
How To Make the Gradients Small Stochastically:
Even Faster Convex and Nonconvex SGD∗

Zeyuan Allen-Zhu
Microsoft Research AI
Redmond, WA 98052

zeyuan@csail.mit.edu

Abstract

Stochastic gradient descent (SGD) gives an optimal convergence rate when mini-
mizing convex stochastic objectives f(x). However, in terms of making the gra-
dients small, the original SGD does not give an optimal rate, even when f(x) is
convex.
If f(x) is convex, to find a point with gradient norm ε, we design an algorithm
SGD3 with a near-optimal rate Õ(ε−2), improving the best known rate O(ε−8/3)
of [17]. If f(x) is nonconvex, to find its ε-approximate local minimum, we de-
sign an algorithm SGD5 with rate Õ(ε−3.5), where previously SGD variants only
achieve Õ(ε−4) [6, 14, 30]. This is no slower than the best known stochastic
version of Newton’s method in all parameter regimes [27].

1 Introduction

In convex optimization and machine learning, the classical goal is to design algorithms to decrease
objective values, that is, to find points x with f(x)−f(x∗) ≤ ε. In contrast, the rate of convergence
for the gradients, that is,

the number of iterations T needed to find a point x with ‖∇f(x)‖ ≤ ε,

is a harder problem and sometimes needs new algorithmic ideas [25]. For instance, in the full-
gradient setting, accelerated gradient descent alone is suboptimal for this new goal, and one needs
additional tricks to get the fastest rate [25]. We review these tricks in Section 1.1.

In the convex (online) stochastic optimization, to the best of our knowledge, tight bounds are not
yet known for finding points with small gradients. The best recorded rate was T ∝ ε−8/3 [17], and
it was raised as an open question [1] regarding how to improve it.

In this paper, we design two new algorithms, SGD2 which gives rate T ∝ ε−5/2 using Nesterov’s
tricks, and SGD3 which gives an even better rate T ∝ ε−2 log3 1

ε which is optimal up to log factors.

Motivation. Studying the rate of convergence for the minimizing gradients can be important at
least for the following two reasons.

• In many situations, points with small gradients fit better our final goals.

∗The full version of this paper can be found on https://arxiv.org/abs/1801.02982. When this
paper was submitted to NeurIPS 2018, the “non-convex SGD” results were not included. We encourage the
readers to go to our full version to find out these “non-convex SGD” results.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Nesterov [25] considers the dual approach for solving constrained minimization problems. He
argued that “the gradient value ‖∇f(x)‖ serves as the measure of feasibility and optimality of
the primal solution,” and thus is the better goal for minimization purpose.2

In matrix scaling [7, 10], given a non-negative matrix, one wants to re-scale its rows and columns
to make it doubly stochastic. This problem has been applied in image reconstruction, operations
research, decision and control, and other scientific disciplines (see survey [20]). The goal for
matrix scaling is to find points with small gradients, but not small objectives.
• Designing algorithms to find points with small gradients can help us understand non-convex

optimization better and design faster non-convex machine learning algorithms.
Without strong assumptions, non-convex optimization theory is always in terms of finding points
with small gradients (i.e., approximate stationary points or local minima). Therefore, to under-
stand non-convex stochastic optimization better, perhaps we should first figure out the best rate
for convex stochastic optimization. In addition, if new algorithmic ideas are needed, can we also
apply them to the non-convex world? We find positive answers to this question, and also obtain
better rates for standard non-convex optimization tasks.

1.1 Review: Prior Work on Deterministic Convex Optimization

Suppose f(x) is a Lipschitz smooth convex function with smoothness parameter L. Then, it is well-
known that accelerated gradient descent (AGD) [23, 24] finds a point x satisfying f(x)−f(x∗) ≤ δ
using T = O(

√
L√
δ

) gradient computations of ∇f(x). To turn this into a gradient guarantee, we can
apply the smoothness property of f(x) which gives ‖∇f(x)‖2 ≤ L(f(x)− f(x∗)). This means

AGD converges in rate T ∝ L
ε .

Nesterov [25] proposed two different tricks to improve upon such rate.

Nesterov’s First Trick: GD After AGD. Recall that starting from a point x0, if we perform T steps
of gradient descent (GD) xt+1 = xt − 1

L∇f(xt), then it satisfies
∑T−1
t=0 ‖∇f(xt)‖2 ≤ L(f(x0)−

f(x∗)). In addition, if this x0 is already the output of AGD for another T iterations, then it satisfies
f(x0)− f(x∗) ≤ O

(
L
T 2

)
. Putting the two inequalities together, we have minT−1

t=0

{
‖∇f(xt)‖2

}
≤

O
(
L2

T 3

)
. We call this method “GD after AGD,” and

“GD after AGD” converges in rate T ∝ L2/3

ε2/3
.

Nesterov’s Second Trick: AGD After Regularization. Alternatively, we can also regularize
f(x) by defining g(x) = f(x) + σ

2 ‖x − x0‖2. This new function g(x) is σ-strongly convex,
so AGD converges linearly, meaning that using T ∝

√
L√
σ

log L
ε gradients we can find a point x

satisfying ‖∇g(x)‖2 ≤ L(g(x) − g(x∗)) ≤ ε2. If we choose σ ∝ ε, then this implies ‖∇f(x)‖ ≤
‖∇g(x)‖+ ε ≤ 2ε. We call this method “AGD after regularization,” and

“AGD after regularization” converges in rate T ∝ L1/2

ε1/2
log L

ε .

This is optimal up to a log factor, because first-order methods need T = Ω(
√
L/δ) gradient com-

putations to find f(x)− f(x∗) ≤ δ [23], but f(x)− f(x∗) ≤ ‖∇f(x)‖ · ‖x− x∗‖ ≤ O(‖∇f(x)‖).

1.2 Our Results: Stochastic Convex Optimization

Consider the stochastic setting where the convex objective f(x) := Ei[fi(x)] and the algorithm can
only compute stochastic gradients ∇fi(x) at any point x for a random i. Let T be the number of
stochastic gradient computations. It is well-known that stochastic gradient descent (SGD) finds a
point x with f(x)− f(x∗) ≤ δ in (see for instance textbooks [8, 18, 26])

T = O
( V
δ2

)
iterations or T = O

( V
σδ

)
if f(x) is σ-strongly convex.

2Nesterov [25] studied miny∈Q{g(y) : Ay = b} with convex Q and strongly convex g(y). The dual
problem is minx{f(x)} where f(x) := miny∈Q{g(y) + 〈x, b − Ay〉}. Let y∗(x) ∈ Q be the (unique)
minimizer of the internal problem, then g(y∗(x))− f(x) = 〈x,∇f(x)〉 ≤ ‖x‖ · ‖∇f(x)‖.
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algorithm gradient complexity T 2nd-order
smooth

online convex

SGD (naive) O
(
ε−4
)

(folklore, see Theorem 4.2)

no

SGD1 (SGD after SGD) O
(
ε−8/3

)
(see [17] or Theorem 1)

SGD2 (SGD after regularization) O
(
ε−5/2

)
(see Theorem 2)

SGD3 (SGD + recursive regularization) O
(
ε−2 · log3 1

ε

)
(see Theorem 3)

online strongly
convex

SGDsc (naive) O
(
ε−2 · κ

)
(see Theorem 4.2)

SGD1sc (SGD after SGD) O
(
ε−2 · κ1/2

)
(see Theorem 1)

SGD3sc (SGD + recursive regularization) O
(
ε−2 · log3 κ

)
(see Theorem 3)

online nonconvex
(σ-nonconvex)

SGD (naive) O
(
ε−4
)

(see [16])

SCSG O
(
ε−10/3

)
(see [21])

SGD4 O
(
ε−2 + σε−4

)
(see Theorem 4)

Natasha1.5 O
(
ε−3 + σ1/3ε−10/3

)
(see [3])

SGD variants Õ
(
ε−4
)

(see [6, 14, 30])

neededSGD5 Õ
(
ε−3.5

)
(see Theorem 5)

cubic Newton Õ
(
ε−3.5

)
(see [27]

Natasha2 O
(
ε−3.25

)
(see [3])

Table 1: Comparison of first-order online stochastic methods for finding ‖∇f(x)‖ ≤ ε. Following tradition,
in these bounds, we hide variance and smoothness parameters in big-O and only show the dependency
on ε, the condition number κ = L

σ
≥ 1 (if the objective is σ-strongly convex), or the nonconvexity

parameter σ.

Both rates are asymptotically optimal in terms of decreasing objective, and V is an absolute bound
on the variance of the stochastic gradients. Using the same argument ‖∇f(x)‖2 ≤ L(f(x)−f(x∗))
as before, SGD finds a point x with ‖∇f(x)‖ ≤ ε in

T = O
(
L2V
ε4

)
iterations or T = O

(
LV
σε2

)
if f(x) is σ-strongly convex. (SGD)

These rates are not optimal. We investigate three approaches to improve such rates.

New Approach 1: SGD after SGD. Recall in Nesterov’s first trick, he replaced the use of the
inequality ‖∇f(x)‖2 ≤ L(f(x) − f(x∗)) by T steps of gradient descent. In the stochastic setting,
can we replace this inequality with T steps of SGD? We call this algorithm SGD1 and prove that

Theorem 1 (informal). For convex stochastic optimization, SGD1 finds x with ‖∇f(x)‖ ≤ ε in

T = O
(L2/3V
ε8/3

)
iterations or T = O

(L1/2V
σ1/2ε2

)
if f(x) is σ-strongly convex. (SGD1)

The rate T ∝ ε−8/3, in the special case of unconstrained minimization, was first discovered by
Ghadimi and Lan [17] using a more complicated algorithm. The rate T ∝ 1

σ1/2ε2
does not seem to

be known before.

New Approach 2: SGD after regularization. Recall that in Nesterov’s second trick, he defined
g(x) = f(x)+ σ

2 ‖x−x0‖2 as a regularized version of f(x), and applied the strongly-convex version
of AGD to minimize g(x). Can we apply this trick to the stochastic setting?

Note the parameter σ has to be on the magnitude of ε because∇g(x) = ∇f(x) +σ(x−x0) and we
wish to make sure ‖∇f(x)‖ = ‖∇g(x)‖±ε. Therefore, if we apply SGD1 to minimize g(x) to find
a point ‖∇g(x)‖ ≤ ε, the convergence rate is T ∝ 1

σ1/2ε2
= 1

ε2.5 . We call this algorithm SGD2.

Theorem 2 (informal). For convex stochastic optimization, SGD2 finds x with ‖∇f(x)‖ ≤ ε in

T = O
(
L1/2V
ε5/2

)
iterations. (SGD2)

Again, this T ∝ 1
ε5/2

rate does not seem to be known before.

New Approach 3: SGD and recursive regularization. In the second approach above, the ε0.5

sub-optimality gap is due to the choice of σ ∝ ε which ensures ‖σ(x− x0)‖ ≤ ε.
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Intuitively, if x0 were sufficiently close to x∗ (and thus were also close to the approximate minimizer
x), then we could choose σ � ε so that ‖σ(x− x0)‖ ≤ ε still holds. In other words, an appropriate
warm start x0 could help us break the ε−2.5 barrier and get a better convergence rate. However, how
to find such x0? We find it by constructing a “less warm” starting point and so on. This process is
summarized by the following algorithm which recursively finds the warm starts.

Starting from f (0)(x) := f(x), we define f (s)(x) := f (s−1)(x) + σs
2 ‖x− x̂s‖2 where σs = 2σs−1

and x̂s is an approximate minimizer of f (s−1)(x) that is simply calculated from the naive SGD. We
call this method SGD3, and prove that

Theorem 3 (informal). For convex stochastic optimization, SGD3 finds x with ‖∇f(x)‖ ≤ ε in

T = O
( log3(L/ε)·V

ε2

)
iterations or T = O

( log3(L/σ)·V
ε2

)
if f(x) is σ-strongly convex. (SGD3)

Our new rates in Theorem 3 not only improve the best known result of T ∝ ε−8/3, but also are
near optimal because Ω(V/ε2) is clearly a lower bound: even to decide whether a point x has
‖∇f(x)‖ ≤ ε or ‖∇f(x)‖ > 2ε requires Ω(V/ε2) samples of the stochastic gradient.Perhaps
interestingly, our dependence on the smoothness parameter L (or the condition number κ := L/σ if
strongly convex) is only polylogarithmic, as opposed to polynomial in all previous results.

1.3 Roadmap

We introduce notions in Section 2 and formalize the convex problem in Section 3. We review clas-
sical (convex) SGD theorems with objective decrease in Section 4. We give an auxiliary lemma in
Section 5 show our SGD3 results in Section 6. We apply our techniques to non-convex optimization
and give algorithms SGD4 and SGD5 in Section 7. We discuss more related work in Appendix A,
and show our results on SGD1 and SGD2 respectively in Appendix B and Appendix C.

2 Preliminaries

Throughout this paper, we denote by ‖ · ‖ the Euclidean norm. We use i ∈R [n] to denote that i
is generated from [n] = {1, 2, . . . , n} uniformly at random. We denote by ∇f(x) the gradient of
function f if it is differentiable, and ∂f(x) any subgradient if f is only Lipschitz continuous. We
denote by I[event] the indicator function of probabilistic events.

We denote by ‖A‖2 the spectral norm of matrix A. For symmetric matrices A and B, we write
A � B to indicate that A − B is positive semidefinite (PSD). Therefore, A � −σI if and only if
all eigenvalues of A are no less than −σ. We denote by λmin(A) and λmax(A) the minimum and
maximum eigenvalue of a symmetric matrix A.

Recall some definitions on strong convexity and smoothness (and they have other equivalent defini-
tions, see textbook [23]).

Definition 2.1. For a function f : Rd → R,

• f is σ-strongly convex if ∀x, y ∈ Rd, it satisfies f(y) ≥ f(x) + 〈∂f(x), y − x〉+ σ
2 ‖x− y‖

2.
• f is of σ-bounded nonconvexity (or σ-nonconvex for short) if ∀x, y ∈ Rd, it satisfies f(y) ≥
f(x) + 〈∂f(x), y − x〉 − σ

2 ‖x− y‖
2. 3

• f is L-Lipschitz smooth (or L-smooth for short) if ∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.
• f is L2-second-order smooth if ∀x, y ∈ Rd, it satisfies ‖∇2f(x)−∇2f(y)‖2 ≤ L2‖x− y‖.

Definition 2.2. For composite function F (x) = ψ(x) + f(x) where ψ(x) is proper convex, given a
parameter η > 0, the gradient mapping of F (·) at point x is

GF,η(x) :=
1

η

(
x− x+

)
where x+ = arg min

y

{
ψ(y) + 〈∇f(x), y〉+

1

2η
‖y − x‖2

}
In particular, if ψ(·) ≡ 0, then GF,η(x) ≡ ∇f(x).

Recall the following property about gradient mapping —see for instance [29, Lemma 3.7])
3Previous authors also refer to this notion as “approximate convex”, “almost convex”, “hypo-convex”,

“semi-convex”, or “weakly-convex.” We call it σ-nonconvex to stress the point that σ can be as large as L
(any L-smooth function is automatically L-nonconvex).
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Lemma 2.3. Let F (x) = ψ(x) + f(x) where ψ(x) is proper convex and f(x) is σ-strongly convex
and L-smooth. For every x, y ∈ {x ∈ Rd : ψ(x) < +∞}, letting x+ = x− η · GF,η(x), we have

∀η ∈
(
0,

1

L

]
: F (y) ≥ F (x+) + 〈GF,η(x), y − x〉+

η

2
‖GF,η(x)‖2 +

σ

2
‖y − x‖2 .

The following definition and properties of Fenchel dual for convex functions is classical, and can be
found for instance in the textbook [26].

Definition 2.4. Given proper convex function h(y), its Fenchel dual h∗(β) := maxy{y>β−h(y)}.
Proposition 2.5. ∇h∗(β) = arg maxy{y>β − h(y)}.

Proposition 2.6. If h(·) is σ-strongly convex, then h∗(·) is 1
σ -smooth.

3 Problem Formalization

Throughout this paper (except our nonconvex application Section 7), we minimize convex stochastic
composite objective:

minx∈Rd
{
F (x) = ψ(x) + f(x) := ψ(x) + 1

n

∑
i∈[n] fi(x)

}
, (3.1)

where

1. ψ(x) is proper convex (a.k.a. the proximal term),
2. fi(x) is differentiable for every i ∈ [n],
3. f(x) is L-smooth and σ-strongly convex for some σ ∈ [0, L] that could be zero,
4. n can be very large of even infinite (so f(x) = Ei[fi(x)]),4 and
5. the stochastic gradients∇fi(x) have a bounded variance (over the domain of ψ(·)), that is

∀x ∈ {y ∈ Rd |ψ(y) < +∞} : Ei∈R[n]‖∇f(x)−∇fi(x)‖2 ≤ V .

We emphasize that the above assumptions are all classical.

In the rest of the paper, we define T , the gradient complexity, as the number of computations of
∇fi(x). We search for points x so that the gradient mapping ‖GF,η(x)‖ ≤ ε for any η ≈ 1

L . Recall
from Definition 2.2 that if there is no proximal term (i.e., ψ(x) ≡ 0), then GF,η(x) = ∇f(x) for
any η > 0. We want to study the best tradeoff between the gradient complexity T and the error ε.

We say an algorithm is online if its gradient complexity T is independent of n. This tackles the big-
data scenario when n is extremely large or even infinite (i.e., f(x) = Ei[fi(x)] for some random
variable i). The stochastic gradient descent (SGD) method and all of its variants studied in this
paper are online. In contrast, GD, AGD [23, 24], and Katyusha [2] are offline methods because their
gradient complexity depends on n (see Table 2 in appendix).

4 Review: SGD with Objective Value Convergence

Recall that stochastic gradient descent (SGD) repeatedly performs proximal updates of the form
xt+1 = arg miny∈Rd{ψ(y) + 1

2α‖y − xt‖
2 + 〈∇fi(xt), y〉} ,

where α > 0 is some learning rate, and i is chosen in 1, 2, . . . , n uniformly at random per iteration.
Note that if ψ(y) ≡ 0 then xt+1 = xt − α∇fi(xt). For completeness’ sake, we summarize it in
Algorithm 1. If f(x) is also known to be strongly convex, to get the tightest convergence rate, one
can repeatedly apply SGD with decreasing learning rate α [19]. We summarize this algorithm as
SGDsc in Algorithm 2.

The following theorem describes the rates of convergence in objective values for SGD and SGDsc

respectively. Their proofs are classical (and included in Appendix D); however, for our exact state-
ments, we cannot find them recorded anywhere.5

4All of the results in this paper apply to the case when n is infinite, because we focus on online methods.
However, we still introduce n to simplify notations.

5In the special case ψ(x) ≡ 0, Theorem 4.1(a) and 4.1(b) are folklore (see for instance [26]). If ψ(x) 6≡ 0,
Theorem 4.1(a) is recorded when ψ(x) is Lipschitz or smooth [13], but we would not like to impose such
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Algorithm 1 SGD(F, x0, α, T )

Input: function F (x) = ψ(x) + 1
n

∑n
i=1 fi(x); initial vector x0; learning rate α > 0; T ≥ 1.

� if f(x) = 1
n

∑n
i=1 fi(x) is L-smooth, optimal choice α = Θ

(
min

{ ‖x0−x∗‖√
VT , 1

L

})
1: for t = 0 to T − 1 do
2: i← a random index in [n];
3: xt+1 ← arg miny∈Rd{ψ(y) + 1

2α‖y − xt‖
2 + 〈∇fi(xt), y〉};

4: return x = x1+···+xT
T .

Algorithm 2 SGDsc(F, x0, σ, L, T )

Input: function F (x) = ψ(x) + 1
n

∑n
i=1 fi(x); initial vector x0; parameters 0 < σ ≤ L; T ≥ L

σ .
� f(x) is σ-strongly convex and f(x) = 1

n

∑n
i=1 fi(x) is L-smooth

1: for t = 1 to N = b T
8L/σ c do xt ← SGD

(
F, xt−1,

1
2L ,

4L
σ

)
;

2: for k = 1 to K = blog2(σT/16L)c do xN+k ← SGD
(
F, xN+k−1,

1
2kL

, 2k+2L
σ

)
;

3: return x = xN+K .

Theorem 4.1. Let x∗ ∈ arg minx{F (x)}. To solve Problem (3.1) given a starting vector x0 ∈ Rd,
(a) SGD(F, x0, α, T ) outputs x satisfying E[F (x)]− F (x∗) ≤ αV

2(1−αL) + ‖x0−x∗‖2
2αT as long as α <

1/L. In particular, if α is tuned optimally, it satisfies

E[F (x)]− F (x∗) ≤ O
(L‖x0−x∗‖2

T +
√
V‖x0−x∗‖√

T

)
.

(b) If f(x) is σ-strongly convex and T ≥ L
σ , then SGDsc(F, x0, σ, L, T ) outputs x satisfying

E[F (x)]− F (x∗) ≤ O
( V
σT

)
+
(
1− σ

L

)Ω(T )
σ‖x0 − x∗‖2 .

As a sanity check, if V = 0, the convergence rate of SGD matches that of GD. (However, if V = 0,
one can apply accelerated gradient descent of Nesterov [22, 23] instead for a faster rate.)

To turn Theorem 4.1 into a rate of convergence for the gradients, we can simply apply Lemma 2.3
which implies

∀η ∈
(
0,

1

L

]
:

η

2
‖GF,η(x)‖2 ≤ F (x)− F (x+) ≤ F (x)− F (x∗) . (4.1)

Theorem 4.2. Let x∗ ∈ arg minx{F (x)}. To solve Problem (3.1) given a starting vector x0 ∈ Rd
and any η = C

L where C ∈ (0, 1] is some absolute constant,

(a) SGD outputs x satisfying E[‖GF,η(x)‖2] ≤ O
(L2‖x0−x∗‖2

T + L
√
V‖x0−x∗‖√

T

)
.

(b) if T ≥ L
σ , then SGDsc outputs x satisfying E[‖GF,η(x)‖2] ≤ O

(
LV
σT

)
+
(
1− σ

L

)Ω(T )
σL‖x0−x∗‖2.

Corollary 4.3. Hiding V , L, ‖x0 − x∗‖ in the big-O notation, classical SGD finds x with

F (x)− F (x∗) ≤ O(T−1/2) ‖GF,η(x)‖ ≤ O(T−1/4) for Problem (3.1), or

F (x)− F (x∗) ≤ O((σT )−1) ‖GF,η(x)‖ ≤ O((σT )−1/2) if f(·) is σ-strongly convex for σ > 0.

5 An Auxiliary Lemma on Regularization

Consider a regularized objective

G(x) := ψ(x) + g(x) := ψ(x) +
(
f(x) +

S∑
s=1

σs
2
‖x− x̂s‖2

)
, (5.1)

assumptions. A variant of Theorem 4.1(b) is recorded for the accelerated version of SGD [15], but with a
slightly worse rate T = O

( V
σT

+ L‖x0−x∗‖2
T2

)
. If the readers find either statement explicitly stated somewhere,

please let us know and we would love to include appropriate citations.
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where x̂1, . . . , x̂S are fixed vectors in Rd. The following lemma says that, if we find an approximate
stationary point x of G(x), then it is also an approximate stationary point of F (x) up to some
additive error.

Lemma 5.1. Suppose ψ(x) is proper convex and f(x) is convex and L-smooth. By definition, g(x)

is σ̃-strongly convex with σ̃ :=
∑S
s=1 σs. Let x∗ be the unique minimizer of G(y) in (5.1), and x be

an arbitrary vector in the domain of {x ∈ Rd : ψ(x) < +∞}. Then, for every η ∈
(
0, 1

L+σ̃

]
, we

have

‖GF,η(x)‖ ≤
S∑
s=1

σs‖x∗ − x̂s‖+ 3‖GG,η(x)‖ .

Remark 5.2. Lemma 5.1 should be easy to prove in the special case of ψ(x) ≡ 0. Indeed,

‖∇f(x)‖ = ‖∇g(x) +
∑
s

σs(x− x̂s)‖
¬
≤ ‖∇g(x)‖+

∑
s

σs‖x− x̂s‖

­
≤ ‖∇g(x)‖+

∑
s

σs‖x∗ − x̂s‖+ σ̃‖x∗ − x‖
®
≤ 2‖∇g(x)‖+

∑
s

σs‖x∗ − x̂s‖ .

Above, inequalities ¬ and ­ both use the triangle inequality; and inequality ® is due to the σ̃-strong
convexity of g(x) (see for instance [23, Sec. 2.1.3]).

Proof of Lemma 5.1. See full version. �

6 Approach 3: SGD and Recursive Regularization

In this section, add a logarithmic number of regularizers to the objective, each centered at a different
but carefully chosen point. Specifically, given parameters σ1, . . . , σS > 0, we define functions

F (0)(x) := F (x) and F (s)(x) := F (s−1)(x) +
σs
2
‖x− x̂s‖2 for s = 1, 2, . . . , S

where each x̂s (for s ≥ 1) is an approximate minimizer of F (s−1)(x).

If f(x) is σ-strongly convex, then we choose S ≈ log2
L
σ and let σ0 = σ and σs = 2σs−1. To

calculate each x̂s, we apply SGDsc for T
S iterations. This totals to a gradient complexity of T . We

summarize this method as SGD3sc in Algorithm 3.

If f(x) is not strongly convex, then we regularize it by G(x) = F (x) + σ
2 ‖x− x0‖2 for some small

parameter σ > 0, and then apply SGD3sc. We summarize this final method as SGD3 in Algorithm 4.

We prove the following main theorem:

Theorem 3 (SGD3). Let x∗ ∈ arg minx{F (x)}. To solve Problem (3.1) given a starting vector
x0 ∈ Rd and any η = C

L for some absolute constant C ∈ (0, 1].

(a) If f(x) is σ-strongly convex for σ ∈ (0, L] and T ≥ L
σ log L

σ , then SGD3sc(F, x0, σ, L, T ) outputs
x satisfying

E[‖GF,η(x)‖] ≤ O
(√V · log3/2 L

σ√
T

)
+
(
1− σ

L

)Ω(T/ log(L/σ))
σ‖x0 − x∗‖ .

(b) If σ ∈ (0, L] and T ≥ L
σ log L

σ , then SGD3(F, x0, σ, L, T ) outputs x satisfying

E[‖GF,η(x)‖] ≤ O
(
σ‖x0 − x∗‖+

√
V·log3/2 L

σ√
T

)
+
(
1− σ

L

)Ω(T/ log(L/σ))
σ‖x0 − x∗‖ .

If σ is appropriately chosen, then we find x with E[‖GF,η(x)‖] ≤ ε in gradient complexity

T ≤ O
(V · log3 L‖x0−x∗‖

ε

ε2
+
L‖x0 − x∗‖

ε
log

L‖x0 − x∗‖
ε

)
.

Remark 6.1. All expected guarantees of the form E[‖GF,η(x)‖2] ≤ ε2 or E[‖GF,η(x)‖] ≤ ε through-
out this paper can be made into high-confidence bound by repeating the algorithm multiple times,
each time estimating the value of ‖GF,η(x)‖ using roughly O( Vε2 ) stochastic gradient computations,
and finally outputting the point x that leads to the smallest value ‖GF,η(x)‖.
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Algorithm 3 SGD3sc(F, x0, σ, L, T )

Input: function F (x) = ψ(x) + 1
n

∑n
i=1 fi(x); initial vector x0; parameters 0 < σ ≤ L; number

of iterations T ≥ Ω
(
L
σ log L

σ

)
. � f(x) = 1

n

∑n
i=1 fi(x) is σ-strongly convex and L-smooth

1: F (0)(x) := F (x); x̂0 ← x0; σ0 ← σ;
2: for s = 1 to S = blog2

L
σ c do

3: x̂s ← SGDsc
(
F (s−1), x̂s−1, σs−1, 3L,

T
S

)
;

4: σs ← 2σs−1;
5: F (s)(x) := F (s−1)(x) + σs

2 ‖x− x̂s‖2;
6: return x = x̂S .

Algorithm 4 SGD3(F, x0, σ, L, T )

Input: function F (x) = ψ(x) + 1
n

∑n
i=1 fi(x); initial vector x0; parameters L ≥ σ > 0; T ≥ 1.

� f(x) = 1
n

∑n
i=1 fi(x) is convex and L-smooth

1: G(x) := F (x) + σ
2 ‖x− x0‖2;

2: return x← SGD3sc(G, x0, σ, L+ σ, T ).

6.1 Proof of Theorem 3

Before proving Theorem 3, we state a few properties regarding the relationships between the
objective-optimality of x̂s and point distances.

Claim 6.2. Suppose for every s = 1, . . . , S the vector x̂s satisfies

E
[
F (s−1)(x̂s)− F (s−1)(x∗s−1)

]
≤ δs (6.1)

where x∗s−1 ∈ arg minx{F (s−1)(x)}, then,

(a) for every s ≥ 1, E[‖x̂s − x∗s−1‖]2 ≤ E[‖x̂s − x∗s−1‖2] ≤ 2δs
σs−1

,

(b) for every s ≥ 1, E[‖x̂s − x∗s‖]2 ≤ E[‖x∗s − x̂s‖2] ≤ δs
σs

; and

(c) if σs = 2σs−1 for all s ≥ 1, then E
[∑S

s=1 σs‖x∗S − x̂s‖
]
≤ 4

∑S
s=1

√
δsσs .

Proof of Claim 6.2.

(a) E[‖x̂s − x∗s−1‖]2
¬
≤ E[‖x̂s − x∗s−1‖2]

­
≤ 2

σs−1
E
[
F (s−1)(x̂s) − F (s−1)(x∗s−1)] ≤ 2δs

σs−1
. Here,

inequality ¬ is because E[X]2 ≤ E[X2], and inequality ­ is due to the strong convexity of
F (s−1)(x).

(b) We derive that

σs‖x∗s − x̂s‖2
¬
≤ σs

2
‖x∗s − x̂s‖2 + F (s)(x̂s)− F (s)(x∗s) = F (s−1)(x̂s)− F (s−1)(x∗s)

­
≤ F (s−1)(x̂s)− F (s−1)(x∗s−1) .

Here, inequality ¬ is due to the strong convexity of F (s)(x), and inequality ­ is because of the
minimality of x∗s−1. Taking expectation we have E[‖x∗s − x̂s‖]2 ≤ E[‖x∗s − x̂s‖2] ≤ δs

σs
.

(c) Define Pt :=
∑t
s=1 σs‖x∗t − x̂s‖ for each t ≥ 0, 1, . . . , S. Then by triangle inequality we have

Ps − Ps−1 ≤ σs‖x∗s − x̂s‖+
(∑s−1

t=1 σt
)
· ‖x∗s − x∗s−1‖

Using the parameter choice of σs = 2σs−1, and plugging in Claim 6.2(a) and Claim 6.2(b), we
have

E[Ps − Ps−1] ≤
√
δsσs + σs · E

[
‖x∗s − x̂s‖+ ‖x∗s−1 − x̂s‖

]
≤ 4
√
δsσs . �
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Proof of Theorem 3(a). We first note that, when writing f (s−1)(x) = F (s−1)(x) − ψ(x), each
f (s−1) is at least σs−1-strongly convex and L +

∑s−1
t=1 σt ≤ 3L Lipschitz smooth. Therefore,

applying Theorem 4.1(b), we have

E[F (s−1)(x̂s)− F (s−1)(x∗s−1)] ≤ O
( SV
σs−1T

)
+
(
1− σs−1

3L

)Ω(T/S)E[σs−1‖x̂s−1 − x∗s−1‖2] .

If s = 1, this means (recalling x̂0 = x0 and x∗0 = x∗)

E[F (0)(x̂s)− F (0)(x∗)] ≤ O
( SV
σ0T

)
+
(
1− σ0

L

)Ω(T/S)
σ0‖x0 − x∗‖2 .

If s > 1, this means

E[F (s−1)(x̂s)−F (s−1)(x∗s−1)] ≤ O
( SV
σs−1T

)
+
(
1−σs−1

L

)Ω(T/S)E[F (s−2)(x̂s−1)−F (s−2)(x∗s−2)] .

Together, this means to satisfy (6.1), it suffices to choose δs so that

δs = O
( SV
σsT

)
+
(
1− σ0

L

)Ω(sT/S)
σ0‖x0 − x∗‖2 .

Using Lemma 2.3 with F (S−1) and y = x = x̂S , we have η
2‖GF (S−1),η(x̂S)‖2 ≤ F (S−1)(x̂S) −

F (S−1)(x̂+
S ) ≤ F (S−1)(x̂S)− F (S−1)(x∗S−1) and therefore

E
[
‖GF (S−1),η(x̂S)‖

]2 ≤ E
[
‖GF (S−1),η(x̂S)‖2

]
≤ 2δS

η
= O(LδS) .

Plugging this into Lemma 5.1 (with G(x) = F (S−1)(x)) and Claim 6.2(c), we have

E
[
‖GF,η(x̂S)‖

]
≤ E

[ S−1∑
s=1

σs‖x∗S−1 − x̂s‖+ 3‖GF (S−1),η(x̂S)‖
]
≤ O

( S−1∑
s=1

√
δsσs +

√
LδS

)
= O

( S∑
s=1

√
δsσs

)
≤ O

(S3/2V1/2

T 1/2

)
+
(
1− σ0

L

)Ω(T/S)
σ0‖x0 − x∗‖ . �

Proof of Theorem 3(b). DefineG(x) := F (x)+ σ
2 ‖x−x0‖2 and let x∗G be the (unique) minimizer of

G(·). Note that x∗G may be different from x∗ which is a minimizer of F (·). Applying Theorem 3(a)
on G(x) and Lemma 5.1 with S = 1 and x̂1 = x0, we have

E[‖GF,η(x)‖] ≤ O
(
σ‖x0 − x∗G‖+

√
V·log3/2 L

σ√
T

)
+
(
1− σ

L

)Ω(T/ log(L/σ))
σ‖x0 − x∗G‖

Now, by definition σ
2 ‖x

∗− x0‖2− σ
2 ‖x

∗
G− x0‖2 = (G(x∗)−F (x∗)) + (F (x∗G)−G(x∗G)) ≥ 0 so

we have ‖x∗G − x0‖ ≤ ‖x∗ − x0‖. This completes the proof. �
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