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Abstract

We present a learning-based approach to computing solutions for certain NP-
hard problems. Our approach combines deep learning techniques with useful
algorithmic elements from classic heuristics. The central component is a graph
convolutional network that is trained to estimate the likelihood, for each vertex
in a graph, of whether this vertex is part of the optimal solution. The network
is designed and trained to synthesize a diverse set of solutions, which enables
rapid exploration of the solution space via tree search. The presented approach is
evaluated on four canonical NP-hard problems and five datasets, which include
benchmark satisfiability problems and real social network graphs with up to a
hundred thousand nodes. Experimental results demonstrate that the presented
approach substantially outperforms recent deep learning work, and performs on par
with highly optimized state-of-the-art heuristic solvers for some NP-hard problems.
Experiments indicate that our approach generalizes across datasets, and scales to
graphs that are orders of magnitude larger than those used during training.

1 Introduction
Many of the most important algorithmic problems in computer science are NP-hard. But their
worst-case complexity does not diminish their practical role in computing. NP-hard problems arise as
a matter of course in computational social science, operations research, electrical engineering, and
bioinformatics, and must be solved as well as possible, their worst-case complexity notwithstanding.
This motivates vigorous research into the design of approximation algorithms and heuristic solvers.
Approximation algorithms provide theoretical guarantees, but their scalability may be limited and
algorithms with satisfactory bounds may not exist [3, 38]. In practice, NP-hard problems are often
solved using heuristics that are evaluated in terms of their empirical performance on problems of
various sizes and difficulty levels [15].

Recent progress in deep learning has stimulated increased interest in learning algorithms for NP-hard
problems. Convolutional networks and reinforcement learning have been applied with inspiring
results to the game Go, which is theoretically intractable [34, 35]. Recent work has also considered
classic NP-hard problems, such as Satisfiability, Travelling Salesman, Knapsack, Minimum Vertex
Cover, and Maximum Cut [37, 6, 10, 32, 25]. The appeal of learning-based approaches is that they
may discover useful patterns in the data that may be hard to specify by hand, such as graph motifs
that can indicate a set of vertices that belong to an optimal solution.

In this paper, we present a new approach to solving NP-hard problems that can be expressed in
terms of graphs. Our approach combines deep learning techniques with useful algorithmic elements
from classic heuristics. The central component is a graph convolutional network (GCN) [12, 24]
that is trained to predict the likelihood, for each vertex, of whether this vertex is part of the optimal
solution. A naive implementation of this idea does not yield good results, because there may be many
optimal solutions, and each vertex could participate in some of them. A network trained without
provisions that address this can generate a diffuse and uninformative likelihood map. To overcome
this problem, we use a network structure and loss that allows the network to synthesize a diverse set
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of solutions, which enables the network to explicitly disambiguate different modes in the solution
space. This trained GCN is used to guide a parallelized tree search procedure that rapidly generates a
large number of candidate solutions, one of which is chosen after subsequent refinement.

We apply the presented approach to four canonical NP-hard problems: Satisfiability (SAT), Maximal
Independent Set (MIS), Minimum Vertex Cover (MVC), and Maximal Clique (MC). The approach
is evaluated on two SAT benchmarks, an MC benchmark, real-world citation network graphs, and
social network graphs with up to one hundred thousand nodes from the Stanford Large Network
Dataset Collection. The experiments indicate that our approach substantially outperforms recent
state-of-the-art (SOTA) deep learning work. For example, on the SATLIB benchmark, our approach
solves all of the problems in the test set, while a recent method based on reinforcement learning does
not solve any. The experiments also indicate that our approach performs on par with or better than
highly-optimized contemporary solvers based on traditional heuristic methods. Furthermore, the
experiments indicate that the presented approach generalizes across datasets and scales to graphs that
are orders of magnitude larger than those used during training.

2 Background
Approaches to solving NP-hard problems include approximation algorithms with provable guarantees
and heuristics tuned for empirical performance [20, 36, 38, 15]. A variety of heuristics are employed
in practice, including greedy algorithms, local search, genetic algorithms, simulated annealing,
particle swarm optimization, and others. By and large, the heuristics are based on extensive manual
tuning and domain expertise.

Learning-based approaches have the potential to yield more effective empirical algorithms for NP-
hard problems by learning from large datasets. The learning procedure can detect useful patterns and
leverage regularities in real-world data that may escape human algorithm designers. He et al. [19]
learned a node selection policy for branch-and-bound algorithms with imitation learning. Silver et al.
[34, 35] used reinforcement learning to learn strategies for the game Go that achieved unprecedented
results. Vinyals et al. [37] developed a new neural network architecture called a pointer network,
and applied it to small-scale planar Travelling Salesman Problem (TSP) instances with up to 50
nodes. Bello et al. [6] used reinforcement learning to train pointer networks to generate solutions
for synthetic planar TSP instances with up to 100 nodes, and also demonstrated their approach on
synthetic random Knapsack problems with up to 200 elements.

Most recently, Dai et al. [10] used reinforcement learning to train a deep Q-network (DQN) to
incrementally construct solutions to graph-based NP-hard problems, and showed that this approach
outperforms prior learning-based techniques. Our work is related, but differs in several key respects.
First, we do not use reinforcement learning, which is known as a particularly challenging optimization
problem. Rather, we show that very strong performance and generalization can be achieved with
supervised learning, which benefits from well-understood and reliable solvers. Second, we use a
different predictive model, a graph convolutional network [12, 24]. Third, we design and train the
network to synthesize a diverse set of solutions at once. This is key to our approach and enables rapid
exploration of the solution space.

A technical note by Nowak et al. [30] describes an application of graph neural networks to the
quadratic assignment problem. The authors report experiments on matching synthetic random 50-
node graphs and generating solutions for 20-node random planar TSP instances. Unfortunately, the
results did not surpass classic heuristics [9] or the results achieved by pointer networks [37].

3 Preliminaries
NP-complete problems are closely related to each other and all can be reduced to each other in
polynomial time. (Of course, not all such reductions are efficient.) In this work we focus on four
canonical NP-hard problems [22].
Maximal Independent Set (MIS). Given an undirected graph, find the largest subset of vertices in
which no two are connected by an edge.
Minimum Vertex Cover (MVC). Given an undirected graph, find the smallest subset of vertices
such that each edge in the graph is incident to at least one vertex in the selected set.
Maximal Clique (MC). Given an undirected graph, find the largest subset of vertices that form a
clique.
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Figure 1: Algorithm overview. First, the input graph is reduced to an equivalent smaller graph. Then
it is fed into the graph convolutional network f , which generates multiple probability maps that
encode the likelihood of each vertex being in the optimal solution. The probability maps are used to
iteratively label the vertices until all vertices are labelled. A complete labelling corresponds to a leaf
in the search tree. Internal nodes in the search tree represent incomplete labellings that are generated
along the way. The complete labellings generated by the tree search are refined by rapid local search.
The best result is used as the final output.

Satisfiability (SAT). Consider a Boolean expression that is built from Boolean variables, parentheses,
and the following operators: AND (conjunction), OR (disjunction), and NOT (negation). Here a
Boolean expression is a conjunction of clauses, where a clause is a disjunction of literals. A literal is
a Boolean variable or its negation. The problem is to find a Boolean labeling of all variables such that
the given expression is true, or determine that no such label assignment exists.

All these problems can be reduced to each other. In particular, the MVC, MC, and SAT problems can
all be represented as instances of the MIS problem, as reviewed in the supplementary material. Thus,
Section 4 will focus primarily on the MIS problem, although the basic structure of the approach is
more general. The experiments in Section 5 will be conducted on benchmarks and datasets for all
four problems, which will be solved by converting them and solving the equivalent MIS problem.

4 Method
Consider a graph G = (V, E ,A), where V = {vi}Ni=1 is the set of N vertices in G, E is the set of E
edges, and A ∈ {0, 1}N×N is the corresponding unweighted symmetric adjacent matrix. Given G,
our goal is to produce a binary labelling for each vertex in G, such that label 1 indicates that a vertex
is in the independent set and label 0 indicates that it’s not.

A natural approach to this problem is to train a deep network of some form to perform the labelling.
That is, a network f would take the graph G as input, and the output f(G) would be a binary labelling
of the nodes. A natural output representation is a probability map in [0, 1]N that indicates how likely
each vertex is to belong to the MIS. This direct approach did not work well in our experiments. The
problem is that converting the probability map f(G) to a discrete assignment generally yields an
invalid solution. (A set that is not independent.) Instead, we will use a network f within a tree search
procedure.

We begin in Section 4.1 by describing a basic network architecture for f . This network generates
a probability map over the input graph. The network is used in a basic MIS solver that leverages
it within a greedy procedure. Then, in Section 4.2 we modify the architecture and training of
f to synthesize multiple diverse probability maps, and leverage this within a more powerful tree
search procedure. Finally, Section 4.3 describes two ideas adopted from classic heuristics that are
complementary to the application of learning and are useful in accelerating computation and refining
candidate solutions. The overall algorithm is illustrated in Figure 1.

4.1 Initial approach
We begin by describing a basic approach that introduces the overall network architecture and leads to
a basic MIS solver. This will be extended into a more powerful solver in Section 4.2.

Let D = {(Gi, li)} be a training set, where Gi is a graph as defined above and li ∈ {0, 1}N×1 is
one of the optimal solutions for the NP-hard graph problem. li is a binary map that specifies which
vertices are included in the solution. The network f(Gi;θ) is parameterized by θ and is trained to
predict li given Gi.
We use a graph convolutional network (GCN) architecture [12, 24]. This architecture can perform
dense prediction over a graph with pairwise edges. (See [7, 14] for overviews of related architectures.)
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A GCN consists of multiple layers {Hl} where Hl ∈ RN×Cl

is the feature layer in the l-th layer and
Cl is the number of feature channels in the l-th layer. We initialize the input layer H0 with all ones
and Hl+1 is computed from the previous layer Hl with layer-wise convolutions:

Hl+1 = σ(Hlθl
0 +D−

1
2AD−

1
2Hlθl

1), (1)

where θl
0 ∈ RCl×Cl+1

and θl
1 ∈ RCl×Cl+1

are trainable weights in the convolutions of the network,
D is the degree matrix of A with its diagonal entry D(i, i) =

∑
j A(j, i), and σ(·) is a nonlinear

activation function (ReLU [29]). For the last layer HL, we do not use ReLU but apply a sigmoid to
get a likelihood map.

During training, we minimize the binary cross-entropy loss for each training sample (Gi, li):

`(li, f(Gi;θ)) =
N∑
j=1

{lij log(fj(Gi;θ)) + (1− lij) log(1− fj(Gi;θ))}, (2)

where lij is the j-th element of li and fj(Gi;θ) is the j-th element of f(Gi;θ).
The output f(Gi;θ) of a trained network is generally not a binary vector but real-valued vector in
[0, 1]N . Simply rounding the real values to 0 or 1 may violate the independence constraints. A
simple solution is to treat the prediction f(Gi;θ) as a likelihood map over vertices and use the trained
network within a greedy growing procedure that makes sure that the constraints are satisfied.

In this setup, f(G;θ) is used as the heuristic function for a greedy search algorithm for MIS. Given
G, the algorithm labels a batch of vertices with 1 or 0 recursively. First, we sort all the vertices in
descending order based on f(G). Then we iterate over the sorted list in order and label each vertex as
1 and its neighbors as 0. This process stops when the next vertex in the sorted list is already labelled
as 0. We remove all the labelled vertices and the incident edges from G and obtain a residual graph
G′. We use G′ as input to f , obtain a new likelihood map, and repeat the process. The complete basic
algorithm, referred to as BasicMIS, is specified in the supplementary material.

4.2 Diversity and tree search
One weakness of the approach presented so far is that the network can get confused when there
are multiple optimal solutions for the same graph. For instance, Figure 2 shows two equivalent
optimal solutions that induce completely different labellings. In other words, the solution space is
multimodal and there are many different modes that may be encountered during training. Without
further provisions, the network may learn to produce a labelling that “splits the difference” between
the possible modes. In the setting of Figure 2 this would correspond to a probability assignment of
0.5 to each vertex, which is not a useful labelling.

Solution 1 Solution 2
Figure 2: Two equivalent solutions for MIS on a
four-vertex graph. The black vertices indicate the
solution.

To enable the network to differentiate be-
tween different modes, we extend the struc-
ture of f to generate multiple probability
maps. Given the input graph G, the re-
vised network f generates M probability maps:〈
f1(Gi;θ), . . . , fM (Gi;θ)

〉
. To train f to gen-

erate diverse high-quality probability maps, we
adopt the hindsight loss [18, 8, 28]:

L(D,θ) =
∑
i

min
m

`(li, f
m(Gi;θ)), (3)

where `(·, ·) is the binary cross-entropy loss de-
fined in Equation 2. Note that the loss for a given training sample in Equation 3 is determined solely
by the most accurate solution for that sample. This allows the network to spread its bets and generate
multiple diverse solutions, each of which can be sharper.

Another advantage of producing multiple diverse probability maps is that we can explore multiple
solutions with each run of f . Naively, we could apply the basic algorithm for each fm(Gi;θ),
generating at least M solutions. We can in principle generate exponentially many solutions, since
in each iteration we can get M probability maps for labelling the graph. We do not generate an
exponential number of solutions, but leverage the new f within a tree search procedure that generates
a large number of solutions.
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Ideally, we want to explore a large amount of diverse solutions in a limited time and choose the best
one. The basic idea of the tree search algorithm is that we maintain a queue of incomplete solutions
and randomly choose one of them to expand in each step. When we expand an incomplete solution,
we use M probability maps

〈
f1(Gi;θ), . . . , fM (Gi;θ)

〉
to spawn M new more complete solutions,

which are added to the queue. This is akin to breadth-first search, rather than depth-first search. If we
expand the tree in depth-first fashion, the diversity of solutions will suffer as most of them have the
same ancestors. By expanding the tree in breadth-first fashion, we can get higher diversity. To this
end, the expanded tree nodes are kept in a queue and one is selected at random in each iteration for
expansion. On a desktop machine used in our experiments, this procedure yields up to 20K diverse
solutions in 10 minutes for a graph with 1,000 vertices. The revised algorithm is summarized in the
supplement.

The presented tree search algorithm is inherently parallelizable, and can thus be significantly acceler-
ated. The basic idea is to run multiple threads that choose different incomplete solutions from the
queue and expand them. The parallelized tree search algorithm is summarized in the supplement.
On the same desktop machine, the parallelized procedure yields up to 100K diverse solutions in 10
minutes for a graph with 1,000 vertices.

4.3 Classic elements
Local search. In the literature on approximation algorithms for NP-hard problems, there are useful
heuristic strategies that modify a solution locally by simply inserting, deleting, and swapping nodes
such that the solution quality can only improve [5, 16, 2]. We use this approach to refine the candidate
solutions produced by tree search. Specifically, we use a 2-improvement local search algorithm [2, 13].
More details can be found in the supplement.
Graph reduction. There are also graph reduction techniques that can rapidly reduce a graph to
a smaller one [1, 26] while preserving the size of the optimal MIS. This accelerates computation
by only applying f to the “complex” part of the graph. The reduction techniques we adopted are
described in the supplement.

5 Experiments
5.1 Experimental setup
Datasets. For training, we use the SATLIB benchmark [21]. This dataset provides 40,000 synthetic
3-SAT instances that are all satisfiable; each instance consists of about 400 clauses with 3 literals. We
convert these SAT instances to equivalent MIS graphs, which have about 1,200 vertices each. We
will show that a network trained on these graphs generalizes to other problems, datasets, and to much
larger graphs. We partition the dataset at random into a training set of size 38,000, a validation set of
size 1,000, and a test set of size 1,000. The network trained on this training set will be applied to all
other problems and datasets described below.
We evaluate on other problems and datasets as follows:
• SAT Competition 2017 [4]. The SAT Competition is a competitive event for SAT solvers. It was

organized in conjunction with an annual conference on Theory and Applications of Satisfiability
Testing. We evaluate on the 20 instances with the same scale as those in SATLIB. Note that
small-scale does not necessarily mean easy. We evaluate SAT on this dataset in addition to the
SATLIB test set.

• BUAA-MC [39]. This dataset includes 40 hard synthetic MC instances. These problems are
specifically designed to be challenging [39]. The basic idea of generating hard instances is hiding
the optimal solutions in random instances. We evaluate MC, MVC, and MIS on this dataset.

• SNAP Social Networks [27]. This dataset is part of the Stanford Large Network Dataset Collection.
It includes real-world graphs from social networks such as Facebook, Twitter, Google Plus, etc.
(Nodes are people, edges are interactions between people.) We use all social network graphs with
less than a million nodes. The largest graph in the dataset we use has roughly 100,000 vertices and
more than 10 million edges. We treat all edges as undirected. Details of the graphs can be found in
the supplement. We evaluate MVC and MIS on this dataset.

• Citation networks [33]. This dataset includes real-world graphs from academic search engines.
In these graphs, nodes are documents and edges are citations. We treat all edges as undirected.
Details of the graphs can be found in the supplement. We evaluate MVC and MIS on this dataset.

Baselines. We mainly compare the presented approach to the recent deep learning method of Dai
et al. [10]. This approach is referred to as S2V-DQN, following their terminology. For a number of
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experiments, we will also show the results of this approach when it is enhanced by the graph reduction
and local search procedures described in Section 4.3. This will be referred to as S2V-DQN+GR+LS.
Following Dai et al. [10], we also list the performance of a classic greedy heuristic, referred to as
Classic [31], and its enhanced version – Classic+GR+LS. In addition, we calibrate these results
against three powerful alternative methods: a Satisfiability Modulo Theories (SMT) solver called
Z3 [11], a SOTA MIS solver called ReduMIS [26], and a SOTA integer linear programming (ILP)
solver called Gurobi [17].
Network settings. Our network has L = 20 graph convolutional layers, which is deep enough to
get a large receptive field for each node in the input graph. Since our input is a graph without any
feature vectors on vertices, the input H0 contains all-one vectors of size C0 = 32. This input leads
the network to treat all vertices equally, and thus the prediction is made based on the structure of
the graph only. The widths of the intermediate layers are identical: Cl = 32 for l = 1, . . . , L− 1.
The width of the output layer is CL =M , where M is the number of output maps. We use M = 32.
(Experiments indicate that performance saturates at M = 32.)
Training. Since SATLIB consists of synthetic SAT instances, the groud-truth assignments are known.
With the ground-truth assignments, we can generate multiple labelling solutions for the corresponding
graphs by switching on and off the free variables in a clause. We use Adam [23] with single-graph
mini-batches and learning rate 10−4. Training proceeds for 200 epochs and takes about 16 hours on
a desktop with an i7-5960X 3.0 GHz CPU and a Titan X GPU. S2V-DQN is trained on the same
dataset with the same number of iterations.
Testing. For SAT, we report the number of problems that are solved by the evaluated approaches.
This is a very important metric, because there is a big difference in applications between finding a
satisfying assignment or not. It is a binary success/failure outcome. Since we solve the SAT problems
via solving the equivalent MIS problems, we also report the size of the independent set that is found
by the evaluated approaches. Note that it usually takes great effort to increase the size by 1 when
the solution is close to the optimum, and thus small increases in the average size, on the order of 1,
should be regarded as significant. For MVC, MIS, and MC, we report the size of the set identified by
the evaluated approaches. On the BUAA-MC dataset, we also report the fraction of MC problems
that are solved by the different approaches.

5.2 Results
We test all approaches on the same desktop with an i7-5960X 3.0 GHz CPU and a Titan X GPU. Our
tree search algorithm is parallelized with 16 threads. Since the search will continue as long as allowed
for Z3, Gurobi, ReduMIS, and our approach, we set a time limit. For fair comparison, we give the
other methods 16× running time, though we don’t reboot them if they terminate earlier based on their
stopping criteria. On the SATLIB and SAT Competition 2017 datasets, the time limit is 10 minutes.
On the SNAP-SocialNetwork and CitationNetwork datasets with large graphs, the time limit is 30
minutes. There is no time limit for the Classic approach and S2V-DQN, since they only generate one
solution. However, note that on SAT problems these approaches can terminate as soon as a satisfying
assignment is found. Thus, on the SAT problems we report the median termination time.

Method Solved MIS Time (s)

Classic 0.0% 403.98 0.31
Classic+GR+LS 7.9% 424.82 0.45
S2V-DQN 0.0% 413.77 2.26
S2V-DQN+GR+LS 8.9% 424.98 2.41
Gurobi 98.5% 426.86 175.83
Z3 100.0% – 0.01
ReduMIS 100.0% 426.90 47.79
Ours 100.0% 426.90 11.47

Table 1: Results on the SATLIB test set. Fraction
of solved SAT instances, average independent set
size, and runtime.

Method Solved MIS Time (s)

Classic 0.0% 453.25 0.30
Classic+GR+LS 75.0% 491.05 0.45
S2V-DQN 0.0% 462.05 2.19
S2V-DQN+GR+LS 80.0% 491.50 2.37
Gurobi 80.0% – 141.66
Z3 100.0% – 0.01
ReduMIS 100.0% 492.85 21.90
Ours 100.0% 492.85 12.20

Table 2: Results on the SAT Competition 2017.
Fraction of solved SAT instances, average inde-
pendent set size, and runtime.
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We begin by reporting results on the SAT datasets. For each approach, Table 1 reports the percentage
of solved SAT instances and the average independent set size on the test set of the SATLIB dataset.
Note that there are 1,000 instances in the test set. The Classic approach cannot solve a single problem.
S2V-DQN, though it has been trained on similar graphs in the training set, does not solve a single
problem either, possibly because the reinforcement learning procedure did not discover fully satisfying
solutions during training. Looking at the MIS sizes reveals that S2V-DQN discovers solutions that are
close but struggles to get to the optimum. This observation is consistent with the results reported in
the paper [10]. With refinement by the same classic elements we use, S2V-DQN+GR+LS solves 89
SAT instances out of 1,000, and Classic+GR+LS solves 79 SAT instances. In contrast, our approach
solves all 1,000 SAT instances, which is slightly better than the SOTA ILP solver (Gurobi), and same
as the modern SMT solver (Z3) and the SOTA MIS solver (ReduMIS). Note that Z3 directly solves
the SAT problem and cannot solve any transformed MIS problem on the SATLIB dataset.

We also analyze the effect of the number M of diverse solutions in our network. Note that this is
analyzed on the single-threaded tree search algorithm, since the multi-threaded version solves all
instances easily. Figure 3 plots the fraction of solved problems and average size of the computed MIS
solution on the SATLIB validation set for M = 1, 4, 32, 128, 256. The results indicate that increasing
the number of intermediate solutions helps up to M = 32, at which point the performance plateaus.

Table 2 reports results on SAT Competition 2017 instances. Again, both Classic and S2V-DQN solve
0 problems. When augmented by graph reduction and local search, Classic+GR+LS solve 75% of
the problems, and S2V-DQN+GR+LS solves 80%, while our approach solves 100% of the problems.
As sophisticated solvers, Z3 and ReduMIS solve 100%, while Gurobi solves 80%. Note that Gurobi
cannot return a valid solution for some instances, and thus its independent set size is not listed.
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Figure 3: Effect of the hyperparameter M . The
blue curve shows the fraction of solved problems
on the SATLIB validation set for different settings
of M . The orange curve shows the average size of
the computed independent set for different settings
of M .

Table 3 reports results on the BUAA-MC dataset.
We evaluate MC, MIS, and MVC on this dataset.
Since the optimal solutions for MC are given in
this dataset, we report the fraction of MC prob-
lems solved optimally by each approach. Note
that this dataset is designed to be highly chal-
lenging [39]. Most baselines, including Gurobi,
cannot solve a single instance in this dataset.
As a sophisticated MIS solver, ReduMIS solves
25%. S2V-DQN+GR+LS does not find any op-
timal solution on any problem instance. Our
approach solves 62.5% of the instances. Note
that our approach was only trained on synthetic
SAT graphs from a different dataset. We see
that the presented approach generalizes across
datasets and problem types. We also evaluate
MIS and MVC on these graphs. As shown in Ta-
ble 3, our approach outperforms all the baselines
on MIS and MVC.

Method Solved MC MIS MVC

Classic 0.0% 30.03 21.53 991.72
Classic+GR+LS 0.0% 42.83 24.64 988.61
S2V-DQN 0.0% 40.40 23.76 989.49
S2V-DQN+GR+LS 0.0% 42.98 24.70 988.55
Gurobi 0.0% 39.75 24.12 989.13
ReduMIS 25.0% 44.95 24.87 988.38
Ours 62.5% 45.55 25.06 988.19

Table 3: Results on the BUAA-MC dataset. The table
reports the fraction of solved MC problems and the average
size of MC, MIS, and MVS solutions.

Method Solved MIS

Basic 18.8% 425.55
Basic+Tree 59.2% 426.52
No local search 42.4% 426.41
No reduction 91.0% 426.81
Full w/o parallel 98.8% 426.86
Full with parallel 100.0% 426.88

Table 4: Controlled experiment on the
SATLIB validation set. The tables
shows the fraction of solved SAT in-
stances and the average independent
set size.
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Name
MIS MVC

Classic S2V-DQN ReduMIS Ours Classic S2V-DQN ReduMIS Ours

ego-Facebook 993 1,020 1,046 1,046 3,046 3,019 2,993 2,993
ego-Gplus 56,866 56,603 57,394 57,394 50,748 51,011 50,220 50,220
ego-Twitter 36,235 36,275 36,843 36,843 45,071 45,031 44,463 44,463
soc-Epinions1 53,457 53,089 53,599 53,599 22,422 22,790 22,280 22,280
soc-Slashdot0811 53,009 52,719 53,314 53,314 24,351 24,641 24,046 24,046
soc-Slashdot0922 56,087 55,506 56,398 56,398 26,081 26,662 25,770 25,770
wiki-Vote 4,730 4,779 4,866 4,866 2,385 2,336 2,249 2,249
wiki-RfA 8,019 7,956 8,131 8,131 2,816 2,879 2,704 2,704
bitcoin-otc 4,330 4,334 4,346 4,346 1,551 1,547 1,535 1,535
bitcoin-alpha 2,703 2,705 2,718 2,718 1,080 1,078 1,065 1,065

Table 5: Results on the SNAP Social Network graphs. The table lists the sizes of solutions for MIS
and MVC found by the different approaches.

Name
MIS MVC

Classic S2V-DQN ReduMIS Ours Classic S2V-DQN ReduMIS Ours

Citeseer 1,848 1,705 1,867 1,867 1,508 1,622 1,460 1,460
Cora 1,424 1,381 1,451 1,451 1,284 1,327 1,257 1,257
Pubmed 15,852 15,709 15,912 15,912 3,865 4,008 3,805 3,805

Table 6: Results on the citation networks.

Next we report results on large-scale real-world graphs. We use the different approaches to compute
MIS and MVC on the SNAP Social Networks and the Citation Networks. The results are reported in
Tables 5 and 6. Our approach and ReduMIS outperform the other baselines on all graphs. ReduMIS
works as well as out approach, presumably because both methods find the optimal solutions on these
graphs. Gurobi cannot return any valid solution for these large instances, and thus its results are
not listed. One surprising observation is that S2V-DQN does not perform as well as the Classic
approach when the graph size is larger than 10,000 vertices; the reason could be that S2V-DQN does
not generalize well to large graphs. These results indicate that our approach generalizes well across
problem types and datasets. In particular, it generalizes from synthetic graphs to real ones, from SAT
graphs to real-world social networks, and from graphs with roughly 1,000 to graphs with roughly
100,000 nodes and more than 10 million edges. This may indicate that there are universal motifs that
are present in graphs and occur across datasets and scales, and that the presented approach discovers
these motifs.

Finally, we conduct a controlled experiment on the SATLIB validation set to analyze how each
component contributes to the presented approach. Note that this is also analyzed on the single-
threaded tree search algorithm, as the multi-threaded version solves all instances easily. The result is
summarized in Table 4. First, we evaluate the initial approach presented in Section 4.1, augmented
by reduction and local search (but no diversity); we refer to this approach as Basic. Then we evaluate
a different version of Basic that generates multiple solutions and conducts tree search via random
sampling, but does not utilize the diversity loss presented in Section 4.2; we refer to this version as
Basic+Tree. (Basic+Tree is structurally similar to our full pipeline, but does not use the diversity
loss.) Finally, we evaluate two ablated versions of our full pipeline, by removing the local search or
the graph reduction. Our full approach with and without parallelization is listed for comparison. This
experiment demonstrates that all components presented in this paper contribute to the results.

6 Conclusion
We have presented an approach to solving NP-hard problems with graph convolutional networks.
Our approach trains a deep network to perform dense prediction over a graph. We showed that
training the network to produce multiple solutions enables an effective exploration procedure. Our
approach combines deep learning techniques with classic algorithmic ideas. The resulting algorithm
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convincingly outperforms recent work. A particularly encouraging finding is that the approach
generalizes across very different datasets and to problem instances that are larger by orders of
magnitude than ones it was trained on.

We have focused on the maximal independent set (MIS) problem and on problems that can be easily
mapped to it. This is not a universal solution. For example, we did not solve Maximal Clique on the
large SNAP Social Networks and Citation networks, because the complementary graphs of these
large networks are very dense, and all evaluated approaches either run out of memory or cannot return
a result in reasonable time (24 hours). This highlights a limitation of only training a network for
one task (MIS) and indicates the desirability of applying the presented approach directly to other
problems such as Maximal Clique. The structure of the presented approach is quite general and can
be leveraged to train networks that predict likelihood of Maximal Clique participation rather than
likelihood of MIS participation, and likewise for other problems. We see the presented work as a step
towards a new family of solvers for NP-hard problems that leverage both deep learning and classic
heuristics. We will release code to support future progress along this direction.
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