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Abstract

The goal of confidence-set learning in the binary classification setting [14] is to
construct two sets, each with a specific probability guarantee to cover a class. An
observation outside the overlap of the two sets is deemed to be from one of the two
classes, while the overlap is an ambiguity region which could belong to either class.
Instead of plug-in approaches, we propose a support vector classifier to construct
confidence sets in a flexible manner. Theoretically, we show that the proposed
learner can control the non-coverage rates and minimize the ambiguity with high
probability. Efficient algorithms are developed and numerical studies illustrate the
effectiveness of the proposed method.

1 Introduction

In binary classification problems, the training data consist of independent and identically distributed
pairs (X;,Y;), ¢ = 1,2,...,n drawn from an unknown joint distribution P, with X; € X C R?,
and Y; € {—1,1}. While the misclassification rate is a good assessment of the overall classification
performance, it does not directly provide confidence for the classification decision. Lei [14] proposed
anew framework for classifiers, named classification with confidence, using notions of confidence and
efficiency. In particular, a classifier ¢(x) therein is set-valued, i.e., the decision may be {—1}, {1}, or
{—1,1}. Such a classifier corresponds to two overlapped regions in the sample space X', C_; and
(1, and they satisfy that C_; U C; = X. With these regions, we have the set-valued classifier

{—1},when T € 071\01
¢(x) = < {1}, whenxz € C1\C_;
{-1,1},whenx € C_1 N4

Those points in the first two sets are classified to a single class as by traditional classifiers. However,
those in the overlap receive a decision of {—1, 1}, hence may belong to either class. When the option
of {—1, 1} is forbidden, the set-valued classifier degenerates to a traditional classifier.

Lei [14] defined the notion of confidence as the probability 100(1—c;)% that set C; covers population
class j for j = £1 (recalling the confidence interval in statistics). The notion of efficiency is opposite
to ambiguity, which refers to the size (or probability measure) of the overlapped region named
the ambiguity region. In this framework, one would like to encourage classifiers to minimize the
ambiguity when controlling the non-coverage rates. Lei [14] showed that the best such classifier, the
Bayes optimal rule, depends on the conditional class probability function n(x) = P(Y = 1| X = x).
Lei [[14] then proposed to use the plug-in method, namely to first estimate 7(x) using, for instance,
logistic regression, then plug the estimation into the Bayes solution. Needless to say, its empirical
performance highly depends on the estimation accuracy of 7(x). However, it is well known that the
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latter can be more difficult than mere classification [24} 9] 26], especially when the dimension p is
large [27].

Support vector machine [SVM;|5] is a popular classification method with excellent performance for
many real applications. Fernandez-Delgado et al. [7] compared 179 classifiers on 121 real data sets
and concluded that SVM was among the best and most powerful classifiers. To avoid estimating the
conditional class probability (), we propose a support vector classifier to construct confidence sets
by empirical risk minimization. Our method is more flexible as it takes advantage of the powerful
prediction power of support vector machine.

We show in theory that the population minimizer of our optimization is to some extent equivalent to
the Bayes optimal rule in [[14]]. Moreover, in the finite-sample case, our classifier can control both
non-coverage rates while minimizing the ambiguity.

A closely related problem is the Neyman-Pearson (NP) classification [4,|19] whose goal is to find a
boundary for a specific null hypothesis class. It aims to minimize the probability that an observation
from the alternative class falls into this region (the type II error) while controlling the type I error,
i.e., the non-coverage rate for the null class. See Tong et al. [22] for a survey. Our problem can be
understood as a two-sided NP classification problem. Other related areas of work are conformal
learning, set-valued classification, or classification with reject and refine options. See [21]], [6]], [22],
[23[], (11, [2] and [28]].

The rest of the article is organized as follows. Some background information is provided in Section
[2l Our main method is introduced in Section[3] A comprehensive theoretical study is conducted in
Section[d] including the Fisher consistency and novel statistical learning theory. In Section [5] we
present efficient algorithms to implement our method. The usefulness of our method is demonstrated
using simulation and real data in Section[6] Detailed proofs are in the Supplementary Material.

2 Background and notations

We first formally define the problem and give some useful notations.

It is desirable to keep the ambiguity as small as possible. On the other hand, we would like as many

class j observations as possible to be covered by C';. Consider predetermined non-coverage rates a1

and o for the two classes. Let P_; and P; be the probability measure of X conditionalon ¥ = —1

and +1. Conceptually, we formulate classification with confidence as the optimization below.
Cmi% P(C_l ﬂCl) subject to Pj(Cj) > 1—Oéj, j = =1, cC_,uC;=24. (1)

—-1,01
Here the constraint that P;(C;) > 1 — a; means that 100(1 — ;)% of the observations from class j
should be covered by region C;.
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Figure 1: The left panel shows the two definite regions and the ambiguity region in the case of
symmetric Gaussian distributions. The right penal illustrates the weight function (see Section[3).
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Under certain conditions, the Bayes solution of this problem is: C*; = {z : n(x) < t_;} and
Cy = {z : n(x) > t1} with t_; and t; satisfying that P_1(n(X) < t_;) = 1 — a7 and
P (n(X) >t;1) =1 — ay. A simple illustrative toy example with two Gaussian distributions on R is
shown in Figure|l| The two boundaries are shown as the vertical lines, which lead to three decision



regions, {—1}, {+1}, and {—1, +1}. The non-coverage rate a_; for class —1 is shown on the right
tail of the red curve (similarly, a;; for class 1 on the left tail of blue curve.) In reality, the underlying
distribution will be more complicated than a simple multivariate Gaussian distribution and the true
boundary may be beyond linearity. In these cases, flexible approaches such as SVM will work better.

Confidence sets may be seen as equivalent to classification with reject options [11}2,110] via different
parameterizations. The Bayes rule in this article is different from the Bayes rule in the literature of
classification with reject options. In that context, the Bayes rule depends on a comparison between
7(+) and a predetermined cost of rejection d. But it does not lead to a guarantee of the coverage
probabilities for the corresponding confidence sets. Here instead, the cutoff for the Bayes rule is
calibrated to achieve the desired coverage probabilities.

3 Learning confidence sets using SVM

To avoid estimating 7, we propose to solve the empirical counterpart of (I directly using SVM. Here,
we present two variants of our method. We start with an original version to illustrate the basic idea.
Then we introduce an improvement.

Unlike the regular SVM, the proposed classifier has two (not one) separating boundaries. They are
defined as {x : f(x) = —e} and {x : f(x) = 4} where f is the discriminant function, and € > 0.
The positive region C; is {x : f(x) > —e} and the negative region C_1 is {x : f(z) < £}. Hence
when —e < f(x) < ¢, observation « falls into the ambiguity region {—1,1}.

Define R(f,e) = P(|[Y f(X)| < ¢) the probability measure of the ambiguity. We may rewrite
problem in terms of the function f and threshold &,

min R(f,e), subjectto P;(Yf(X) < —¢) <y, j==£1. (2)
eeRt,f

Replacing the probability measures above by the empirical measures, we can obtain,

n

1 1
min — 1{—e < f(xi) <€}, subjectto — Hyif(x;) < —e} <y, j==£1.
Jmin > e < (@) <<, subjectto = 30 Myif(@i) <~} <oy, g
i=1 iy =]
It is easy to show that as long as the equalities in the constraints are achieved at the optimum, we can

obtain the same minimizer if the objective function is changed to + 3" | 1{y; f(x;) — e < 0}.

For efficient and realistic optimization, we replace the indicator function 1{u < 0} in the objective
function and constraints by the Hinge loss function (1 — u) .. The practice of using a surrogate loss
to bound the non-coverage rates has been widely used in the literature of NP classification, see [19].
To simplify the presentation, we denote H,(u) = (1 + a — u)4 as the a-Hinge Loss and it can be
seen that H,(x) coincides with the original Hinge loss when a = 0. Our initial classifier can be
represented by the following optimization:

min 1 ZHg(yif(wi)) + AJ(f), subjectto ni Z H_.(yif(x;3)) <y, j==%1. (3)
=1

eeRT,f N “ j . .
T vYi=]

Here J is a regularization term to control the complexity of the discriminant function f. When f
takes the linear form of f(z) = 7 3 + b, J(f) can be Ly-norm ||3||? or L1-norm |B3|.

In SVM, y f(x) is called the functional margin, which measures the signed distance from « to the
boundary {x : f(x) = 0}. Positive and large value of y f (x) means the observation is correctly
classified, and is far away from the boundary. In our situation, we compare y f () with +¢ and —e
respectively. If y f(x) < —¢, then @ is not covered by C, (hence is misclassified, in the classification
language). On the other hand, if y f(x) < &, then « either satisfies that y f (x) < —e as above, or
falls into the ambiguity, which is why we try to minimize the sum of H(y; f(x;)).

By constraining >, _ . H_.(y; f(w;)) for both classes, we aim to control the non-coverage rates.

Since H_.(u) > 1{u < —¢} (the latter indicates the occurrence of non-coverage) for nega-
tively large u. It may be more conservative by using the Hinge loss than the indicator function
1{y; f(x;) < —e} in the constraint to control the non-coverage rates. We alleviate this problem by
imposing a weight w; to each observation in the constraint. In particular, this weight is chosen to

be w; = max{1, H_.(yf(x))} ", where f is a reasonable guess of the final minimizer f. Our goal



is to weight the Hinge loss in the constraint, w; H_. (y; f(x;)), so that it approximates the indicator
function 1{y; f(z;) < —c}. This may be illustrated by Figure|[I]in which the blue bold line is the
result of multiplying the weight (red dashed) by the Hinge loss (purple dotted), which is close to the
indicator function (black dot-dashed). Note that by weighting the Hinge loss, the impact of those
observations with very negatively large u = y f(x) value is reduced to 1. The adaptive weighted
version of our method changes constraint (3) to n% Digimg Wil (yif(xs)) <y, = £1.

In practice, we adopt an iterative approach, and use the estimated f from the previous iteration to
calculate the weight for each observation at the current iteration. We start with equal weights for each
observation, solve the optimization problem with the weights obtained in the last iteration, and then
calculate the new weights for the next iteration. [25] first used this idea in their work of adaptively
weighted large margin classifiers for the purpose of robust classification.

4 Theoretical Properties

In this section we study the theoretical properties of the proposed method. We start with population
level properties in Section4. 1] In Section[d.2] we discuss the finite-sample properties using novel
statistical learning theory.

4.1 Fisher consistency and excess risk

Assume that P_; and P; are continuous with density function p_; and p;, and 7; = P(Y = j)
is positive for j = 1. Moreover, n(X) is continuous and has positive density function almost
everywhere, and ¢_; and ¢; are quantiles of 7(X). They satisfies P_1(n(X) <t_1) =1—a_;
and Pi(n(X) > t1) = 1 — o;. We need to make assumptions on the difficulty level of the
classification task. In particular, the classification should be difficult enough so that overlapping
regions is meaningful (otherwise, there will be almost no ambiguity even at small non-coverage
rates.)

Assumption 1. ¢_; > 5 > ;.

1
2
Assumption2. 3¢ > 0,11 —¢c>1 >t +c

Each assumption implies that the union of C*; = {z : n(x) < t_1} and Cf = {x : n(x) > t1}

-1
is X. Otherwise, there will be a gap around the boundary {x : n(x) = 1/2}. It is easy to see that
Assumption 2]is stronger than Assumption [T}

Fisher consistency concerns the Bayes optimal rule, which is the minimizer of problem (2)). In @)
below, we replace the loss function in the objective function of (2)) with risk under the Hinge loss.

min Ry (f,e), subjectto P;(Y f(X) < —¢) < ¢, j = =+1, “4)
where Ry (f,) = E[H:(Y f(X))].
Theorem [T| shows that for any fixed ¢, the minimizer of () is the same as the Bayes rule [14].
Theorem 1. Under Assumption|l| for any fixed € > 0, function

1+e, n(x) >t
[H(®) = e-sign(n(zx) —3), ty <nle) <t .
_(1+‘€)a f(ZC) <ty

is the minimizer to ) and a minimizer to (2).

A key result in many machine learning literature (such as [3l], [30] or [2]) was that the excess risk
of 0-1 classification loss is bounded by the excess risk of surrogate loss. Here we show a similar
result for the confidence set problem. That is, the excess ambiguity R(f,e) — R(f*, ) vanishes as
Ryu(f,e) — Ru(f*,¢c) goes to 0.

Theorem 2. Under Assumption (2), for any € > 0, and V' f satisfying the constraints in (2), there
exists C' = ﬁ + 2% > 0 such that the following inequality holds,

C'(Ru(f,e) — Ru(f*.€)) > R(f) — R(f*).

Note that C" does not depend on €.



4.2 Finite-sample properties

Denote the Reproducing Kernel Hilbert Space (RKHS) with bounded norm as Hx (s) = {f :
X = R|f(x) = hx) +b,h € Hi,||h||nx < s,b € R} and r = sup,cyp K(x,x). Fora
fixed ¢, define the space of constrained discriminant functions as Fe((a-1,a1)) = {f: &=

R|E(H_.(Yf(X))|Y = j) < «aj,j = +1}, and its empirical counterpart as F.((a_, o)) =
{f: X = R|nj_121:yi:] H_.(yif(x;)) < aj,j = £1}. Moreover, we define the feasible
function space F.(k, s) =Hr(s) N Fe((ao1 — \/%,al — \/%)) and its empirical counterpart
Fe(k,s) = Hr(s)NFe((a—1— \/%70‘1_\/77))' Lastly, consider a subset of the Cartesian product

of the above feasible function space and the space for ¢, F(k,s) = {(f,¢), f € Fe(k,s),e > 0}

and its empirical counterpart F(r, s) = {(f,¢), f € F.(k, s),e > 0}. Then optimization problem
(3) of our proposed method can be written as

min H_ (y; f(x;)) ®)
(f,e)eF(0,8) T Z

In Theorem 3] we give the finite-sample upper bound for the non-coverage rate.

Theorem 3. Let (f, ) be a solution to optimization problem , then with probability at least 1 — 2(,

Z = \/sr/v/n, T,(¢) = {2srlog(1/¢) /n}'/? and r = supX K(x,x)

Pi(Yf(X)< —e) <E[H_(YF(X)|Y =j] < — Z H_. ) + 3T, (C) + Z(ny).

yl =Jj

Theorem [3|suggests that if we want to control the non-coverage rate on average at the nominal cr_; or

o rates with high probability, we should choose the av_; or a1 values to be slightly smaller than the

desired ones in optimization (3) in practice. In particular, we need to make - 3 yimj Hoe(yif () +
3J i

3T, (¢)+Z(nj) < a. Note that the remainder terms 375, (¢) + Z(n;) will vanish as n_1,n; — oo.

The next theorem ensures that the empirical ambiguity probability from solving (3 based on a
finite sample will converge to the ambiguity given by the solution on an infinite sample (under the
constraints E(H_.(Y f(X))|Y = j) < o, = £1).

Theorem 4. Let ( 1, €) be the solution of the optimization problem (@)

min ZH (yif(x;)) (6)

(fre)€F (r,s) M

with k = (6log(%) + 1)+/sr. Then with probability 1 — 6, and large enough n_1 and ny we have
(i). f € F:(0,s), and
(ii). Ru(f, &) — min  Rp(f,€) < k(2nY2 +4min{a_1,01} " min {7, v} ).

(f,e)eF(0,s)

In our study we analyze formula (5] . ) where J(f) appears in the constraint instead of the regularized
formula (3)) for technical convenience. This comes at a prlce of a fixed upper bound s on J( f ). We
can revise the statements of Theorems [3]and []so that s increases with n to infinity (with a price of a
slower convergence rate.) It is possible to derive the results for the regularized version based on (3).
Since at the optimality it is easy to show that J(f) < 2/ (this is done by showing that the objective
is at most 2, when f = 0 and € = 1,) we may rewrite s in Theorem [3]in terms of \.

S Algorithms

In this section, we give details of the algorithm. Similar to the SVM implementation, we propose to
solve the dual problem. We start with the linear SVM with Ly norm for illustrative purposes. After
introducing two sets of slack variables, n; = (1—e—y;(z} B+b))+ and §; = (1+e—y,;(xl B+b)) 4+,
we can show that (3) is equivalent to (7),

1 2 / =
min S[B[13+ D& ™



subject to y;(xl B+b) > 1+e—&, yi(xlB+b)>1—c—n foralli=1,2 ..,n,

>0, Y wmi<naag, 5>0, > wm <may, £>0.
yi=—1 yi=1

Here © is the collection of all variables of interest, namely © = {e, 3, b, {& 71, {n:}7_,}. We can
then solve it via the quadratic programming below,

) 1 n n n n
min. 5 Z Z(Q + 1) (GG + T))yiyEi; — ZQ - Zﬂ' +n_ra_10_1 +nia161 (8)

i=1 j=1 i=1 i=1

subject 0 0 < ¢; <N, 0< 7 <Oywi, » G+ Y Tyi=0, » G—> 7>0.
i=1 i=1 i=1 i=1

Here ©' = {{¢;}"_ 1, {m}"1,0_1,01} consists of all the variables in the dual problem. The above
optimization may be solved by any efficient quadratic programming routine. After solving the dual
problem, we can find 8 by 8 = > (;yix; + Y., 7;y;x;. Then we can plug 8 into the primal
problem and find b and ¢ by linear programming.

For nonlinear f, we can adopt the widely used ‘kernel trick’. Assume f belongs to a Reproducing
Kernel Hilbert Space (RKHS) with a positive definite kernel K, f(z) = Y., ¢;K(z;, ) + b. In
this case the dual problem is the same as above except that x;x; is replaced by K (x;, x;). After
the solution has been found, we then have ¢; = (; + 7;. Common choices for the kernel function
includes the Gaussian kernel and the polynomial kernel.

6 Numerical Studies

In this section, we compare our confidence-support vector machine (CSVM) method and methods
based on the plug-in principal, including L, penalized logistic regression [12], kernel logistic
regression [31]], kNN [[1], random forest [15] and SVM [3] using both simulated and real data.

In the study, we use solver Cplex to solve the quadratic programming problem arising in CSVM. For
other methods, we use existing R packages glmnet, gelnet, class, randomForest and e1071.

6.1 Simulation

We study the numerical performance over a large variety of sample sizes. In each case, an independent
tuning set with the same sample size as the training set is generated for parameter tuning. The testing
set has 20000 observations (10000 or nearly 10000 for each class). We run the simulation multiple
times (1,000 times for Example 1 and 100 times for Example 2 and 3) and report the average and
standard error. Both non-coverage rates are set to 0.05.

We select the best parameter A and the hyper-parameter for kernel methods as follows.
We search for the optimal p in the Gaussian kernel exp (—|z —yl|/?/p?) from the grid
10°{-0.5,—0.25, 0, 0.25, 0.5, 0.75, 1} and the optimal degree for polynomial kernel from
{2, 3, 4}. For each fixed candidate hyper-parameter, we choose A from a grid of candidate values
ranging from 10~ to 102 by the following two-step searching scheme. We first do a rough search
with a larger stride {10=*,1073-5_ ... 10%} and get the best parameter ;. Then we do a fine search
from Ay x {107%-5,1074,...,10%°}. After that, we choose the optimal pair which gives the smallest
tuning ambiguity and has the two non-coverage rates for the tuning set controlled.

To adapt traditional classification methods to the confidence set learning problem, we use the plug-in
principal [[14]. To improve the performance, we make use of the suggested robust implementation in
[14] for all the methods. Specifically, we first obtain an estimate of 7 (such as by logistic regression,
kernel logistic regression, kNN and random forest) or a monotone proxy of it (such as the discriminant
function f in CSVM and SVM), then choose thresholds 7_; and #; which are two sample quantiles
of 7j(x) (or f(x)) among the tuning set so that the non-coverage rates for the tuning set match the
nominal rates. The final predicted sets are induced by thresholding 7j(z) (or f(z)) using ¢_; and f;.

Because there are two non-coverage rates and one ambiguity size to compare here, how to make fair
comparison becomes a tricky problem since one classifier can sacrifice the non-coverage rate to gain
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Figure 2: Scatter plots of the first two dimensions for the simulated data with Bayes rules showing
the two definite regions and the ambiguity region.

in ambiguity. One by-product of the robust implementation above is that the non-coverage rate of
most of the methods will become very similar and we only need to compare the size of the ambiguity.

We also include a naive SVM approach CSVM_r’ in plots below) whose discriminant function is
obtained in the traditional way, but which induces confidence sets by thresholding in the same way
described above.

We consider three different simulation scenarios. In the first scenario we compare the linear ap-
proaches (SVM and penalized logistic regression), while in the next two cases we consider nonlinear
methods. In all cases, we add additional noise dimensions to the data. These noise covariates are
normally distributed with mean 0 and ¥ = diag(1/p), where p is the total dimension of the data.

Example 1 (Linear model with nonlinear Bayes rule): In this scenario, we have two normally
distributed classes with different covariance matrices. In particular, denote X |Y = j ~ N (p1;,%;)
for j = +1, then 1 = (=2,1)7, py = (1,0)7, and ©_; = diag(2, 1), ¥1 = diag(1,2). The
prior probabilities of both classes are the same. Lastly, we add eight dimensions of noise covariates
to the data. The data are illustrated in the left penal of Figure[2] We compare linear CSVM, and the
plug-in methods Lo penalized logistic regression [8]] and naive linear SVM to estimate 7).

Example 2 (Moderate dimensional polynomial boundary): This case is similar to the one in [29].
First we generate 21 ~ Unif[—1, 1] and 22 ~ Unif[—1, 1]. Define functions f;(z) = j(—3.62% +
7.203 —0.8),7 = +1. Then we set n(x) = f1(x)/(f_1(x) + f1(x)), where & = (21, x2). We then
add 98 covariates on top of the 2-dimensional signal. The data are illustrated in the middle penal of
Figure[2] In this scenario, we choose to use the polynomial kernel for all the kernel based methods.

Example 3 (High-dimensional donut): We first generate a two-dimensional data, (r;, ;) where
; ~ Unif(0, 27], r;|(Y = —1) ~ Uniform[0, 1.2], and r;|(Y = +1) ~ Unif[0.8,2]. Then we
define the two-dimensional X; = (r; cos(6;), r; sin(6;)). The data are illustrated in the right penal
of Figure[2] We then add 498 covariates on top of the 2-dimensional signal. We use the Gaussian
kernel, K (z, y; p) = exp (—|lz — y||*/p?) for all the kernel based methods.

Our methods are improved using the robust implementation. The results are reported in Figure 3]
We also show the performance of CSVM with weighting but without robust implementation. For
Example 1, our CSVM method gives a significantly smaller ambiguity than either logistic regression
or naive SVM. In Example 2 and Example 3, our method gives a smaller or at least comparable
ambiguity to the best plug-in method, which is kernel logistic regression. Our weighted CSVM
performs the best when sample size is small in the linear case and it outperforms kNN, Random
Forest and naive SVM in nonlinear cases. It is not surprising that the naive SVM method performs
significantly worse than all other methods in the nonlinear settings, as the hinge loss is well known
to not lead to consistent estimates for class probabilities (see [18]). The non-coverage rates (not
shown here) of CSVM, random forest, kernel logistic regression and naive SVM methods are close to
each other while CSVM without robust implementation and kNN have similar non-coverage rates. A
detailed comparison can be found in the Supplementary Material.

6.2 Real Data Analysis

We conduct the comparison on the hand-written zip code data [13]]. The data set consists of many
16 x 16 pixel images of handwritten digits. It is widely used in the classification literature. There are



both training and testing sets defined in it. Lei [14] used the same dataset for illustrating the plug-in
methods. We choose this dataset to directly compare with the plug-in methods.

Following Lei [14], to form a binary classification problem, we use the subset of the data containing
digits {0, 6,8,9}. Images with digits 0, 6, 9 are labeled as class —1 (they are digits with one circle)
and those with digit 8 (two circles) are labeled as class +1. Previous studies pointed out that
there was discrepancies between the training and testing set of this data set. So in this study we first
mixed the training and testing data and then randomly split into new training, tuning and testing data.
The training and tuning data both have sample size 800, with 600 from class —1 and 200 from class 1
to preserve the unbalance nature of the data set. During training, we oversample class 1 by counting
each observation three times to alleviate the unbalanced classes issue.

Although Lei [[14] set both nominal non-coverage rates to be 0.05 in their study which focused on
linear methods, it needs to be pointed out that many nonlinear classifiers, such as SVM with Gaussian
kernel, can achieve this non-coverage rate without introducing any ambiguity. Therefore we reduce
the non-coverage rate to 0.01 for both classes to make the task more challenging.

We apply Gaussian kernel for CSVM, and compare with kernel logistic regression with Gaussian
kernel, random forest, KNN and naive SVM with Gaussian kernel on this data set.
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Figure 4: An illustration of CSVM method using t-SNE. The left penal shows the true labels, and the
right panel the predicted label for weighted CSVM.

The results are summarized in Table[T] with numbers in percentage. CSVM gives better results than
all the plug-in methods. We plot the zip code data using t-distributed stochastic neighbor embedding
(t-SNE) to give a visualization of our method and the data.
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Figure 3: Outcome of ambiguities in three simulation settings. Non-coverage rates are similar among
different methods and are not shown here. CSVM has the smallest ambiguity.



Classifier CSVM CSVM(r) KNN(r) KLR(r) RF(r) naive SVM(r)
Non-coverage(-1) ~ 0.05(0.005) 1.02(0.05) 0.81(0.04) 0.98(0.05) 0.95(0.04)  1.00(0.05)
Non-coverage(+1)  0.56(0.06) 1.19(0.11)  1.04(0.09) 1.25(0.10)  1.10¢0.11)  1.27(0.11)
Ambiguity 8.29(0.18) 2.52(0.13) 10.21(2.12) 3.46(0.17) 7.55(0.37) 2.66(0.13)

Table 1: CSVM gives better or comparable outcome to the best plug-in method.

It can be seen that the ambiguity region mainly lies on the boundary between the two classes. In
particular, they cover those points which appear to be closer to the class other than the one they really
belong to. Moreover, it can be seen that the union of the ambiguity region and the predicted region
for either class, covers almost all the ground of that class (defined by the true labels). This is not
surprising since the non-coverage rate of CSVM is set to be a small number of 1% in this case.

7 Conclusion and future works

In this work, we propose to learn confidence sets using support vector machine. Instead of a plug-in
approach, we use empirical risk minimization to train the classifier. Theoretical studies have shown
the effectiveness of our approach in controlling the non-coverage rate and minimizing the ambiguity.

‘We make use of many well understood advantages of SVM to solve the problem. For instance the
‘kernel trick’ allows more flexibility and empowers us to conduct classification in nonlinear cases.

Hinge loss function is not the only surrogate loss that can be used. There are many other useful loss
functions with good properties in different scenarios [16].

Confidence set learning for multi-class case is also an interesting future work. This has a natural
connection to the literature of multi-class classification with confidence [20], classification with reject
and refine options [28] and conformal learning [21]].
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