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Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

1 Introduction

Over the last decade, deep learning has made impressive progress on a variety of notoriously
difficult tasks in computer vision [[16, [7], speech recognition [5]], machine translation [29], and
game-playing [18} 25]]. This progress hinged on a number of major advances in terms of hardware,
datasets [15 23], and algorithmic and architectural techniques [27, (12, 20, 28]. One of the most
prominent examples of such advances was batch normalization (BatchNorm) [10].

At a high level, BatchNorm is a technique that aims to improve the training of neural networks by
stabilizing the distributions of layer inputs. This is achieved by introducing additional network layers
that control the first two moments (mean and variance) of these distributions.

The practical success of BatchNorm is indisputable. By now, it is used by default in most deep learning
models, both in research (more than 6,000 citations) and real-world settings. Somewhat shockingly,
however, despite its prominence, we still have a poor understanding of what the effectiveness of
BatchNorm is stemming from. In fact, there are now a number of works that provide alternatives to
BatchNorm [[1}, 13,13} 31]], but none of them seem to bring us any closer to understanding this issue.
(A similar point was also raised recently in [22]].)

Currently, the most widely accepted explanation of BatchNorm’s success, as well as its original
motivation, relates to so-called internal covariate shift (ICS). Informally, ICS refers to the change in
the distribution of layer inputs caused by updates to the preceding layers. It is conjectured that such
continual change negatively impacts training. The goal of BatchNorm was to reduce ICS and thus
remedy this effect.

Even though this explanation is widely accepted, we seem to have little concrete evidence supporting
it. In particular, we still do not understand the link between ICS and training performance. The chief
goal of this paper is to address all these shortcomings. Our exploration lead to somewhat startling
discoveries.
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Our Contributions. Our point of start is demonstrating that there does not seem to be any link
between the performance gain of BatchNorm and the reduction of internal covariate shift. Or that this
link is tenuous, at best. In fact, we find that in a certain sense BatchNorm might not even be reducing
internal covariate shift.

We then turn our attention to identifying the roots of BatchNorm’s success. Specifically, we demon-
strate that BatchNorm impacts network training in a fundamental way: it makes the landscape of
the corresponding optimization problem significantly more smooth. This ensures, in particular, that
the gradients are more predictive and thus allows for use of larger range of learning rates and faster
network convergence. We provide an empirical demonstration of these findings as well as their
theoretical justification. We prove that, under natural conditions, the Lipschitzness of both the loss
and the gradients (also known as S-smoothness [21]]) are improved in models with BatchNorm.

Finally, we find that this smoothening effect is not uniquely tied to BatchNorm. A number of other
natural normalization techniques have a similar (and, sometime, even stronger) effect. In particular,
they all offer similar improvements in the training performance.

We believe that understanding the roots of such a fundamental techniques as BatchNorm will let us
have a significantly better grasp of the underlying complexities of neural network training and, in
turn, will inform further algorithmic progress in this context.

Our paper is organized as follows. In Section[2] we explore the connections between BatchNorm,
optimization, and internal covariate shift. Then, in Section[3} we demonstrate and analyze the exact
roots of BatchNorm’s success in deep neural network training. We present our theoretical analysis in
Section[dl We discuss further related work in Section [ and conclude in Section

2 Batch normalization and internal covariate shift

Batch normalization (BatchNorm) [10]] has been arguably one of the most successful architectural
innovations in deep learning. But even though its effectiveness is indisputable, we do not have a firm
understanding of why this is the case.

Broadly speaking, BatchNorm is a mechanism that aims to stabilize the distribution (over a mini-
batch) of inputs to a given network layer during training. This is achieved by augmenting the network
with additional layers that set the first two moments (mean and variance) of the distribution of each
activation to be zero and one respectively. Then, the batch normalized inputs are also typically scaled
and shifted based on trainable parameters to preserve model expressivity. This normalization is
applied before the non-linearity of the previous layer.

One of the key motivations for the development of BatchNorm was the reduction of so-called internal
covariate shift (ICS). This reduction has been widely viewed as the root of BatchNorm’s success.
Ioffe and Szegedy [[10] describe ICS as the phenomenon wherein the distribution of inputs to a layer
in the network changes due to an update of parameters of the previous layers. This change leads to a
constant shift of the underlying training problem and is thus believed to have detrimental effect on
the training process.
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Figure 1: Comparison of (a) training (optimization) and (b) test (generalization) performance of a
standard VGG network trained on CIFAR-10 with and without BatchNorm (details in Appendix [A).
There is a consistent gain in training speed in models with BatchNorm layers. (c) Even though the
gap between the performance of the BatchNorm and non-BatchNorm networks is clear, the difference
in the evolution of layer input distributions seems to be much less pronounced. (Here, we sampled
activations of a given layer and visualized their distribution over training steps.)
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Despite its fundamental role and widespread use in deep learning, the underpinnings of BatchNorm’s
success remain poorly understood [22f]. In this work we aim to address this gap. To this end, we start
by investigating the connection between ICS and BatchNorm. Specifically, we consider first training
a standard VGG [26] architecture on CIFAR-10 [[15] with and without BatchNorm. As expected,
Figures[I[a) and (b) show a drastic improvement, both in terms of optimization and generalization
performance, for networks trained with BatchNorm layers. Figure[T|c) presents, however, a surprising
finding. In this figure, we visualize to what extent BatchNorm is stabilizing distributions of layer
inputs by plotting the distribution (over a batch) of a random input over training. Surprisingly, the
difference in distributional stability (change in the mean and variance) in networks with and without
BatchNorm layers seems to be marginal. This observation raises the following questions:

(1) Is the effectiveness of BatchNorm indeed related to internal covariate shift?
(2) Is BatchNorm’s stabilization of layer input distributions even effective in reducing ICS?

We now explore these questions in more depth.

2.1 Does BatchNorm’s performance stem from controlling internal covariate shift?

The central claim in [[10] is that controlling the mean and variance of distributions of layer inputs is
directly connected to improved training performance. Can we, however, substantiate this claim?

We propose the following experiment. We train networks with random noise injected after BatchNorm
layers. Specifically, we perturb each activation for each sample in the batch using i.i.d. noise sampled
from a non-zero mean and non-unit variance distribution. We emphasize that this noise distribution
changes at each time step (see Appendix [A]for implementation details).

Note that such noise injection produces a severe covariate shift that skews activations at every time
step. Consequently, every unit in the layer experiences a different distribution of inputs at each
time step. We then measure the effect of this deliberately introduced distributional instability on
BatchNorm’s performance. Figure 2] visualizes the training behavior of standard, BatchNorm and our
“noisy” BatchNorm networks. Distributions of activations over time from layers at the same depth in
each one of the three networks are shown alongside.

Observe that the performance difference between models with BatchNorm layers, and “noisy” Batch-
Norm layers is almost non-existent. Also, both these networks perform much better than standard
networks. Moreover, the “noisy” BatchNorm network has qualitatively less stable distributions than
even the standard, non-BatchNorm network, yet it still performs better in terms of training. To put
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Figure 2: Connections between distributional stability and BatchNorm performance: We compare
VGG networks trained without BatchNorm (Standard), with BatchNorm (Standard + BatchNorm)
and with explicit “covariate shift” added to BatchNorm layers (Standard + “Noisy” BatchNorm).
In the later case, we induce distributional instability by adding time-varying, non-zero mean and
non-unit variance noise independently to each batch normalized activation. The “noisy” BatchNorm
model nearly matches the performance of standard BatchNorm model, despite complete distributional
instability. We sampled activations of a given layer and visualized their distributions (also cf. Fi gure|Z[).
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Figure 3: Measurement of ICS (as defined in Deﬁnition in networks with and without BatchNorm
layers. For a layer we measure the cosine angle (ideally 1) and ¢5-difference of the gradients (ideally
0) before and after updates to the preceding layers (see Definition[2.1). Models with BatchNorm have
similar, or even worse, internal covariate shift, despite performing better in terms of accuracy and
loss. (Stabilization of BatchNorm faster during training is an artifact of parameter convergence.)

the magnitude of the noise into perspective, we plot the mean and variance of random activations
for select layers in Figure [7] Moreover, adding the same amount of noise to the activations of the
standard (non-BatchNorm) network prevents it from training entirely.

Clearly, these findings are hard to reconcile with the claim that the performance gain due to Batch-
Norm stems from increased stability of layer input distributions.

2.2 Is BatchNorm reducing internal covariate shift?

Our findings in Section [2.I] make it apparent that ICS is not directly connected to the training
performance, at least if we tie ICS to stability of the mean and variance of input distributions. One
might wonder, however: Is there a broader notion of internal covariate shift that sas such a direct link
to training performance? And if so, does BatchNorm indeed reduce this notion?

Recall that each layer can be seen as solving an empirical risk minimization problem where given a
set of inputs, it is optimizing some loss function (that possibly involves later layers). An update to the
parameters of any previous layer will change these inputs, thus changing this empirical risk mini-
mization problem itself. This phenomenon is at the core of the intuition that Ioffe and Szegedy [10]
provide regarding internal covariate shift. Specifically, they try to capture this phenomenon from
the perspective of the resulting distributional changes in layer inputs. However, as demonstrated in
Section[2.1] this perspective does not seem to properly encapsulate the roots of BatchNorm’s success.

To answer this question, we consider a broader notion of internal covariate shift that is more tied to
the underlying optimization task. (After all the success of BatchNorm is largely of an optimization
nature.) Since the training procedure is a first-order method, the gradient of the loss is the most natural
object to study. To quantify the extent to which the parameters in a layer would have to “adjust” in
reaction to a parameter update in the previous layers, we measure the difference between the gradients
of each layer before and after updates to all the previous layers. This leads to the following definition.

Definition 2.1. Let L be the loss, Wl(t), W,gt) be the parameters of each of the k layers and

(x(t), y(t)) be the batch of input-label pairs used to train the network at time t. We define internal
covariate shift (ICS) of activation i at time t to be the difference |G} ; — G} ;||2, where

Gri= Vo LW, WD a® )
= vWi(t)ﬁ(Wl(t“% o WD W @ w00,

Here, G;,; corresponds to the gradient of the layer parameters that would be applied during a
simultaneous update of all layers (as is typical). On the other hand, G;’i is the same gradient after all
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Figure 4: Analysis of the optimization landscape of VGG networks. At a particular training step,
we measure the variation (shaded region) in loss (a) and /5 changes in the gradient (b) as we move
in the gradient direction. The “effective” S-smoothness (c) refers to the maximum difference (in
£5-norm) in gradient over distance moved in that direction. There is a clear improvement in all of
these measures in networks with BatchNorm, indicating a more well-behaved loss landscape. (Here,
we cap the maximum distance to be 7 = 0.4 x the gradient since for larger steps the standard network
just performs worse (see Figure[I)). BatchNorm however continues to provide smoothing for even
larger distances.) Note that these results are supported by our theoretical findings (Section @)

the previous layers have been updated with their new values. The difference between G and G’ thus
reflects the change in the optimization landscape of W; caused by the changes to its input. It thus
captures precisely the effect of cross-layer dependencies that could be problematic for training.

Equipped with this definition, we measure the extent of ICS with and without BatchNorm layers. To
isolate the effect of non-linearities as well as gradient stochasticity, we also perform this analysis on
(25-layer) deep linear networks (DLN) trained with full-batch gradient descent (see Appendix [A] for
details). The conventional understanding of BatchNorm suggests that the addition of BatchNorm
layers in the network should increase the correlation between G and G’, thereby reducing ICS.

Surprisingly, we observe that networks with BatchNorm often exhibit an increase in ICS (cf. Figure[3).
This is particularly striking in the case of DLN. In fact, in this case, the standard network experiences
almost no ICS for the entirety of training, whereas for BatchNorm it appears that G and G’ are
almost uncorrelated. We emphasize that this is the case even though BatchNorm networks continue to
perform drastically better in terms of attained accuracy and loss. (The stabilization of the BatchNorm
VGG network later in training is an artifact of faster convergence.) This evidence suggests that, from
optimization point of view BatchNorm might not even reduce the internal covariate shift.

3  Why does BatchNorm work?

Our investigation so far demonstrated that the generally asserted link between the internal covariate
shift (ICS) and the optimization performance is tenuous, at best. But BatchNorm does significantly
improve the training process. Can we explain why this is the case?

Aside from reducing ICS, Ioffe and Szegedy [[10] identify a number of additional properties of
BatchNorm. These include prevention of exploding or vanishing gradients, robustness to different
settings of hyperparameters such as learning rate and initialization scheme, and keeping most of the
activations away from saturation regions of non-linearities. All these properties are clearly beneficial
to the training process. But they are fairly simple consequences of the mechanics of BatchNorm
and do little to uncover the underlying factors responsible for BatchNorm’s success. Is there a more
fundamental phenomenon at play here?

3.1 The smoothing effect of BatchNorm

Indeed, we identify the key impact that BatchNorm has on the training process: it reparametrizes
the underlying optimization problem to make its landscape significantly more smooth. The first
manifestation of this impact is improvement in the LipschitznessE[/Zf the loss function. That is, the
loss changes at a smaller rate and the magnitudes of the gradients are smaller too. There is, however,

’Recall that f is L-Lipschitz if | f (z1) — f(z2)| < L||z1 — x2||, for all z; and x».



an even stronger effect at play. Namely, BatchNorm’s reparametrization makes gradients of the loss
more Lipschitz too. In other words, the loss exhibits a significantly better “effective” ﬂ-smoothnesﬂ

These smoothening effects impact the performance of the training algorithm in a major way. To
understand why, recall that in a vanilla (non-BatchNorm), deep neural network, the loss function
is not only non-convex but also tends to have a large number of “kinks”, flat regions, and sharp
minima [17]. This makes gradient descent—based training algorithms unstable, e.g., due to exploding
or vanishing gradients, and thus highly sensitive to the choice of the learning rate and initialization.

Now, the key implication of BatchNorm’s reparametrization is that it makes the gradients more
reliable and predictive. After all, improved Lipschitzness of the gradients gives us confidence that
when we take a larger step in a direction of a computed gradient, this gradient direction remains a
fairly accurate estimate of the actual gradient direction after taking that step. It thus enables any
(gradient-based) training algorithm to take larger steps without the danger of running into a sudden
change of the loss landscape such as flat region (corresponding to vanishing gradient) or sharp local
minimum (causing exploding gradients). This, in turn, enables us to use a broader range of (and thus
larger) learning rates (see Figure[I0]in Appendix [B)) and, in general, makes the training significantly
faster and less sensitive to hyperparameter choices. (This also illustrates how the properties of
BatchNorm that we discussed earlier can be viewed as a manifestation of this smoothening effect.)

3.2 Exploration of the optimization landscape

To demonstrate the impact of BatchNorm on the stability of the loss itself, i.e., its Lipschitzness, for
each given step in the training process, we compute the gradient of the loss at that step and measure
how the loss changes as we move in that direction — see Figure[da). We see that, in contrast to the
case when BatchNorm is in use, the loss of a vanilla, i.e., non-BatchNorm, network has a very wide
range of values along the direction of the gradient, especially in the initial phases of training. (In the
later stages, the network is already close to convergence.)

Similarly, to illustrate the increase in the stability and predictiveness of the gradients, we make
analogous measurements for the ¢ distance between the loss gradient at a given point of the training
and the gradients corresponding to different points along the original gradient direction. Figure f(b)
shows a significant difference (close to two orders of magnitude) in such gradient predictiveness
between the vanilla and BatchNorm networks, especially early in training.

To further demonstrate the effect of BatchNorm on the stability/Lipschitzness of the gradients of the
loss, we plot in Figure [fc) the “effective” S-smoothness of the vanilla and BatchNorm networks
throughout the training. (“Effective” refers here to measuring the change of gradients as we move in
the direction of the gradients.). Again, we observe consistent differences between these networks.
We complement the above examination by considering /inear deep networks: as shown in Figures 9]
and [12]in Appendix [B] the BatchNorm smoothening effect is present there as well.

Finally, we emphasize that even though our explorations were focused on the behavior of the loss
along the gradient directions (as they are the crucial ones from the point of view of the training
process), the loss behaves in a similar way when we examine other (random) directions too.

3.3 Is BatchNorm the best (only?) way to smoothen the landscape?

Given this newly acquired understanding of BatchNorm and the roots of its effectiveness, it is natural
to wonder: Is this smoothening effect a unique feature of BatchNorm? Or could a similar effect be
achieved using some other normalization schemes?

To answer this question, we study a few natural data statistics-based normalization strategies. Specifi-
cally, we study schemes that fix the first order moment of the activations, as BatchNorm does, and then
normalizes them by the average of their £,-norm (before shifting the mean), for p = 1, 2, co. Note
that for these normalization schemes, the distributions of layer inputs are no longer Gaussian-like
(see Figure . Hence, normalization with such £,-norm does not guarantee anymore any control
over the distribution moments nor distributional stability.

3Recall that f is B-smooth if its gradient is 3-Lipschitz. It is worth noting that, due to the existence of
non-linearities, one should not expect the S-smoothness to be bounded in an absolute, global sense.
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Figure 5: The two network architectures we compare in our theoretical analysis: (a) the vanilla DNN
(no BatchNorm layer); (b) the same network as in (a) but with a BatchNorm layer inserted after the
fully-connected layer . (All the layer parameters have exactly the same value in both networks.)

The results are presented in Figures[I3] [[T]and[I2]in Appendix[B] We observe that all the normalization
strategies offer comparable performance to BatchNorm. In fact, for deep linear networks, ¢;—
normalization performs even better than BatchNorm. Note that, qualitatively, the £,—normalization
techniques lead to larger distributional shift (as considered in [10]) than the vanilla, i.e., unnormalized,
networks, yet they still yield improved optimization performance. Also, all these techniques result in
an improved smoothness of the landscape that is similar to the effect of BatchNorm. (See Figures
and [I2) of Appendix[B]) This suggests that the positive impact of BatchNorm on training might be
somewhat serendipitous. Therefore, it might be valuable to perform a principled exploration of the
design space of normalization schemes as it can lead to better performance.

4 Theoretical Analysis

Our experiments so far suggest that BatchNorm has a fundamental effect on the optimization
landscape. We now explore this phenomenon from a theoretical perspective. To this end, we consider
an arbitrary linear layer in a DNN (we do not necessitate that the entire network be fully linear).

4.1 Setup

We analyze the impact of adding a single BatchNorm layer after an arbitrary fully-connected layer W
at a given step during the training. Specifically, we compare the optimization landscape of the original
training problem to the one that results from inserting the BatchNorm layer after the fully-connected
layer — normalizing the output of this layer (see Figure[5). Our analysis therefore captures effects that
stem from the reparametrization of the landscape and not merely from normalizing the inputs x.

We denote the layer weights (identical for both the standard and batch-normalized networks) as W;;.
Both networks have the same arbitrary loss function £ that could potentially include a number of
additional non-linear layers after the current one. We refer to the loss of the normalized network as

L for clarity. In both networks, we have input z, and let y = Wx. For networks with BatchNorm,
we have an additional set of activations ¢, which are the “whitened” version of ¥, i.e. standardized
to mean 0 and variance 1. These are then multiplied by -y and added to 3 to form z. We assume 3
and + to be constants for our analysis. In terms of notation, we let o; denote the standard deviation
(computed over the mini-batch) of a batch of outputs ; € R™.

4.2 Theoretical Results

We begin by considering the optimization landscape with respect to the activations y;. We show that
batch normalization causes this landscape to be more well-behaved, inducing favourable properties in
Lipschitz-continuity, and predictability of the gradients. We then show that these improvements in the
activation-space landscape translate to favorable worst-case bounds in the weight-space landscape.

We first turn our attention to the gradient magnitude | |Vyj L], which captures the Lipschitzness
of the loss. The Lipschitz constant of the loss plays a crucial role in optimization, since it controls
the amount by which the loss can change when taking a step (see [21] for details). Without any
assumptions on the specific weights or the loss being used, we show that the batch-normalized




landscape exhibits a better Lipschitz constant. Moreover, the Lipschitz constant is significantly
reduced whenever the activations §j; correlate with the gradient ng/f or the mean of the gradient
deviates from 0. Note that this reduction is additive, and has effect even when the scaling of BN is
identical to the original layer scaling (i.e. even when o; = 7).

Theorem 4.1 (The effect of BatchNorm on the Lipschitzness of the loss). For a BatchNorm network
with loss L and an identical non-BN network with (identical) loss L,

~[12 'y2 1 1 N
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First, note that (1,0L/dy)? grows quadratically in the dimension, so the middle term above is
significant. Furthermore, the final inner product term is expected to be bounded away from zero, as
the gradient with respect to a variable is rarely uncorrelated to the variable itself. In addition to the
additive reduction, o tends to be large in practice (cf. Appendix Figure , and thus the scaling by X
may contribute to the relative “flatness" we see in the effective Lipschitz constant.

We now turn our attention to the second-order properties of the landscape. We show that when a
BatchNorm layer is added, the quadratic form of the loss Hessian with respect to the activations in the
gradient direction, is both rescaled by the input variance (inducing resilience to mini-batch variance),
and decreased by an additive factor (increasing smoothness). This term captures the second order
term of the Taylor expansion of the gradient around the current point. Therefore, reducing this term
implies that the first order term (the gradient) is more predictive.

Theorem 4.2 (The effect of BN to smoothness). Let §; = V,,, L and H;; = 781;%14- be the gradient
- J J
and Hessian of the loss with respect to the layer outputs respectively. Then
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Note that if the quadratic forms involving the Hessian and the inner product (§j;, §;) are non-negative
(both fairly mild assumptions), the theorem implies more predictive gradients. The Hessian is positive
semi-definite (PSD) if the loss is locally convex which is true for the case of deep networks with
piecewise-linear activation functions and a convex loss at the final layer (e.g. standard softmax
cross-entropy loss or other common losses). The condition (¢, §;) > 0 holds as long as the negative
gradient §; is pointing towards the minimum of the loss (w.r.t. normalized activations). Overall, as

long as these two conditions hold, the steps taken by the BatchNorm network are more predictive
than those of the standard network (similarly to what we observed experimentally).
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Note that our results stem from the reparametrization of the problem and not a simple scaling.

Observation 4.3 (BatchNorm does more than rescaling). For any input data X and network configu-
ration W, there exists a BN configuration (W, ~y, 3) that results in the same activations y;, and where
v = 0. Consequently, all of the minima of the normal landscape are preserved in the BN landscape.

Our theoretical analysis so far studied the optimization landscape of the loss w.r.t. the normalized
activations. We will now translate these bounds to a favorable worst-case bound on the landscape
with respect to layer weights. Note that a (near exact) analogue of this theorem for minimax gradient
predictiveness appears in Theorem [C.T]of Appendix [C]

Theorem 4.4 (Minimax bound on weight-space Lipschitzness). For a BatchNorm network with loss
L and an identical non-BN network (with identical loss L), if
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Finally, in addition to a desirable landscape, we find that BN also offers an advantage in initialization:



Lemma 4.5 (BatchNorm leads to a favourable initialization). Let W* and W* be the set of local
optima for the weights in the normal and BN networks, respectively. For any initialization W
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if (Wo, W*) > 0, where W* and W* are closest optima for BN and standard network, respectively.

5 Related work

A number of normalization schemes have been proposed as alternatives to BatchNorm, including
normalization over layers [1]], subsets of the batch [31]], or across image dimensions [30]. Weight
Normalization [24] follows a complementary approach normalizing the weights instead of the
activations. Finally, ELU [3] and SELU [13]] are two proposed examples of non-linearities that have
a progressively decaying slope instead of a sharp saturation and can be used as an alternative for
BatchNorm. These techniques offer an improvement over standard training that is comparable to that
of BatchNorm but do not attempt to explain BatchNorm’s success.

Additionally, work on topics related to DNN optimization has uncovered a number of other Batch-
Norm benefits. Li et al. [9]] observe that networks with BatchNorm tend to have optimization
trajectories that rely less on the parameter initialization. Balduzzi et al. [2]] observe that models
without BatchNorm tend to suffer from small correlation between different gradient coordinates
and/or unit activations. They report that this behavior is profound in deeper models and argue how it
constitutes an obstacle to DNN optimization. Morcos et al. [19] focus on the generalization properties
of DNN. They observe that the use of BatchNorm results in models that rely less on single directions
in the activation space, which they find to be connected to the generalization properties of the model.

Recent work [14] identifies simple, concrete settings where a variant of training with BatchNorm
provably improves over standard training algorithms. The main idea is that decoupling the length and
direction of the weights (as done in BatchNorm and Weight Normalization [24]]) can be exploited to
a large extent. By designing algorithms that optimize these parameters separately, with (different)
adaptive step sizes, one can achieve significantly faster convergence rates for these problems.

6 Conclusions

In this work, we have investigated the roots of BatchNorm’s effectiveness as a technique for training
deep neural networks. We find that the widely believed connection between the performance of
BatchNorm and the internal covariate shift is tenuous, at best. In particular, we demonstrate that
existence of internal covariate shift, at least when viewed from the — generally adopted — distributional
stability perspective, is not a good predictor of training performance. Also, we show that, from an
optimization viewpoint, BatchNorm might not be even reducing that shift.

Instead, we identify a key effect that BatchNorm has on the training process: it reparametrizes the
underlying optimization problem to make it more stable (in the sense of loss Lipschitzness) and
smooth (in the sense of “effective” 3-smoothness of the loss). This implies that the gradients used in
training are more predictive and well-behaved, which enables faster and more effective optimization.
This phenomena also explains and subsumes some of the other previously observed benefits of
BatchNorm, such as robustness to hyperparameter setting and avoiding gradient explosion/vanishing.
We also show that this smoothing effect is not unique to BatchNorm. In fact, several other natural
normalization strategies have similar impact and result in a comparable performance gain.

We believe that these findings not only challenge the conventional wisdom about BatchNorm but
also bring us closer to a better understanding of this technique. We also view these results as an
opportunity to encourage the community to pursue a more systematic investigation of the algorithmic
toolkit of deep learning and the underpinnings of its effectiveness.

Finally, our focus here was on the impact of BatchNorm on training but our findings might also shed
some light on the BatchNorm’s tendency to improve generalization. Specifically, it could be the case
that the smoothening effect of BatchNorm’s reparametrization encourages the training process to
converge to more flat minima. Such minima are believed to facilitate better generalization [8, [11]].
We hope that future work will investigate this intriguing possibility.
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