
DVAE#: Discrete Variational Autoencoders with
Relaxed Boltzmann Priors

Arash Vahdat∗, Evgeny Andriyash∗, William G. Macready
Quadrant.ai, D-Wave Systems Inc.

Burnaby, BC, Canada
{arash,evgeny,bill}@quadrant.ai

Abstract

Boltzmann machines are powerful distributions that have been shown to be an
effective prior over binary latent variables in variational autoencoders (VAEs).
However, previous methods for training discrete VAEs have used the evidence lower
bound and not the tighter importance-weighted bound. We propose two approaches
for relaxing Boltzmann machines to continuous distributions that permit training
with importance-weighted bounds. These relaxations are based on generalized
overlapping transformations and the Gaussian integral trick. Experiments on the
MNIST and OMNIGLOT datasets show that these relaxations outperform previous
discrete VAEs with Boltzmann priors. An implementation which reproduces these
results is available at https://github.com/QuadrantAI/dvae.

1 Introduction

Advances in amortized variational inference [1, 2, 3, 4] have enabled novel learning methods [4, 5, 6]
and extended generative learning into complex domains such as molecule design [7, 8], music [9] and
program [10] generation. These advances have been made using continuous latent variable models in
spite of the computational efficiency and greater interpretability offered by discrete latent variables.
Further, models such as clustering, semi-supervised learning, and variational memory addressing [11]
all require discrete variables, which makes the training of discrete models an important challenge.

Prior to the deep learning era, Boltzmann machines were widely used for learning with discrete latent
variables. These powerful multivariate binary distributions can represent any distribution defined on
a set of binary random variables [12], and have seen application in unsupervised learning [13], super-
vised learning [14, 15], reinforcement learning [16], dimensionality reduction [17], and collaborative
filtering [18]. Recently, Boltzmann machines have been used as priors for variational autoencoders
(VAEs) in the discrete variational autoencoder (DVAE) [19] and its successor DVAE++ [20]. It has
been demonstrated that these VAE models can capture discrete aspects of data. However, both these
models assume a particular variational bound and tighter bounds such as the importance weighted
(IW) bound [21] cannot be used for training.

We remove this constraint by introducing two continuous relaxations that convert a Boltzmann ma-
chine to a distribution over continuous random variables. These relaxations are based on overlapping
transformations introduced in [20] and the Gaussian integral trick [22] (known as the Hubbard-
Stratonovich transform [23] in physics). Our relaxations are made tunably sharp by using an inverse
temperature parameter.

VAEs with relaxed Boltzmann priors can be trained using standard techniques developed for continu-
ous latent variable models. In this work, we train discrete VAEs using the same IW bound on the
log-likelihood that has been shown to improve importance weighted autoencoders (IWAEs) [21].
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This paper makes two contributions: i) We introduce two continuous relaxations of Boltzmann
machines and use these relaxations to train a discrete VAE with a Boltzmann prior using the IW bound.
ii) We generalize the overlapping transformations of [20] to any pair of distributions with computable
probability density function (PDF) and cumulative density function (CDF). Using these more general
overlapping transformations, we propose new smoothing transformations using mixtures of Gaussian
and power-function [24] distributions. Power-function overlapping transformations provide lower
variance gradient estimates and improved test set log-likelihoods when the inverse temperature is
large. We name our framework DVAE# because the best results are obtained when the power-function
transformations are sharp.2

1.1 Related Work

Previous work on training discrete latent variable models can be grouped into five main categories:

i) Exhaustive approaches marginalize all discrete variables [25, 26] and which are not scalable to
more than a few discrete variables.

ii) Local expectation gradients [27] and reparameterization and marginalization [28] estimators
compute low-variance estimates at the cost of multiple function evaluations per gradient. These
approaches can be applied to problems with a moderate number of latent variables.

iii) Relaxed computation of discrete densities [29] replaces discrete variables with continuous
relaxations for gradient computation. A variation of this approach, known as the straight-through
technique, sets the gradient of binary variables to the gradient of their mean [30, 31].

iv) Continuous relaxations of discrete distributions [32] replace discrete distributions with con-
tinuous ones and optimize a consistent objective. This method cannot be applied directly to
Boltzmann distributions. The DVAE [19] solves this problem by pairing each binary variable
with an auxiliary continuous variable. This approach is described in Sec. 2.

v) The REINFORCE estimator [33] (also known as the likelihood ratio [34] or score-function
estimator) replaces the gradient of an expectation with the expectation of the gradient of the
score function. This estimator has high variance, but many increasingly sophisticated methods
provide lower variance estimators. NVIL [3] uses an input-dependent baseline, and MuProp [35]
uses a first-order Taylor approximation along with an input-dependent baseline to reduce noise.
VIMCO [36] trains an IWAE with binary latent variables and uses a leave-one-out scheme to
define the baseline for each sample. REBAR [37] and its generalization RELAX [38] use the
reparameterization of continuous distributions to define baselines.

The method proposed here is of type iv) and differs from [19, 20] in the way that binary latent
variables are marginalized. The resultant relaxed distribution allows for DVAE training with a tighter
bound. Moreover, our proposal encompasses a wider variety of smoothing methods and one of these
empirically provides lower-variance gradient estimates.

2 Background

Let xxx represent observed random variables and ζζζ continuous latent variables. We seek a generative
model p(xxx,ζζζ) = p(ζζζ)p(xxx|ζζζ) where p(ζζζ) denotes the prior distribution and p(xxx|ζζζ) is a probabilistic
decoder. In the VAE [1], training maximizes a variational lower bound on the marginal log-likelihood:

log p(xxx) ≥ Eq(ζζζ|xxx)
[
log p(xxx|ζζζ)

]
− KL

(
q(ζζζ|xxx)||p(ζζζ)

)
.

A probabilistic encoder q(ζζζ|xxx) approximates the posterior over latent variables. For continuous ζζζ,
the bound is maximized using the reparameterization trick. With reparameterization, expectations
with respect to q(ζζζ|xxx) are replaced by expectations against a base distribution and a differentiable
function that maps samples from the base distribution to q(ζζζ|xxx). This can always be accomplished
when q(ζζζ|xxx) has an analytic inverse cumulative distribution function (CDF) by mapping uniform
samples through the inverse CDF. However, reparameterization cannot be applied to binary latent
variables because the CDF is not differentiable.

2And not because our model is proposed after DVAE and DVAE++.
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The DVAE [19] resolves this issue by pairing each binary latent variable with a continuous counterpart.
Denoting a binary vector of length D by zzz ∈ {0, 1}D, the Boltzmann prior is p(zzz) = e−Eθθθ(zzz)/Zθθθ
where Eθθθ(zzz) = −aaaTzzz − 1

2zzz
TWWWzzz is an energy function with parameters θθθ ≡ {WWW,aaa} and partition

function Zθθθ. The joint model over discrete and continuous variables is p(xxx,zzz, ζζζ) = p(zzz)r(ζζζ|zzz)p(xxx|ζζζ)
where r(ζζζ|zzz) =

∏
i r(ζi|zi) is a smoothing transformation that maps each discrete zi to its continuous

analogue ζi.

DVAE [19] and DVAE++ [20] differ in the type of smoothing transformations r(ζ|z): [19] uses
spike-and-exponential transformation (Eq. (1) left), while [20] uses two overlapping exponential
distributions (Eq. (1) right). Here, δ(ζ) is the (one-sided) Dirac delta distribution, ζ ∈ [0, 1], and Zβ
is the normalization constant:

r(ζ|z) =

{
δ(ζ) if z = 0

eβ(ζ−1)/Zβ otherwise
, r(ζ|z) =

{
e−βζ/Zβ if z = 0

eβ(ζ−1)/Zβ otherwise
. (1)

The variational bound for a factorial approximation to the posterior where q(ζζζ|xxx) =
∏
i q(ζi|xxx) and

q(zzz|xxx) =
∏
i q(zi|xxx) is derived in [20] as

log p(xxx) ≥ Eq(ζζζ|xxx) [log p(xxx|ζζζ)] + H(q(zzz|xxx)) + Eq(ζζζ|xxx)
[
Eq(zzz|xxx,ζζζ) log p(zzz))

]
, (2)

Here q(ζi|xxx) =
∑
zi
q(zi|xxx)r(ζi|zi) is a mixture distribution combining r(ζi|zi = 0) and r(ζi|zi =

1) with weights q(zi|xxx). The probability of binary units conditioned on ζi, q(zzz|xxx,ζζζ) =
∏
i q(zi|xxx, ζi),

can be computed analytically. H(q(zzz|xxx)) is the entropy of q(zzz|xxx). The second and third terms in
Eq. (2) have analytic solutions (up to the log normalization constant) that can be differentiated easily
with an automatic differentiation (AD) library. The expectation over q(ζζζ|xxx) is approximated with
reparameterized sampling.

We extend [19, 20] to tighten the bound of Eq. (2) by importance weighting [21, 39]. These tighter
bounds are shown to improve VAEs. For continuous latent variables, the K-sample IW bound is

log p(xxx) ≥ LK(xxx) = Eζζζ(k)∼q(ζζζ|xxx)

[
log

(
1

K

K∑
k=1

p(ζζζ(k))p(xxx|ζζζ(k))
q(ζζζ(k)|xxx)

)]
. (3)

The tightness of the IW bound improves as K increases [21].

3 Model

We introduce two relaxations of Boltzmann machines to define the continuous prior distribution
p(ζζζ) in the IW bound of Eq. (3). These relaxations rely on either overlapping transformations
(Sec. 3.1) or the Gaussian integral trick (Sec. 3.2). Sec. 3.3 then generalizes the class of overlapping
transformations that can be used in the approximate posterior q(ζζζ|xxx).

3.1 Overlapping Relaxations

We obtain a continuous relaxation of p(zzz) through the marginal p(ζζζ) =
∑
z p(zzz)r(ζζζ|zzz) where

r(ζζζ|zzz) is an overlapping smoothing transformation [20] that operates on each component of zzz
and ζζζ independently; i.e., r(ζζζ|zzz) =

∏
i r(ζi|zi). Overlapping transformations such as mixture of

exponential in Eq. (1) may be used for r(ζζζ|zzz). These transformations are equipped with an inverse
temperature hyperparameter β to control the sharpness of the smoothing transformation. As β →∞,
r(ζζζ|zzz) approaches δ(ζζζ − zzz) and p(ζζζ) =

∑
z p(zzz)δ(ζζζ − zzz) becomes a mixture of 2D delta function

distributions centered on the vertices of the hypercube in RD. At finite β, p(ζζζ) provides a continuous
relaxation of the Boltzmann machine.

To train an IWAE using Eq. (3) with p(ζζζ) as a prior, we must compute log p(ζζζ) and its gradient
with respect to the parameters of the Boltzmann distribution and the approximate posterior. This
computation involves marginalization over zzz, which is generally intractable. However, we show that
this marginalization can be approximated accurately using a mean-field model.

3.1.1 Computing log p(ζζζ) and its Gradient for Overlapping Relaxations

Since overlapping transformations are factorial, the log marginal distribution of ζζζ is

log p(ζζζ) = log
(∑

zzz

p(zzz)r(ζζζ|zzz)
)

= log
(∑

zzz

e−Eθθθ(zzz)+bbb
β(ζζζ)Tzzz+cccβ(ζζζ)

)
− logZθθθ, (4)
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where bβi (ζζζ) = log r(ζi|zi = 1)− log r(ζi|zi = 0) and cβi (ζζζ) = log r(ζi|zi = 0). For the mixture of
exponential smoothing bβi (ζζζ) = β(2ζi − 1) and cβi (ζζζ) = −βζi − logZβ .

The first term in Eq. (4) is the log partition function of the Boltzmann machine p̂(zzz) with augmented
energy function Êβθθθ,ζζζ(zzz) := Eθθθ(zzz)−bbbβ(ζζζ)Tzzz−cccβ(ζζζ). Estimating the log partition function accurately
can be expensive, particularly because it has to be done for each ζζζ. However, we note that each ζi
comes from a bimodal distribution centered at zero and one, and that the bias bbbβ(ζζζ) is usually large
for most components i (particularly for large β). In this case, mean field is likely to provide a good
approximation of p̂(zzz), a fact we demonstrate empirically in Sec. 4.

To compute log p(ζζζ) and its gradient, we first fit a mean-field distribution m(zzz) =
∏
imi(zi) by

minimizing KL(m(zzz)||p̂(zzz)) [40]. The gradient of log p(ζζζ) with respect to β, θθθ or ζζζ is:

∇ log p(ζζζ) = −Ezzz∼p̂(zzz)
[
∇Êβθθθ,ζζζ(zzz)

]
+ Ezzz∼p(zzz)

[
∇Eθθθ(zzz)

]
≈ −Ezzz∼m(zzz)

[
∇Êβθθθ,ζζζ(zzz)

]
+ Ezzz∼p(zzz)

[
∇Eθθθ(zzz)

]
= −∇Êβθθθ,ζζζ(mmm) + Ezzz∼p(zzz)

[
∇Eθθθ(zzz)

]
, (5)

wheremmmT = [m1(z1 = 1) · · · mD(zD = 1)] is the mean-field solution and where the gradient
does not act on mmm. The first term in Eq. (5) is the result of computing the average energy under
a factorial distribution.3 The second expectation corresponds to the negative phase in training
Boltzmann machines and is approximated by Monte Carlo sampling from p(zzz).

To compute the importance weights for the IW bound of Eq. (3) we must compute the value of
log p(ζζζ) up to the normalization; i.e. the first term in Eq. (4). Assuming that KL

(
m(zzz)||p̂(zzz)

)
≈ 0

and using
KL(m(zzz)||p̂(zzz)) = Êβθθθ,ζζζ(mmm) + log

(∑
z

e−Ê
β
θθθ,ζζζ

(zzz)
)
− H(m(zzz)), (6)

the first term of Eq. (4) is approximated as H
(
m(zzz)

)
− Êβθθθ,ζζζ(mmm).

3.2 The Gaussian Integral Trick

The computational complexity of log p(ζζζ) arises from the pairwise interactions zzzTWWWzzz present in
Eθθθ(zzz). Instead of applying mean field, we remove these interactions using the Gaussian integral
trick [41]. This is achieved by defining Gaussian smoothing:

r(ζζζ|zzz) = N (ζζζ|AAA(WWW + βIII)zzz,AAA(WWW + βIII)AAAT )

for an invertible matrixAAA and a diagonal matrix βIII with β > 0. Here, β must be large enough so that
WWW +βIII is positive definite. Common choices forAAA includeAAA = III orAAA = ΛΛΛ−

1
2VVV T where VVVΛΛΛVVV T is

the eigendecomposition ofWWW + βIII [41]. However, neither of these choices places the modes of p(ζζζ)
on the vertices of the hypercube in RD. Instead, we takeAAA = (WWW + βIII)−1 giving the smoothing
transformation r(ζζζ|zzz) = N (ζζζ|zzz, (WWW + βIII)−1). The joint density is then

p(zzz, ζζζ) ∝ e− 1
2ζζζ
T (WWW+βIII)ζζζ+zzzT (WWW+βIII)ζζζ+(aaa− 1

2β111)
Tzzz,

where 111 is the D-vector of all ones. Since p(zzz, ζζζ) no longer contains pairwise interactions zzz can be
marginalized out giving

p(ζζζ) = Z−1θθθ

∣∣∣∣ 1

2π
(WWW + βIII)

∣∣∣∣ 12 e− 1
2ζζζ
T (WWW+βIII)ζζζ

∏
i

[
1 + eai+ci−

β
2

]
, (7)

where ci is the ith element of (WWW + βIII)ζζζ.

The marginal p(ζζζ) in Eq. (7) is a mixture of 2D Gaussian distributions centered on the vertices of
the hypercube in RD with mixing weights given by p(zzz). Each mixture component has covariance
ΣΣΣ = (WWW + βIII)−1 and, as β gets large, the precision matrix becomes diagonally dominant. As

3The augmented energy Êβθθθ,ζζζ(zzz) is a multi-linear function of {zi} and under the mean-field assumption each
zi is replaced by its average value m(zi = 1).
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β →∞, each mixture component becomes a delta function and p(ζζζ) approaches
∑
z p(zzz)δ(ζζζ − zzz).

This Gaussian smoothing allows for simple evaluation of log p(ζζζ) (up to Zθθθ), but we note that each
mixture component has a nondiagonal covariance matrix, which should be accommodated when
designing the approximate posterior q(ζζζ|xxx).

The hyperparameter β must be larger than the absolute value of the most negative eigenvalue ofWWW to
ensure that WWW + βIII is positive definite. Setting β to even larger values has the benefit of making
the Gaussian mixture components more isotropic, but this comes at the cost of requiring a sharper
approximate posterior with potentially noisier gradient estimates.

3.3 Generalizing Overlapping Transformations

The previous sections developed two r(ζζζ|zzz) relaxations for Boltzmann priors. Depending on this
choice, compatible q(ζζζ|xxx) parameterizations must be used. For example, if Gaussian smoothing is
used, then a mixture of Gaussian smoothers should be used in the approximate posterior. Unfor-
tunately, the overlapping transformations introduced in DVAE++ [20] are limited to mixtures of
exponential or logistic distributions where the inverse CDF can be computed analytically. Here, we
provide a general approach for reparameterizing overlapping transformations that does not require an-
alytic inverse CDFs. Our approach is a special case of the reparameterization method for multivariate
mixture distributions proposed in [42].

Assume q(ζ|xxx) = (1 − q)r(ζ|z = 0) + qr(ζ|z = 1) is the mixture distribution resulting from an
overlapping transformation defined for one-dimensional z and ζ where q ≡ q(z = 1|xxx). Ancestral
sampling from q(ζ|xxx) is accomplished by first sampling from the binary distribution q(z|xxx) and then
sampling ζ from r(ζ|z). This process generates samples but is not differentiable with respect to q.

To compute the gradient (with respect to q) of samples from q(ζ|xxx), we apply the implicit function
theorem. The inverse CDF of q(ζ|xxx) at ρ is obtained by solving:

CDF(ζ) = (1− q)R(ζ|z = 0) + qR(ζ|z = 1) = ρ, (8)

where ρ ∈ [0, 1] and R(ζ|z) is the CDF for r(ζ|z). Assuming that ζ is a function of q but ρ is not,
we take the gradient from both sides of Eq. (8) with respect to q giving

∂ζ

∂q
=

R(ζ|z = 0)−R(ζ|z = 1)

(1− q)r(ζ|z = 0) + qr(ζ|z = 1)
, (9)

which can be easily computed for a sampled ζ if the PDF and CDF of r(ζ|z) are known. This
generalization allows us to compute gradients of samples generated from a wide range of overlapping
transformations. Further, the gradient of ζ with respect to the parameters of r(ζ|z) (e.g. β) is
computed similarly as

∂ζ

∂β
= − (1− q) ∂βR(ζ|z = 0) + q ∂βR(ζ|z = 1)

(1− q)r(ζ|z = 0) + qr(ζ|z = 1)
.

With this method, we can apply overlapping transformations beyond the mixture of exponentials
considered in [20]. The inverse CDF of exponential mixtures is shown in Fig. 1(a) for several β. As
β increases, the relaxation approaches the original binary variables, but this added fidelity comes at
the cost of noisy gradients. Other overlapping transformations offer alternative tradeoffs:

Uniform+Exp Transformation: We ensure that the gradient remains finite as β → ∞ by mixing
the exponential with a uniform distribution. This is achieved by defining r′(ζ|z) = (1− ε)r(ζ|z) + ε
where r(ζ|z) is the exponential smoothing and ζ ∈ [0, 1]. The inverse CDF resulting from this
smoothing is shown in Fig. 1(b).

Power-Function Transformation: Instead of adding a uniform distribution we substitute the expo-
nential distribution for one with heavier tails. One choice is the power-function distribution [24]:

r(ζ|z) =

{
1
β ζ

( 1
β−1) if z = 0

1
β (1− ζ)(

1
β−1) otherwise

for ζ ∈ [0, 1] and β > 1. (10)

The conditionals in Eq. (10) correspond to the Beta distributions B(1/β, 1) and B(1, 1/β) respec-
tively. The inverse CDF resulted from this smoothing is visualized in Fig. 1(c).
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Figure 1: In the first row, we visualize the inverse CDF of the mixture q(ζ) =
∑
z q(z)r(ζ|z) for

q = q(z = 1) = 0.5 as a function of the random noise ρ ∈ [0, 1]. In the second row, the gradient of
the inverse CDF with respect to q is visualized. Each column corresponds to a different smoothing
transformation. As the transition region sharpens with increasing β, a sampling based estimate of the
gradient becomes noisier; i.e., the variance of ∂ζ/∂q increases. The uniform+exp exponential has a
very similar inverse CDF (first row) to the exponential but has potentially lower variance (bottom
row). In comparison, the power-function smoothing with β = 40 provides a good relaxation of the
discrete variables while its gradient noise is still moderate. See the supplementary material for a
comparison of the gradient noise.

Gaussian Transformations: The transformations introduced above have support ζ ∈ [0, 1]. We also
explore Gaussian smoothing r(ζ|z) = N (ζ|z, 1

β ) with support ζ ∈ R.

None of these transformations have an analytic inverse CDF for q(ζ|xxx) so we use Eq. (9) to calculate
gradients.

4 Experiments

In this section we compare the various relaxations for training DVAEs with Boltzmann priors on
statically binarized MNIST [43] and OMNIGLOT [44] datasets. For all experiments we use a
generative model of the form p(xxx,ζζζ) = p(ζζζ)p(xxx|ζζζ) where p(ζζζ) is a continuous relaxation obtained
from either the overlapping relaxation of Eq. (4) or the Gaussian integral trick of Eq. (7). The
underlying Boltzmann distribution is a restricted Boltzmann machine (RBM) with bipartite connec-
tivity which allows for parallel Gibbs updates. We use a hierarchical autoregressively-structured
q(ζζζ|xxx) =

∏G
g=1 q(ζζζg|xxx,ζζζ<g) to approximate the posterior distribution over ζζζ. This structure divides

the components of ζζζ into G equally-sized groups and defines each conditional using a factorial
distribution conditioned on xxx and all ζζζ from previous groups.

The smoothing transformation used in q(ζζζ|xxx) depends on the type of relaxation used in p(ζζζ). For
overlapping relaxations, we compare exponential, uniform+exp, Gaussian, and power-function. With
the Gaussian integral trick, we use shifted Gaussian smoothing as described below. The decoder
p(xxx|ζζζ) and conditionals q(ζζζg|xxx,ζζζ<g) are modeled with neural networks. Following [20], we consider
both linear (—) and nonlinear (∼) versions of these networks. The linear models use a single linear
layer to predict the parameters of the distributions p(xxx|ζζζ) and q(ζζζg|xxx,ζζζ<g) given their input. The
nonlinear models use two deterministic hidden layers with 200 units, tanh activation and batch-
normalization. We use the same initialization scheme, batch-size, optimizer, number of training
iterations, schedule of learning rate, weight decay and KL warm-up for training that was used in [20]
(See Sec. 7.2 in [20]). For the mean-field optimization, we use 5 iterations. To evaluate the trained
models, we estimate the log-likelihood on the discrete graphical model using the importance-weighted
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bound with 4000 samples [21]. At evaluation p(ζζζ) is replaced with the Boltzmann distribution p(zzz),
and q(ζζζ|xxx) with q(zzz|xxx) (corresponding to β =∞).

For DVAE, we use the original spike-and-exp smoothing. For DVAE++, in addition to exponential
smoothing, we use a mixture of power-functions. The DVAE# models are trained using the IW bound
in Eq. (3) with K = 1, 5, 25 samples. To fairly compare DVAE# with DVAE and DVAE++ (which
can only be trained with the variational bound), we use the same number of samples K ≥ 1 when
estimating the variational bound during DVAE and DVAE++ training.

The smoothing parameter β is fixed throughout training (i.e. β is not annealed). However, since β
acts differently for each smoothing function r, its value is selected by cross validation per smoothing
and structure. We select from β ∈ {4, 5, 6, 8} for spike-and-exp, β ∈ {8, 10, 12, 16} for exponential,
β ∈ {16, 20, 30, 40} with ε = 0.05 for uniform+exp, β ∈ {15, 20, 30, 40} for power-function, and
β ∈ {20, 25, 30, 40} for Gaussian smoothing. For models other than the Gaussian integral trick, β is
set to the same value in q(ζζζ|xxx) and p(ζζζ). For the Gaussian integral case, β in the encoder is trained
as discussed next, but is selected in the prior from β ∈ {20, 25, 30, 40}.
With the Gaussian integral trick, each mixture component in the prior contains off-diagonal cor-
relations and the approximation of the posterior over ζζζ should capture this. We recall that a mul-
tivariate Gaussian N (ζζζ|µµµ,ΣΣΣ) can always be represented as a product of Gaussian conditionals∏
iN
(
ζi|µi + ∆µi(ζζζ<i), σi

)
where ∆µi(ζζζ<i) is linear in ζζζ<i. Motivated by this observation, we

provide flexibility in the approximate posterior q(ζζζ|xxx) by using shifted Gaussian smoothing where
r(ζi|zi) = N (ζi|zi + ∆µi(ζζζ<i), 1/βi), and ∆µi(ζζζ<i) is an additional parameter that shifts the
distribution. As the approximate posterior in our model is hierarchical, we generate ∆µi(ζζζ<g) for
the ith element in gth group as the output of the same neural network that generates the parameters
of q(ζζζg|xxx,ζζζ<g). The parameter βi for each component of ζζζg is a trainable parameter shared for all xxx.

Training also requires sampling from the discrete RBM to compute the θθθ-gradient of logZθθθ. We
have used both population annealing [45] with 40 sweeps across variables per parameter update
and persistent contrastive divergence [46] for sampling. Population annealing usually results in a
better generative model (see the supplementary material for a comparison). We use QuPA4, a GPU
implementation of population annealing. To obtain test set log-likelihoods we require logZθθθ, which
we estimate with annealed importance sampling [47, 48]. We use 10,000 temperatures and 1,000
samples to ensure that the standard deviation of the logZθθθ estimate is small (∼ 0.01).

We compare the performance of DVAE# against DVAE and DVAE++ in Table 1. We consider four
neural net structures when examining the various smoothing models. Each structure is denoted
“G —/∼” where G represent the number of groups in the approximate posterior and —/∼ indicates
linear/nonlinear conditionals. The RBM prior for the structures “1 —/∼” is 100× 100 (i.e. D = 200)
and for structures “2/4 ∼” the RBM is 200× 200 (i.e. D = 400).

We make several observations based on Table 1: i) Most baselines improve as K increases. The
improvements are generally larger for DVAE# as they optimize the IW bound. ii) Power-function
smoothing improves the performance of DVAE++ over the original exponential smoothing. iii)
DVAE# and DVAE++ both with power-function smoothing for K = 1 optimizes a similar variational
bound with same smoothing transformation. The main difference here is that DVAE# uses the
marginal p(ζζζ) in the prior whereas DVAE++ has the joint p(zzz, ζζζ) = p(zzz)r(zzz|ζζζ). For this case, it can
be seen that DVAE# usually outperforms DVAE++ . iv) Among the DVAE# variants, the Gaussian
integral trick and Gaussian overlapping relaxation result in similar performance, and both are usually
inferior to the other DVAE# relaxations. v) In DVAE#, the uniform+exp smoothing performs better
than exponential smoothing alone. vi) DVAE# with the power-function smoothing results in the best
generative models, and in most cases outperforms both DVAE and DVAE++.

Given the superior performance of the models obtained using the mean-field approximation of
Sec. 3.1.1 to p̂(ζζζ), we investigate the accuracy of this approximation. In Fig. 2(a), we show that the
mean-field model converges quickly by plotting the KL divergence of Eq. (6) with the number of
mean-field iterations for a single ζζζ . To assess the quality of the mean-field approximation, in Fig. 2(b)
we compute the KL divergence for randomly selected ζζζs during training at different iterations for
exponential and power-function smoothings with different βs. As it can be seen, throughout the

4This library is publicly available at https://try.quadrant.ai/qupa
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Figure 2: (a) The KL divergence between the mean-field model and the augmented Boltzmann
machine p̂(zzz) as a function of the number of optimization iterations of the mean-field. The mean-field
model converges to KL = 0.007 in three iterations. (b) The KL value is computed for randomly
selected ζs during training at different iterations for exponential and power-function smoothings with
different β. (c) The variance of the gradient of the objective function with respect to the logit of q is
visualized for exponential and power-function smoothing transformations. Power-function smoothing
tends to have lower variance than exponential smoothing. The artifact seen early in training is due to
the warm-up of KL. Models in (b) and (c) are trained for 100K iterations with batch size of 1,000.

Table 1: The performance of DVAE# is compared against DVAE and DVAE++ on MNIST and
OMNIGLOT. Mean±standard deviation of the negative log-likelihood for five runs are reported.

DVAE DVAE++ DVAE#
Struct. K Spike-Exp Exp Power Gauss. Int Gaussian Exp Un+Exp Power

M
N

IS
T

1 —
1 89.00±0.09 90.43±0.06 89.12±0.05 92.14±0.12 91.33±0.13 90.55±0.11 89.57±0.08 89.35±0.06
5 89.15±0.12 90.13±0.03 89.09±0.05 91.32±0.09 90.15±0.04 89.62±0.08 88.56±0.04 88.25±0.03
25 89.20±0.13 89.92±0.07 89.04±0.07 91.18±0.21 89.55±0.10 89.27±0.09 88.02±0.04 87.67±0.07

1∼
1 85.48±0.06 85.13±0.06 85.05±0.02 86.23±0.05 86.24±0.05 85.37±0.05 85.19±0.05 84.93±0.02
5 85.29±0.03 85.13±0.09 85.29±0.10 84.99±0.03 84.91±0.07 84.83±0.03 84.47±0.02 84.21±0.02
25 85.92±0.10 86.14±0.18 85.59±0.10 84.36±0.04 84.30±0.04 84.69±0.08 84.22±0.01 83.93±0.06

2∼
1 83.97±0.04 84.15±0.07 83.62±0.04 84.30±0.05 84.35±0.04 83.96±0.06 83.54±0.06 83.37±0.02
5 83.74±0.03 84.85±0.13 83.57±0.07 83.68±0.02 83.61±0.04 83.70±0.04 83.33±0.04 82.99±0.04
25 84.19±0.21 85.49±0.12 83.58±0.15 83.39±0.04 83.26±0.04 83.76±0.04 83.30±0.04 82.85±0.03

4∼
1 84.38±0.03 84.63±0.11 83.44±0.05 84.59±0.06 84.81±0.19 84.06±0.06 83.52±0.06 83.18±0.05
5 83.93±0.07 85.41±0.09 83.17±0.09 83.89±0.09 84.20±0.15 84.15±0.05 83.41±0.04 82.95±0.07
25 84.12±0.07 85.42±0.07 83.20±0.08 83.52±0.06 83.80±0.04 84.22±0.13 83.39±0.04 82.82±0.02

O
M

N
IG

L
O

T

1 —
1 105.11±0.11 106.71±0.08 105.45±0.08 110.81±0.32 106.81±0.07 107.21±0.14 105.89±0.06 105.47±0.09
5 104.68±0.21 106.83±0.09 105.34±0.05 112.26±0.70 106.16±0.11 106.86±0.10 104.94±0.05 104.42±0.09
25 104.38±0.15 106.85±0.07 105.38±0.14 111.92±0.30 105.75±0.10 106.88±0.09 104.49±0.07 103.98±0.05

1∼
1 102.95±0.07 101.84±0.08 101.88±0.06 103.50±0.06 102.74±0.08 102.23±0.08 101.86±0.06 101.70±0.01
5 102.45±0.08 102.13±0.11 101.67±0.07 102.15±0.04 102.00±0.09 101.59±0.06 101.22±0.05 101.00±0.02
25 102.74±0.05 102.66±0.09 101.80±0.15 101.42±0.04 101.60±0.09 101.48±0.04 100.93±0.07 100.60±0.05

2∼
1 103.10±0.31 101.34±0.04 100.42±0.03 102.07±0.16 102.84±0.23 100.38±0.09 99.84±0.06 99.75±0.05
5 100.88±0.13 100.55±0.09 99.51±0.05 100.85±0.02 101.43±0.11 99.93±0.07 99.57±0.06 99.24±0.05
25 100.55±0.08 100.31±0.15 99.49±0.07 100.20±0.02 100.45±0.08 100.10±0.28 99.59±0.16 98.93±0.05

4∼
1 104.63±0.47 101.58±0.22 100.42±0.08 102.91±0.25 103.43±0.10 100.85±0.12 99.92±0.11 99.65±0.09
5 101.77±0.20 101.01±0.09 99.52±0.09 101.79±0.25 101.82±0.13 100.32±0.19 99.61±0.07 99.13±0.10
25 100.89±0.13 100.37±0.09 99.43±0.14 100.73±0.08 100.97±0.21 99.92±0.30 99.36±0.09 98.88±0.09

training the KL value is typically < 0.2. For larger βs, the KL value is smaller due to the stronger
bias that bbbβ(ζζζ) imposes on zzz.

Lastly, we demonstrate that the lower variance of power-function smoothing may contribute to its
success. As noted in Fig. 1, power-function smoothing potentially has moderate gradient noise while
still providing a good approximation of binary variables at large β. We validate this hypothesis in
Fig. 2(c) by measuring the variance of the derivative of the variational bound (with K = 1) with
respect to the logit of q during training of a 2-layer nonlinear model on MNIST. When comparing
the exponential (β = 10) to power-function smoothing (β = 30) at the β that performs best for each
smoothing method, we find that power-function smoothing has significantly lower variance.
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5 Conclusions

We have introduced two approaches for relaxing Boltzmann machines to continuous distributions, and
shown that the resulting distributions can be trained as priors in DVAEs using an importance-weighted
bound. We have proposed a generalization of overlapping transformations that removes the need for
computing the inverse CDF analytically. Using this generalization, the mixture of power-function
smoothing provides a good approximation of binary variables while the gradient noise remains
moderate. In the case of sharp power smoothing, our model outperforms previous discrete VAEs.
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A Population Annealing vs. Persistence Contrastive Divergence

In this section, we compare population annealing (PA) to persistence contrastive divergence (PCD) for sampling
in the negative phase. In Table 2, we train DVAE# with the power-function smoothing on the binarized MNIST
dataset using PA and PCD. As shown, PA results in a comparable generative model when there is one group of
latent variables and better models in other cases.

Table 2: The performance of DVAE# with power-function smoothing for binarized MNIST when
PCD or PA is used in the negative phase.

Struct. K PCD PA

1 —
1 89.25±0.04 89.35±0.06
5 88.18±0.08 88.25±0.03
25 87.66±0.09 87.67±0.07

1∼
1 84.95±0.05 84.93±0.02
5 84.25±0.04 84.21±0.02
25 83.91±0.05 83.93±0.06

2∼
1 83.48±0.04 83.37±0.02
5 83.12±0.04 82.99±0.04
25 83.06±0.03 82.85±0.03

4∼
1 83.62±0.06 83.18±0.05
5 83.34±0.06 82.95±0.07
25 83.18±0.05 82.82±0.02

B On the Gradient Variance of the Power-function Smoothing

Our experiments show that power-function smoothing performs best because it provides a better approximation of
the binary random variables. We demonstrate this qualitatively in Fig. 1 and quantitatively in Fig. 2(c) of the paper.
This is also visualized in Fig. 3. Here, we generate 106 samples from q(ζ) = (1− q)r(ζ|z = 0) + qr(ζ|z = 1)
for q = 0.5 using both the exponential and power smoothings with different values of β (β ∈ {8, 9, 10, . . . , 15}
for exponential, and β ∈ {10, 20, 30, . . . , 80} for power smoothing). The value of β is increasing from left to
right on each curve. The mean of |ζi − zi| (for zi = 1[ζi>0.5]) vs. the variance of ∂ζi/∂q is visualized in this
figure. For a given gradient variance, power function smoothing provides a closer approximation to the binary
variables.
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Figure 3: Average distance between ζ and its binarized z vs. variance of ∂ζ/∂q measured on 106

samples from q(ζ). For a given gradient variance, power function smoothing provides a closer
approximation to the binary variables.
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