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Abstract

Meta-learning for few-shot learning entails acquiring a prior over previous tasks and
experiences, such that new tasks be learned from small amounts of data. However,
a critical challenge in few-shot learning is task ambiguity: even when a powerful
prior can be meta-learned from a large number of prior tasks, a small dataset
for a new task can simply be too ambiguous to acquire a single model (e.g., a
classifier) for that task that is accurate. In this paper, we propose a probabilistic
meta-learning algorithm that can sample models for a new task from a model
distribution. Our approach extends model-agnostic meta-learning, which adapts
to new tasks via gradient descent, to incorporate a parameter distribution that is
trained via a variational lower bound. At meta-test time, our algorithm adapts via
a simple procedure that injects noise into gradient descent, and at meta-training
time, the model is trained such that this stochastic adaptation procedure produces
samples from the approximate model posterior. Our experimental results show that
our method can sample plausible classifiers and regressors in ambiguous few-shot
learning problems. We also show how reasoning about ambiguity can also be used
for downstream active learning problems.

1 Introduction

Learning from a few examples is a key aspect of human intelligence. One way to make it possible
to acquire solutions to complex tasks from only a few examples is to leverage past experience to
learn a prior over tasks. The process of learning this prior entails discovering the shared structure
across different tasks from the same family, such as commonly occurring visual features or semantic
cues. Structure is useful insofar as it yields efficient learning of new tasks – a mechanism known as
learning-to-learn, or meta-learning [3]. However, when the end goal of few-shot meta-learning is to
learn solutions to new tasks from small amounts of data, a critical issue that must be dealt with is task
ambiguity: even with the best possible prior, there might simply not be enough information in the
examples for a new task to resolve that task with high certainty. It is therefore quite desireable to
develop few-shot meta-learning methods that can propose multiple potential solutions to an ambiguous
few-shot learning problem. Such a method could be used to evaluate uncertainty (by measuring
agreement between the samples), perform active learning, or elicit direct human supervision about
which sample is preferable. For example, in safety-critical applications, such as few-shot medical
image classification, uncertainty is crucial for determining if the learned classifier should be trusted.
When learning from such small amounts of data, uncertainty estimation can also help predict if
additional data would be beneficial for learning and improving the estimate of the rewards. Finally,
while we do not experiment with this in this paper, we expect that modeling this ambiguity will be
helpful for reinforcement learning problems, where it can be used to aid in exploration.

While recognizing and accounting for ambiguity is an important aspect of the few-shot learning prob-
lem, it is challenging to model when scaling to high-dimensional data, large function approximators,
and multimodal task structure. Representing distributions over functions is relatively straightforward
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when using simple function approximators, such as linear functions, and has been done extensively
in early few-shot learning approaches using Bayesian models [39, 7]. But this problem becomes
substantially more challenging when reasoning over high-dimensional function approximators such
as deep neural networks, since explicitly representing expressive distributions over thousands or
millions of parameters if often intractable. As a result, recent more scalable approaches to few-shot
learning have focused on acquiring deterministic learning algorithms that disregard ambiguity over
the underlying function. Can we develop an approach that has the benefits of both classes of few-shot
learning methods – scalability and uncertainty awareness? To do so, we build upon tools in amortized
variational inference for developing a probabilistic meta-learning approach.

In particular, our method builds on model-agnostic meta-learning (MAML) [9], a few shot meta-
learning algorithm that uses gradient descent to adapt the model at meta-test time to a new few-shot
task, and trains the model parameters at meta-training time to enable rapid adaptation, essentially
optimizing for a neural network initialization that is well-suited for few shot learning. MAML can be
shown to retain the generality of black-box meta-learners such as RNNs [8], while being applicable
to standard neural network architectures. Our approach extends MAML to model a distribution
over prior model parameters, which leads to an appealing simple stochastic adaptation procedure
that simply injects noise into gradient descent at meta-test time. The meta-training procedure then
optimizes for this simple inference process to produce samples from an approximate model posterior.

The primary contribution of this paper is a reframing of MAML as a graphical model inference
problem, where variational inference can provide us with a principled and natural mechanism for
modeling uncertainty. Our approach enables sampling multiple potential solutions to a few-shot
learning problem at meta-test time, and our experiments show that this ability can be used to sample
multiple possible regressors for an ambiguous regression problem, as well as multiple possible
classifiers for ambiguous few-shot attribute classification tasks. We further show how this capability
to represent uncertainty can be used to inform data acquisition in a few-shot active learning problem.

2 Related Work

Hierarchical Bayesian models are a long-standing approach for few-shot learning that naturally allow
for the ability to reason about uncertainty over functions [39, 7, 25, 43, 12, 4, 41]. While these
approaches have been demonstrated on simple few-shot image classification datasets [24], they have
yet to scale to the more complex problems, such as the experiments in this paper. A number of
works have approached the problem of few-shot learning from a meta-learning perspective [35, 19],
including black-box [33, 5, 42] and optimization-based approaches [31, 9]. While these approaches
scale to large-scale image datasets [40] and visual reinforcement learning problems [28], they typically
lack the ability to reason about uncertainty.

Our work is most related to methods that combine deep networks and probabilistic methods for
few-shot learning [6, 15, 23]. One approach that considers hierarchical Bayesian models for few-shot
learning is the neural statistician [6], which uses an explicit task variable to model task distributions.
Our method is fully model agnostic, and directly samples model weights for each task for any
network architecture. Our experiments show that our approach improves on MAML [9], which
outperforms the model by Edwards and Storkey [6]. Other work that considers model uncertainty in
the few-shot learning setting is the LLAMA method [15], which also builds on the MAML algorithm.
LLAMA makes use of a local Laplace approximation for modeling the task parameters (post-update
parameters), which introduces the need to approximate a high dimensional covariance matrix. We
instead propose a method that approximately infers the pre-update parameters, which we make
tractable through a choice of approximate posterior parameterized by gradient operations.

Bayesian neural networks [27, 18, 29, 1] have been studied extensively as a way to incorporate
uncertainty into deep networks. Although exact inference in Bayesian neural networks is impractical,
approximations based on backpropagation and sampling [16, 32, 20, 2] have been effective in
incorporating uncertainty into the weights of generic networks. Our approach differs from these
methods in that we explicitly train a hierarchical Bayesian model over weights, where a posterior
task-specific parameter distribution is inferred at meta-test time conditioned on a learned weight prior
and a (few-shot) training set, while conventional Bayesian neural networks directly learn only the
posterior weight distribution for a single task. Our method draws on amortized variational inference
methods [22, 21, 36] to make this possible, but the key modification is that the model and inference
networks share the same parameters. The resulting method corresponds structurally to a Bayesian
version of model-agnostic meta-learning [9].
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Figure 1: Graphical models corresponding to our approach. The original graphical model (left) is transformed
into the center model after performing inference over φi. We find it beneficial to introduce additional dependen-
cies of the prior on the training data to compensate for using the MAP estimate to approximate p(φi), as shown
on the right.

3 Preliminaries

In the meta-learning problem setting that we consider, the goal is to learn models that can learn new
tasks from small amounts of data. To do so, meta-learning algorithms require a set of meta-training
and meta-testing tasks drawn from some distribution p(T ). The key assumption of learning-to-learn
is that the tasks in this distribution share common structure that can be exploited for faster learning of
new tasks. Thus, the goal of the meta-learning process is to discover that structure. In this section,
we will introduce notation and overview the model-agnostic meta-learning (MAML) algorithm [9].

Meta-learning algorithms proceed by sampling data from a given task, and splitting the sampled
data into a set of a few datapoints, Dtr used for training the model and a set of datapoints for
measuring whether or not training was effective, Dtest. This second dataset is used to measure
few-shot generalization drive meta-training of the learning procedure. The MAML algorithm trains
for few-shot generalization by optimizing for a set of initial parameters θ such that one or a few steps
of gradient descent on Dtr achieves good performance on Dtest. Specifically, MAML performs the
following optimization:

min
θ

∑

Ti∼p(T )

L(θ − α∇θL(θ,D
tr
Ti
),Dtest

Ti
) = min

θ

∑

Ti∼p(T )

L(φi,D
test
Ti

)

where φi is used to denote the parameters updated by gradient descent and where the loss corresponds
to negative log likelihood of the data. In particular, in the case of supervised classification with inputs
{xj}, their corresponding labels {yj}, and a classifier fθ, we will denote the negative log likelihood
of the data under the classifier as L(θ,D) = −

∑

(xj ,yj)∈D
log p(yj |xj , θ). This corresponds to the

cross entropy loss function.

4 Method

Our goal is to build a meta-learning method that can handle the uncertainty and ambiguity that occurs
when learning from small amounts of data, while scaling to highly-expressive function approximators
such as neural networks. To do so, we set up a graphical model for the few-shot learning problem.
In particular, we want a hierarchical Bayesian model that includes random variables for the prior
distribution over function parameters, θ, the distribution over parameters for a particular task, φi, and
the task training and test datapoints. This graphical model is illustrated in Figure 1 (left), where tasks
are indexed over i and datapoints are indexed over j. We will use the shorthand x

tr
i ,y

tr
i ,x

test
i ,ytest

i to
denote the sets of datapoints {xtr

i,j | ∀ j}, {y
tr
i,j | ∀ j}, {x

test
i,j | ∀ j}, {y

test
i,j | ∀ j} and Dtr

i ,D
test
i to denote

{xtr
i ,y

tr
i } and {xtest

i ,ytest
i }.

4.1 Gradient-Based Meta-Learning with Variational Inference

In the graphical model in Figure 1, the predictions for each task are determined by the task-specific
model parameters φi. At meta-test time, these parameters are influenced by the prior p(φi|θ), as well
as by the observed training data x

tr,ytr. The test inputs xtest are also observed, but the test outputs
y

test, which need to be predicted, are not observed. Note that φi is thus independent of xtest, but not of

3



x
tr,ytr. Therefore, posterior inference over φi must take into account both the evidence (training set)

and the prior imposed by p(θ) and p(φi|θ). Conventional MAML can be interpreted as approximating
maximum a posteriori inference under a simplified model where p(θ) is a delta function, and inference
is performed by running gradient descent on log p(ytr|xtr, φi) for a fixed number of iterations starting
from φ0i = E[θ] [15]. The corresponding distribution p(φi|θ) is approximately Gaussian, with a
mean that depends on the step size and number of gradient steps. When p(θ) is not deterministic, we
must make a further approximation to account for the random variable θ.

One way we can do this is by using structured variational inference. In structured variational
inference, we approximate the distribution over the hidden variables θ and φi for each task with some
approximate distribution qi(θ, φi). There are two reasonable choices we can make for qi(θ, φi). First,
we can approximate it as a product of independent marginals, according to qi(θ, φi) = qi(θ)qi(φi).
However, this approximation does not permit uncertainty to propagate effectively from θ to φi. A
more expressive approximation is the structured variational approximation qi(θ, φi) = qi(θ)qi(φi|θ).
We can further avoid storing a separate variational distribution qi(φi|θ) and qi(θ) for each task
Ti by employing an amortized variational inference technique [22, 21, 36], where we instead set
qi(φi|θ) = qψ(φi|θ,x

tr
i ,y

tr
i ,x

test
i ,ytest

i ), where qψ is defined by some function approximator with
parameters ψ that takes x

tr
i ,y

tr
i as input, and the same qψ is used for all tasks. Similarly, we can

define qi(θ) as qψ(θ|x
tr
i ,y

tr
i ,x

test
i ,ytest

i ). We can now write down the variational lower bound on the
log-likelihood as

log p(ytest
i |xtest

i ,xtr
i ,y

tr
i ) ≥ E

θ,φi∼qψ

[

log p(ytr
i |x

tr
i , φi)+log p(ytest

i |xtest
i , φi)+log p(φi|θ)+log p(θ)

]

+

H(qψ(φi|θ,x
tr
i ,y

tr
i ,x

test
i ,ytest

i )) +H(qψ(θ|x
tr
i ,y

tr
i ,x

test
i ,ytest

i )).

The likelihood terms on the first line can be evaluated efficiently: given a sample
θ, φi ∼ q(θ, φi|x

tr
i ,y

tr
i ,x

test
i ,ytest

i ), the training and test likelihoods simply correspond to the loss
of the network with parameters φi. The prior p(θ) can be chosen to be Gaussian, with a learned mean
and (diagonal) covariance to provide for flexibility to choose the prior parameters. This corresponds
to a Bayesian version of the MAML algorithm. We will define these parameters as µθ and σ

2
θ . Lastly,

p(φi|θ) must be chosen. This choice is more delicate. One way to ensure a tractable likelihood is to
use a Gaussian with mean θ. This choice is reasonable, because it encourages φi to stay close to the
prior parameters φi, but we will see in the next section how a more expressive implicit conditional
can be obtained using gradient descent, resulting in a procedure that more closely resembles the
original MAML algorithm while still modeling the uncertainty. Lastly, we must choose a form for the
inference networks qψ(φi|θ,x

tr
i ,y

tr
i ,x

test
i ,ytest

i ) and qψ(θ|x
tr
i ,y

tr
i ,x

test
i ,ytest

i ). They must be chosen so
that their entropies on the second line of the above equation are tractable. Furthermore, note that both
of these distributions model very high-dimensional random variables: a deep neural network can
have hundreds of thousands or millions of parameters. So while we can use an arbitrary function
approximator, we would like to find a scalable solution.

One convenient solution is to allow qψ to reuse the learned mean of the prior µθ. We observe that
adapting the parameters with gradient descent is a good way to update them to a given training set
x

tr
i ,y

tr
i and test set xtest

i ,ytest
i , a design decision similar to one made by Fortunato et al. [11]. We

propose an inference network of the form

qψ(θ|x
tr
i ,y

tr
i ,x

test
i ,ytest

i ) = N (µθ + γq∇µθ log p(y
tr
i |x

tr
i ,µθ) + γq∇µθ log p(y

test
i |xtest

i ,µθ);vq),

where vq is a learned (diagonal) covariance, and the mean has an additional parameter beyond µθ,
which is a “learning rate” vector γq that is pointwise multiplied with the gradient. While this choice
may at first seem arbitrary, there is a simple intuition: the inference network should produce a sample
of θ that is close to the posterior p(θ|xtr

i ,y
tr
i ,x

test
i ,ytest

i ). A reasonable way to arrive at a value of θ

close to this posterior is to adapt it to both the training set and test set.2 Note that this is only done
during meta-training. It remains to choose qψ(φi|θ,x

tr
i ,y

tr
i ,x

test
i ,ytest

i ), which can also be formulated
as a conditional Gaussian with mean given by applying gradient descent.

Although this variational distribution is substantially more compact in terms of parameters than a
separate neural network, it only provides estimates of the posterior during meta-training. At meta-test
time, we must obtain the posterior p(φi|x

tr
i ,y

tr
i ,x

test
i ), without access to y

test
i . We can train a separate

set of inference networks to perform this operation, potentially also using gradient descent within
the inference network. However, these networks do not receive any gradient information during

2In practice, we can use multiple gradient steps for the mean, but we omit this for notational simplicity.
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Algorithm 1 Meta-training, differences from MAML in red

Require: p(T ): distribution over tasks
1: initialize Θ := {µθ,σ

2

θ ,vq,γp,γq}
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: Dtr,Dtest = Ti

6: Evaluate ∇µθ
L(µθ,D

test)
7: Sample θ ∼ q = N (µθ − γq∇µθ

L(µθ,D
test),vq)

8: Evaluate ∇θL(θ,D
tr)

9: Compute adapted parameters with gradient descent:
φi = θ − α∇θL(θ,D

tr)

10: Let p(θ|Dtr) = N (µθ − γp∇µθ
L(µθ,D

tr),σ2

θ))
11: Compute ∇Θ

(
∑

Ti
L(φi,D

test)

+DKL(q(θ|D
test) || p(θ|Dtr))

)

12: Update Θ using Adam

Algorithm 2 Meta-testing

Require: training data Dtr
T for new task T

Require: learned Θ
1: Sample θ from the prior p(θ|Dtr)
2: Evaluate ∇θL(θ,D

tr)
3: Compute adapted parameters with gra-

dient descent:
φi = θ − α∇θL(θ,D

tr)

meta-training, and may not work well in practice. In the next section we propose an even simpler and
more practical approach that uses only a single inference network during meta-training, and none
during meta-testing.

4.2 Probabilistic Model-Agnostic Meta-Learning Approach with Hybrid Inference

To formulate a simpler variational meta-learning procedure, we recall the probabilistic interpretation
of MAML: as discussed by Grant et al. [15], MAML can be interpreted as approximate inference for
the posterior p(ytest

i |xtr
i ,y

tr
i ,x

test
i ) according to

p(ytest
i |xtr

i ,y
tr
i ,x

test
i ) =

∫

p(ytest
i |xtest

i , φi)p(φi|x
tr
i ,y

tr
i , θ)dφi ≈ p(ytest

i |xtest
i , φ⋆i ), (1)

where we use the maximum a posteriori (MAP) value φ⋆i . It can be shown that, for likelihoods
that are Gaussian in φi, gradient descent for a fixed number of iterations using x

tr
i , ytr

i corresponds
exactly to maximum a posteriori inference under a Gaussian prior p(φi|θ) [34]. In the case of
non-Gaussian likelihoods, the equivalence is only locally approximate, and the exact form of the prior
p(φi|θ) is intractable. However, in practice this implicit prior can actually be preferable to an explicit
(and simple) Gaussian prior, since it incorporates the rich nonlinear structure of the neural network
parameter manifold, and produces good performance in practice [9, 15]. We can interpret this MAP
approximation as inferring an approximate posterior on φi of the form p(φi|x

tr
i ,y

tr
i , θ) ≈ δ(φi = φ⋆i ),

where φ⋆i is obtained via gradient descent on the training set xtr
i ,y

tr
i starting from θ. Incorporating

this approximate inference procedure transforms the graphical model in Figure 1 (a) into the one in
Figure 1 (b), where there is now a factor over p(φi|x

tr
i ,y

tr
i , θ). While this is a crude approximation

to the likelihood, it provides us with an empirically effective and simple tool that greatly simplifies
the variational inference procedure described in the previous section, in the case where we aim
to model a distribution over the global parameters p(θ). After using gradient descent to estimate
p(φi | x

tr
i ,y

tr
i , θ), the graphical model is transformed into the model shown in the center of Figure 1.

Note that, in this new graphical model, the global parameters θ are independent of xtr and y
tr and are

independent of xtest when y
test is not observed. Thus, we can now write down a variational lower

bound for the logarithm of the approximate likelihood, which is given by

log p(ytest
i |xtest

i ,xtr
i ,y

tr
i ) ≥ Eθ∼qψ

[

log p(ytest
i |xtest

i , φ⋆i ) + log p(θ)
]

+H(qψ(θ|x
test
i ,ytest

i )).

In this bound, we essentially perform approximate inference via MAP on φi to obtain p(φi|x
tr
i ,y

tr
i , θ),

and use the variational distribution for θ only. Note that qψ(θ|x
test
i ,ytest

i ) is not conditioned on the
training set xtr

i ,y
tr
i since θ is independent of it in the transformed graphical model. Analogously to

the previous section, the inference network is given by

qψ(θ|x
test
i ,ytest

i ) = N (µθ + γq∇ log p(ytest
i |xtest

i ,µθ);vq).

To evaluate the variational lower bound during training, we can use the following procedure:
first, we evaluate the mean by starting from µθ and taking one (or more) gradient steps on
log p(ytest

i |xtest
i , θcurrent), where θcurrent starts at µθ. We then add noise with variance vq, which
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is made differentiable via the reparameterization trick [22]. We then take additional gradient steps
on the training likelihood log p(ytr

i |x
tr
i , θcurrent). This accounts for the MAP inference procedure

on φi. Training of µθ, σ2
θ , and vq is performed by backpropagating gradients through this entire

procedure with respect to the variational lower bound, which includes a term for the likelihood
log p(ytest

i |xtest
i ,xtr,ytr, φ⋆i ) and the KL-divergence between the sample θ ∼ qψ and the prior p(θ).

This meta-training procedure is detailed in Algorithm 1.

At meta-test time, the inference procedure is much simpler. The test labels are not available, so we
simply sample θ ∼ p(θ) and perform MAP inference on φi using the training set, which corresponds
to gradient steps on log p(ytr

i |x
tr
i , θcurrent), where θcurrent starts at the sampled θ. This meta-testing

procedure is detailed in Algorithm 2.

4.3 Adding Additional Dependencies

In the transformed graphical model, the training data x
tr
i ,y

tr
i and the prior θ are conditionally inde-

pendent. However, since we have only a crude approximation to p(φi | x
tr
i ,y

tr
i , θ), this independence

often doesn’t actually hold. We can allow the model to compensate for this approximation by ad-
ditionally conditioning the learned prior p(θ) on the training data. In this case, the learned “prior”
has the form p(θi|x

tr
i ,y

tr
i ), where θi is now task-specific, but with global parameters µθ and σ

2
θ . We

thus obtain the modified graphical model in Figure 1 (c). Similarly to the inference network qψ , we
parameterize the learned prior as follows:

p(θi|x
tr
i ,y

tr
i ) = N (µθ + γp∇ log p(ytr

i |x
tr
i ,µθ);σ

2
θ).

With this new form for distribution over θ, the variational training objective uses the likelihood term
log p(θi|x

tr
i ,y

tr
i ) in place of log p(θ), but otherwise is left unchanged. At test time, we sample from

θ ∼ p(θ|xtr
i ,y

tr
i ) by first taking gradient steps on log p(ytr

i |x
tr
i , θcurrent), where θcurrent is initialized at

µθ, and then adding noise with variance σ2
θ . Then, we proceed as before, performing MAP inference

on φi by taking additional gradient steps on log p(ytr
i |x

tr
i , θcurrent) initialized at the sample θ. In our

experiments, we find that this more expressive distribution often leads to better performance.

5 Experiments

The goal of our experimental evaluation is to answer the following questions: (1) can our approach
enable sampling from the distribution over potential functions underlying the training data?, (2)
does our approach improve upon the MAML algorithm when there is ambiguity over the class
of functions?, and (3) can our approach scale to deep convolutional networks? We study two
illustrative toy examples and a realistic ambiguous few-shot image classification problem. For the
both experimental domains, we compare MAML to our probabilistic approach. We will refer to
our version of MAML as a PLATIPUS (Probabilistic LATent model for Incorporating Priors and
Uncertainty in few-Shot learning), due to its unusual combination of two approximate inference
methods: amortized inference and MAP. Both PLATIPUS and MAML use the same neural network
architecture and the same number of inner gradient steps. We additionally provide a comparison on
the MiniImagenet benchmark and specify the hyperparameters in the supplementary appendix.

Illustrative 5-shot regression. In this 1D regression problem, different tasks correspond to different
underlying functions. Half of the functions are sinusoids, and half are lines, such that the task
distribution is clearly multimodal. The sinusoids have amplitude and phase uniformly sampled from
the range [0.1, 5] and [0, π], and the lines have the slope and intercept sampled in the range [−3, 3].
The input domain is uniform on [−5, 5], and Gaussian noise with a standard deviation of 0.3 is added
to the labels. We trained both MAML and PLATIPUS for 5-shot regression. In Figure 2, we show
the qualitative performance of both methods, where the ground truth underlying function is shown
in gray and the datapoints in Dtr are shown as purple triangles. We show the function fφi learned
by MAML in black. For PLATIPUS, we sample 10 sets of parameters from p(φi|θ) and plot the
resulting functions in different colors. In the top row, we can see that PLATIPUS allows the model
to effectively reason over the set of functions underlying the provided datapoints, with increased
variance in parts of the function where there is more uncertainty. Further, we see that PLATIPUS is
able to capture the multimodal structure, as the curves are all linear or sinusoidal.

A particularly useful application of uncertainty estimates in few-shot learning is estimating when
more data would be helpful. In particular, seeing a large variance in a particular part of the input
space suggests that more data would be helpful for learning the function in that part of the input space.
On the bottom of Figure 2, we show the results for a single task at meta-test time with increasing
numbers of training datapoints. Even though the model was only trained on training set sizes of 5
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Figure 2: Samples from PLATIPUS trained for 5-shot regression, shown as colored dotted lines. The tasks
consist of regressing to sinusoid and linear functions, shown in gray. MAML, shown in black, is a deterministic
procedure and hence learns a single function, rather than reasoning about the distribution over potential functions.
As seen on the bottom row, even though PLATIPUS is trained for 5-shot regression, it can effectively reason
over its uncertainty when provided variable numbers of datapoints at test time (left vs. right).

Figure 3: Qualitative examples from active learning experiment where the 5 provided datapoints are from
a small region of the input space (shown as purple triangles), and the model actively asks for labels for new
datapoints (shown as blue circles) by choosing datapoints with the largest variance across samples. The model is
able to effectively choose points that leads to accurate predictions with only a few extra datapoints.

datapoints, we observe that PLATIPUS is able to effectively reduce its uncertainty as more and more
datapoints are available. This suggests that the uncertainty provided by PLATIPUS can be used for
approximately gauging when more data would be helpful for learning a new task.

Figure 4: Active learning performance on regres-
sion after up to 5 selected datapoints. PLATIPUS
can use it’s uncertainty estimation to quickly de-
crease the error, while selecting datapoints ran-
domly and using MAML leads to slower learning.

Active learning with regression. To further evalu-
ate the benefit of modeling ambiguity, we now con-
sider an active learning experiment. In particular, the
model can choose the datapoints that it wants labels
for, with the goal of reaching good performance with
a minimal number of additional datapoints. We per-
formed this evaluation in the simple regression setting
described previously. Models were given five initial
datapoints within a constrained region of the input
space. Then, each model selects up to 5 additional
datapoints to be labeled. PLATIPUS chose each dat-
apoint sequentially, choosing the point with maximal
variance across the sampled regressors; MAML se-
lected datapoints randomly, as it has no mechanism to
model ambiguity. As seen in Figure 4, PLATIPUS is
able to reduce its regression error to a much greater
extent when given one to three additional queries, compared to MAML. We show qualitative results
in Figure 3.
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Figure 5: Samples from PLATIPUS for 1-shot classification, shown as colored dotted lines. The 2D classification
tasks all involve circular decision boundaries of varying size and center, shown in gray. MAML, shown in black,
is a deterministic procedure and hence learns a single function, rather than reasoning about the distribution over
potential functions.

Illustrative 1-Shot 2D classification. Next, we study a simple binary classification task, where
there is a particularly large amount of ambiguity surrounding the underlying function: learning to
learn from a single positive example. Here, the tasks consist of classifying datapoints in 2D within
the range [0, 5] with a circular decision boundary, where points inside the decision boundary are
positive and points outside are negative. Different tasks correspond to different locations and radii
of the decision boundary, sampled at uniformly at random from the ranges [1.0, 4.0] and [0.1, 2.0]
respectively. Following Grant et al. [14], we train both MAML and PLATIPUS with Dtr consisting
of a single positive example and Dtest consisting of both positive and negative examples. We plot the
results using the same scheme as before, except that we plot the decision boundary (rather than the
regression function) and visualize the single positive datapoint with a green plus. As seen in Figure 5,
we see that PLATIPUS captures a broad distribution over possible decision boundaries, all of which
are roughly circular. MAML provides a single decision boundary of average size.

Ambiguous image classification. The ambiguity illustrated in the previous settings is common in
real world tasks where images can share multiple attributes. We study an ambiguous extension to the
celebA attribute classification task. Our meta-training dataset is formed by sampling two attributes
at random to form a positive class and taking the same number of random examples without either
attribute to from the negative classes. To evaluate the ability to capture multiple decision boundaries
while simultaneously obtaining good performance, we evaluate our method as follows: We sample
from a test set of three attributes and a corresponding set of images with those attributes. Since the
tasks involve classifying images that have two attributes, this task is ambiguous, and there are three
possible combinations of two attributes that explain the training set. We sample models from our
prior as described in Section 4 and assign each of the sampled models to one of the three possible
tasks based on its log-likelihood. If each of the three possible tasks is assigned a nonzero number
of samples, this means that the model effectively covers all three possible modes that explain the
ambiguous training set. We can measure coverage and accuracy from this protocol. The coverage
score indicates the average number of tasks (between 1 and 3) that receive at least one sample for
each ambiguous training set, and the accuracy score is the average number of correct classifications
on these tasks (according to the sampled models assigned to them). A highly random method will
achieve good coverage but poor accuracy, while a deterministic method will have a coverage of 1. We
additionally compute the log-likelihood across the ambiguous tasks which compares each method’s
ability to model all of the “modes”. As is standard in amortized variational inference (e.g., with
VAEs), we put a multiplier β in front of the KL-divergence against the prior [17] in Algorithm 1. We
find that larger values result in more diverse samples, at a modest cost in performance, and therefore
report two different values of β to illustrate this tradeoff.

Our results are summarized in Table 5 and Fig. 6. Our method attains better log-likelihood, and a
comparable accuracy compared to standard MAML. More importantly, deterministic MAML only
ever captures one mode for each ambiguous task, where the maximum is three. Our method on
average captures closer to two modes on average. The qualitative analysis in Figure 6 illustrates3 an
example ambiguous training set, example images for the three possible two-attribute pairs that can
correspond to this training set, and the classifications made by different sampled classifiers trained on
the ambiguous training set. Note that the different samples each pay attention to different attributes,
indicating that PLATIPUS is effective at capturing the different modes of the task.

6 Discussion and Future Work

We introduced an algorithm for few-shot meta-learning that enables simple and effective sampling of
models for new tasks at meta-test time. Our algorithm, PLATIPUS, adapts to new tasks by running

3Additional qualitative results and code can be found at https://sites.google.com/view/probabilistic-maml/
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Figure 6: Sampled classifiers for an ambiguous meta-test task. In the meta-test training set (a), PLATIPUS
observes five positives that share three attributes, and five negatives. A classifier that uses any two attributes
can correctly classify the training set. On the right (b), we show the three possible two-attribute tasks that the
training set can correspond to, and illustrate the labels (positive indicated by purple border) predicted by the
best sampled classifier for that task. We see that different samples can effectively capture the three possible
explanations, with some samples paying attention to hats (2nd and 3rd column) and others not (1st column).

Ambiguous celebA (5-shot)

Accuracy Coverage (max=3) Average NLL

MAML 89.00 ± 1.78% 1.00 ± 0.0 0.73 ± 0.06

MAML + noise 84.3± 1.60 % 1.89 ± 0.04 0.68± 0.05
PLATIPUS (ours) (KL weight = 0.05) 88.34 ± 1.06 % 1.59 ± 0.03 0.67± 0.05

PLATIPUS (ours) (KL weight = 0.15) 87.8 ± 1.03 % 1.94 ± 0.04 0.56 ± 0.04

Table 1: Our method covers almost twice as many tasks compared to MAML, with comparable
accuracy. MAML + noise is a method that adds noise to the gradient, but does not perform variational
inference. This improves coverage, but results in lower accuracy average log likelihood. We bold
results above the highest confidence interval lowerbound.

gradient descent with injected noise. During meta-training, the model parameters are optimized with
respect to a variational lower bound on the likelihood for the meta-training tasks, so as to enable
this simple adaptation procedure to produce approximate samples from the model posterior when
conditioned on a few-shot training set. This approach has a number of benefits. The adaptation
procedure is exceedingly simple, and the method can be applied to any standard model architecture.
The algorithm introduces a modest number of additional parameters: besides the initial model weights,
we must learn a variance on each parameter for the inference network and prior, and the number of
parameters scales only linearly with the number of model weights. Our experimental results show that
our method can be used to effectively sample diverse solutions to both regression and classification
tasks at meta-test time, including with task families that have multi-modal task distributions. We
additionally showed how our approach can be applied in settings where uncertainty can directly guide
data acquisition, leading to better few-shot active learning.

Although our approach is simple and broadly applicable, it has potential limitations that could be
addressed in future work. First, the current form of the method provides a relatively impoverished
estimator of posterior variance, which might be less effective at gauging uncertainty in settings where
different tasks have different degrees of ambiguity. In such settings, making the variance estimator
dependent on the few-shot training set might produce better results, and investigating how to do this
in a parameter efficient manner would be an interesting direction for future work. Another exciting
direction for future research would be to study how our approach could be applied in RL settings for
acquiring structured, uncertainty-guided exploration strategies in meta-RL problems.
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