). As we could not find a closed-form expression
for the normalization term CTopK(n), we approximated it as a linear interpolation between CL1

and CL∞(n). As can be seen in figure 2, the use of Top(10) was sufficient to close the gap to L2

performance. For further details on Top(10) implementation, see our code.

4.3 Batch norm at half precision

Due to numerical issues, prior attempts to train neural networks at low precision had to leave batch
norm operations at full precision (float 32) as described by Micikevicius et al. [25], Das et al. [8],
thus enabling only mixed precision training. This effectively means that low precision hardware still
needs to support full precision data types. The sensitivity of BN to low precision operations can be
attributed to both the numerical operations of square and square-root used, as well as the possible
overflow of the sum of many large positive values. To overcome this overflow, we may further require
a wide accumulator with full precision.

We provide evidence that by using L1 arithmetic, batch normalization can also be quantized to half
precision with no apparent effect on validation accuracy, as can be seen in figure 3. Using the standard
L2 BN in low-precision leads to overflow and significant quantization noise that quickly deteriorate
the whole training process, while L1 BN allows training with no visible loss of accuracy.

As far as we know, our work is the first to demonstrate a viable alternative to BN in half-precision
accuracy. We also note that the usage of L∞ BN or its Top(k) relaxation, may further help low-

6

Figure 2: Classification error with L2 batch norm
(baseline) and L1, L∞ and Top(10) alternatives
for ResNet-18 and ResNet-50 on ImageNet. Com-
pared to the baselines, L1 and Top(10) normaliza-
tions reached similar final accuracy (difference <
0.2%), while L∞ had a lower accuracy, by 3%.

Figure 3: L1 BN is more robust to quantization
noise compared to L2 BN as demonstrated for
ResNet18 on ImageNet. The half precision run
of L2 BN was clearly diverging, even when done
with a high precision accumulator, and we stopped
the run before termination at epoch 20.

precision implementations by significantly lowering the extent of the reduction operation (as only k
numbers need to be summed).

5 Improving weight normalization

5.1 The advantages and disadvantages of weight normalization

Trying to address several of the limitations of BN, Salimans & Kingma [27] suggested weight
normalization as its replacement. As weight-norm requires an L2 normalization over the output
channels of the weight matrix, it alleviates both computational and task-specific shortcomings of BN,
ensuring no dependency on the current batch of sample activations within a layer.

While this alternative works well for small-scale problems, as demonstrated in the original work, it
was noted by Gitman & Ginsburg [11] to fall short in large-scale usage. For example, in the ImageNet
classification task, weight-norm exhibited unstable convergence and significantly lower performance
(67% accuracy on ResNet50 vs. 75% for original).

An additional modification of weight-norm called "normalization propagation" [1] adds additional
multiplicative and additive corrections to address the change of activation distribution introduced
by the ReLU non-linearity used between layers in the network. These modifications are not trivially
applied to architectures with complex structure elements such as residual connections [14].

So far, we’ve demonstrated that the key to the performance of normalization techniques lies in their
property to neutralize the effect of weight’s norm. Next, we will use this reasoning to overcome the
shortcoming of weight-norm.

5.2 Norm bounded weight-normalization

We return to the original parametrization suggested for weight norm, for a given initialized weight
matrix V with N output channels:

wi = gi
vi
‖vi‖2

,

where wi is a parameterized weight for the ith output channel, composed from an L2 normalized
vector vi and scalar gi.

Weight-norm successfully normalized each output channel’s weights to reside on the L2 sphere.
However, it allowed the weights scale to change freely through the scalar gi. Following reasoning
presented earlier in this work, we wish to make the weight’s norm completely disjoint from its values.

7

We can achieve this by keeping the norm fixed as follows:

wi = ρ
vi
‖vi‖2

,

where ρ is a fixed scalar for each layer that is determined by its size (number of input and output
channels). A simple choice for ρ is by the initial norm of the weights, e.g ρ = ‖V ‖(t=0)

F /
√
N , thus

employing the various successful heuristics used to initialize modern networks [12, 13]. We also note
that when using non-linearity with no scale sensitivity (e.g ReLU), these ρ constants can be instead
incorporated into only the final classifier’s weights and biases throughout the network.

Previous works demonstrated that weight-normalized networks converge faster when augmented with
mean only batch normalization. We follow this regime, although noting that similar final accuracy
can be achieved without mean normalization but at the cost of slower convergence, or with the use of
zero-mean preserving activation functions [10].

After this modification, we now find that weight-norm can be improved substantially, solving the stabil-
ity issues for large-scale task observed by Gitman & Ginsburg [11] and achieving comparable accuracy
(although still behind BN). Results on Imagenet using Resnet50 are described in Figure 4, using the
original settings and training regime [14]. We believe the still apparent margin between the two meth-
ods can be further decreased using hyper-parameter tuning, such as a modified learning rate schedule.

0 20 40 60 80
epoch

30

40

50

60

70

80

90

va
lid

at
io

n
er

ro
r

BatchNorm
BoundedWeightNorm
WeightNorm (Gitman & Ginsburg)

Figure 4: Comparison between batch-norm
(BN), weight-norm (WN) and bounded-
weight-norm (WN) on ResNet50, ImageNet.
For weight-norm, we show the final results
from [11]. Our implementation of WN here
could not converge (similar convergence is-
sues were reported by [11]). Final accuracy:
BN - 75.3%, WN 67%, and BWN - 73.8%.

It is also interesting to observe BWN’s effect in re-
current networks, where BN is not easily applicable
[6]. We compare weight-norm vs. the common im-
plementation (with layer-norm) of an attention-based
LSTM model on the WMT14 en-de translation task
[3]. The model consists of 2 LSTM cells for both
encoder and decoder, with an attention mechanism.
We also compared BWN on the Transformer archi-
tecture [35] to replace layer-norm, again achieving
comparable final performance (26.5 vs. 27.3 BLEU
score on the original base model). Both sequence-
to-sequence models were tested using beam-search
decoding with a beam size of 4 and length penalty of
0.6. Additional results for BWN can be found in the
supplementary material (Figure 2 and Table 1).

5.3 Lp weight normalization

As we did for BN, we can consider weight-
normalization over norms other than L2 such that

wi = ρ
vi
‖vi‖p

, ρ = ‖V ‖(t=0)
p /N1/p,

where computing the constant ρ over desired (vector)
norm will ensure proper scaling that was required in
the BN case. We find that similarly to BN, the L1 norm can serve as an alternative to original L2

weight-norm, where using L∞ cause a noticeable degradation when using its proper form (top-1
absolute maximum).

6 Discussion

In this work, we analyzed common normalization techniques used in deep learning models, with
BN as their prime representative. We considered a novel perspective on the role of these methods,
as tools to decouple the weights’ norm from training objective. This perspective allowed us to
re-evaluate the necessity of regularization methods such as weight decay, and to suggest new methods
for normalization, targeting the computational, numerical and task-specific deficiencies of current
techniques.

Specifically, we showed that the use of L1 and L∞-based normalization schemes could provide
similar results to the standard BN while allowing low-precision computation. Such methods can

8

be easily implemented and deployed to serve in current and future network architectures, low-
precision devices. A similar L1 normalization scheme to ours was recently introduced by Wu et al.
[37], appearing in parallel to us (within a week). In contrast to Wu et al. [37], we found that the
CL1

normalization constant is crucial for achieving the same performance as L2 (see Figure 1 in
supplementary). We additionally demonstrated the benefits of L1 normalization: it allowed us to
perform BN in half-precision floating-point, which was noted to fail in previous works [25, 8] and
required full and mixed precision hardware.

Moreover, we suggested a bounded weight normalization method, which achieves improved results
on large-scale tasks (ImageNet) and is nearly comparable with BN. Such a weight normalization
scheme improves computational costs and can enable improved learning in tasks that were not suited
for previous methods such as reinforcement-learning and temporal modeling.

We further suggest that insights gained from our findings can have an additional impact on the way
neural networks are devised and trained. As previous works demonstrated, a strong connection
appears between the batch-size used and the optimal learning rate regime [15, 29] and between
the weight-decay factor and learning-rate [34]. We deepen this connection and suggest that all of
these factors, including the effective norm (or temperature), are mutually affecting one another. It is
plausible, given our results, that some (or all) of these hyper-parameters can be fixed given another,
which can potentially ease the design and training of modern models.

Acknowledgments

This research was supported by the Israel Science Foundation (grant No. 31/1031), and by the Taub
foundation. A Titan Xp used for this research was donated by the NVIDIA Corporation.

References
[1] Arpit, D., Zhou, Y., Kota, B., and Govindaraju, V. Normalization propagation: A parametric

technique for removing internal covariate shift in deep networks. In International Conference
on Machine Learning, pp. 1168–1176, 2016.

[2] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[3] Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Bös, S. Optimal weight decay in a perceptron. In International Conference on Artificial Neural
Networks, pp. 551–556. Springer, 1996.

[5] Bos, S. and Chug, E. Using weight decay to optimize the generalization ability of a perceptron.
In Neural Networks, 1996., IEEE International Conference on, volume 1, pp. 241–246. IEEE,
1996.

[6] Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç., and Courville, A. Recurrent batch
normalization. arXiv preprint arXiv:1603.09025, 2016.

[7] Courbariaux, M., Bengio, Y., and David, J.-P. Training deep neural networks with low precision
multiplications. arXiv preprint arXiv:1412.7024, 2014.

[8] Das, D., Mellempudi, N., Mudigere, D., et al. Mixed precision training of convolutional neural
networks using integer operations. arXiv preprint arXiv:1802.00930, 2018.

[9] Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[10] Eidnes, L. and Nøkland, A. Shifting mean activation towards zero with bipolar activation
functions. arXiv preprint arXiv:1709.04054, 2017.

[11] Gitman, I. and Ginsburg, B. Comparison of batch normalization and weight normalization
algorithms for the large-scale image classification. CoRR, abs/1709.08145, 2017.

9

[12] Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, pp. 249–256, 2010.

[13] He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pp. 1026–1034, 2015.

[14] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[15] Hoffer, E., Hubara, I., and Soudry, D. Train longer, generalize better: closing the generalization
gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, pp. 1729–1739, 2017.

[16] Huang, L., Liu, X., Lang, B., and Li, B. Projection based weight normalization for deep neural
networks. arXiv preprint arXiv:1710.02338, 2017.

[17] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. Binarized neural networks.
In Advances in neural information processing systems, pp. 4107–4115, 2016.

[18] Ioffe, S. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. In Advances in Neural Information Processing Systems, pp. 1942–1950, 2017.

[19] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456, 2015.

[20] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. Self-normalizing neural networks.
In Advances in Neural Information Processing Systems, pp. 971–980, 2017.

[22] Köster, U., Webb, T., Wang, X., et al. Flexpoint: An adaptive numerical format for efficient
training of deep neural networks. In Advances in Neural Information Processing Systems, pp.
1740–1750, 2017.

[23] Krizhevsky, A. and Hinton, G. Learning multiple layers of features from tiny images. 2009.

[24] Krogh, A. and Hertz, J. A. A simple weight decay can improve generalization. In Advances in
neural information processing systems, pp. 950–957, 1992.

[25] Micikevicius, P., Narang, S., Alben, J., et al. Mixed precision training. In International
Conference on Learning Representations, 2018.

[26] Rota Bulò, S., Porzi, L., and Kontschieder, P. In-place activated batchnorm for memory-
optimized training of dnns. arXiv preprint arXiv:1712.02616, 2017.

[27] Salimans, T. and Kingma, D. P. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, pp.
901–909, 2016.

[28] Salimans, T., Goodfellow, I., Zaremba, W., et al. Improved techniques for training gans. In
Advances in Neural Information Processing Systems, pp. 2234–2242, 2016.

[29] Smith, S. L., Kindermans, P.-J., and Le, Q. V. Don’t decay the learning rate, increase the batch
size. arXiv preprint arXiv:1711.00489, 2017.

[30] Soudry, D., Hubara, I., and Meir, R. Expectation backpropagation: parameter-free training
of multilayer neural networks with continuous or discrete weights. In Neural Information
Processing Systems, volume 2, pp. 963–971, dec 2014.

[31] Soudry, D., Hoffer, E., and Srebro, N. The implicit bias of gradient descent on separable data.
International Conference on Learning Representations, 2018.

10

[32] Takeru Miyato, M. K. Y. Y., Toshiki Kataoka. Spectral normalization for generative adversarial
networks. International Conference on Learning Representations, 2018.

[33] Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. Instance normalization: The missing ingredient
for fast stylization. CoRR, abs/1607.08022, 2016.

[34] van Laarhoven, T. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

[35] Vaswani, A., Shazeer, N., Parmar, N., et al. Attention is all you need. In Advances in Neural
Information Processing Systems, pp. 6000–6010, 2017.

[36] Venkatesh, G., Nurvitadhi, E., and Marr, D. Accelerating deep convolutional networks using
low-precision and sparsity. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on, pp. 2861–2865. IEEE, 2017.

[37] Wu, S., Li, G., Deng, L., et al. L1-Norm Batch Normalization for Efficient Training of Deep
Neural Networks. ArXiv e-prints, February 2018.

[38] Wu, Y. and He, K. Group normalization. arXiv preprint arXiv:1803.08494, 2018.

[39] Xiang, S. and Li, H. On the effect of batch normalization and weight normalization in generative
adversarial networks. arXiv preprint arXiv:1704.03971, 2017.

[40] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. Understanding deep learning
requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

11

