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Abstract

We propose an adaptive sampling approach for multiple testing which aims to
maximize statistical power while ensuring anytime false discovery control. We
consider n distributions whose means are partitioned by whether they are below or
equal to a baseline (nulls), versus above the baseline (actual positives). In addition,
each distribution can be sequentially and repeatedly sampled. Inspired by the
multi-armed bandit literature, we provide an algorithm that takes as few samples
as possible to exceed a target true positive proportion (i.e. proportion of actual
positives discovered) while giving anytime control of the false discovery proportion
(nulls predicted as actual positives). Our sample complexity results match known
information theoretic lower bounds and through simulations we show a substantial
performance improvement over uniform sampling and an adaptive elimination style
algorithm. Given the simplicity of the approach, and its sample efficiency, the
method has promise for wide adoption in the biological sciences, clinical testing
for drug discovery, and online A/B/n testing problems.

1 Introduction

Consider n possible treatments, say, drugs in a clinical trial, where each treatment either has a
positive expected effect relative to a baseline (actual positive), or no difference (null), with a goal
of identifying as many actual positive treatments as possible. If evaluating the ith trial results in a
noisy outcome (e.g. due to variance in the actual measurement or just diversity in the population)
then given a total measurement budget of B, it is standard practice to execute and average B/n
measurements of each treatment, and then output a set of predicted actual positives based on the
measured effect sizes. False alarms (i.e. nulls predicted as actual positives) are controlled by either
controlling family-wise error rate (FWER), where one bounds the probability that at least one of the
predictions is null, or false discovery rate (FDR), where one bounds the expected proportion of the
number of predicted nulls to the number of predictions. FDR is a weaker condition than FWER but is
often used in favor of FWER because of its higher statistical power: more actual positives are output
as predictions using the same measurements.

In the pursuit of even greater statistical power, there has recently been increased interest in the
biological sciences to reject the uniform allocation strategy of B/n trials to the n treatments in
favor of an adaptive allocation. Adaptive allocations partition the budget B into sequential rounds
of measurements in which the measurements taken at one round inform which measurements are
taken in the next [1, 2]. Intuitively, if the effect size is relatively large for some treatment, fewer
trials will be necessary to identify that treatment as an actual positive relative to the others, and
that savings of measurements can be allocated towards treatments with smaller effect sizes to boost
the signal. However, both [1, 2] employed ad-hoc heuristics which may not only have sub-optimal

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



statistical power, but also may even result in more false alarms than expected. As another example,
in the domain of A/B/n testing in online environments, the desire to understand and maximize
click-through-rate across treatments (e.g., web-layouts, campaigns, etc.) has become ubiquitous
across retail, social media, and headline optimization for the news. And in this domain, the desire for
statistically rigorous adaptive sampling methods with high statistical power are explicit [3].

In this paper we propose an adaptive measurement allocation scheme that achieves near-optimal
statistical power subject to FWER or FDR false alarm control. Perhaps surprisingly, we show that
even if the treatment effect sizes of the actual positives are identical, adaptive measurement allocation
can still substantially improve statistical power. That is, more actual positives can be predicted using
an adaptive allocation relative to the uniform allocation under the same false alarm control.

1.1 Problem Statement

Consider n distributions (or arms) and a game where at each time t, the player chooses an arm
i 2 [n] := {1, . . . , n} and immediately observes a reward Xi,t

iid
⇠ ⌫i where Xi,t 2 [0, 1]1 and

E⌫i [Xi,t] = µi. For a known threshold µ0, define the sets2

H1 = {i 2 [n] : µi > µ0} and H0 = {i 2 [n] : µi = µ0} = [n] \ H1.

The value of the means µi for i 2 [n] and the cardinality of H1 are unknown. The arms (treatments)
in H1 have means greater than µ0 (positive effect) while those in H0 have means equal to µ0 (no
effect over baseline). At each time t, after the player plays an arm, she also outputs a set of indices
St ✓ [n] that are interpreted as discoveries or rejections of the null-hypothesis (that is, if i 2 St then
the player believes i 2 H1). For as small a ⌧ 2 N as possible, the goal is to have the number of
true detections |St \H1| be approximately |H1| for all t � ⌧ , subject to the number of false alarms
|St \H0| being small uniformly over all times t 2 N. We now formally define our notions of false
alarm control and true discoveries.
Definition 1 (False Discovery Rate, FDR-�). Fix some � 2 (0, 1). We say an algorithm is FDR-� if for
all possible problem instances ({⌫i}ni=1, µ0) it satisfies E[ |St\H0|

|St|_1 ]  � for all t 2 N simultaneously.

Definition 2 (Family-wise Error Rate, FWER-�). Fix some � 2 (0, 1). We say an algorithm is
FWER-� if for all possible problem instances ({⌫i}ni=1, µ0) it satisfies P(

S
1

t=1{St \H0 6= ;})  �.

Note FWER-� implies FDR-�, the former being a stronger condition than the latter. Allowing a
relatively small number of false discoveries is natural, especially if |H1| is relatively large. Because
µ0 is known, there exist schemes that guarantee FDR-� or FWER-� even if the arm means µi and the
cardinality of H1 are unknown (see Section 2.1). It is also natural to relax the goal of identifying all
arms in H1 to simply identifying a large proportion of them.
Definition 3 (True Positive Rate, TPR-�, ⌧ ). Fix some � 2 (0, 1). We say an algorithm is TPR-�, ⌧
on an instance ({⌫i}ni=1, µ0) if E[ |St\H1|

|H1|
] � 1� � for all t � ⌧ .

Definition 4 (Family-wise Probability of Detection, FWPD-�, ⌧ ). Fix some � 2 (0, 1). We say an
algorithm is FWPD-�, ⌧ on an instance ({⌫i}ni=1, µ0) if P(H1 ✓ St) � 1� � for all t � ⌧ .

Note that FWPD-�, ⌧ implies TPR-�, ⌧ , the former being a stronger condition than the latter. Also
note P(

S
1

t=1{St \H0 6= ;})  � and P(H1 ✓ S⌧ ) � 1� � together imply P(H1 = S⌧ ) � 1� 2�.
We will see that it is possible to control the number of false discoveries |St \H0| regardless of how
the player selects arms to play. It is the rate at which St includes H1 that can be thought of as the
statistical power of the algorithm, which we formalize as its sample complexity:
Definition 5 (Sample Complexity). Fix some � 2 (0, 1) and an algorithm A that is FDR-� (or
FWER-�) over all possible problem instances. Fix a particular problem instance ({⌫i}ni=1, µ0). At
each time t 2 N, A chooses an arm i 2 [n] to obtain an observation from, and before proceeding to
the next round outputs a set St ✓ [n]. The sample complexity of A on this instance is the smallest
time ⌧ 2 N such that A is TPR-�, ⌧ (or FWPD-�, ⌧ ).

The sample complexity and value of ⌧ of an algorithm will depend on the particular instance
({⌫i}ni=1, µ0). For example, if H1 = {i 2 [n] : µi = µ0+�} and H0 = [n]\H1, then we expect the

1All results without modification apply to unbounded, sub-Gaussian random variables.
2All results generalize to the case when H0 = {i : µi  µ0}.
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False alarm control

FDR-�
maxt E[ |St\H0|

|St|_1 ]  �
FWER-�

P(
S

1

t=1{St \H0 6= ;})  �

Detection Probability

TPR-�, ⌧
E[ |S⌧\H1|

|H1|
] � 1� �

Theorem 2
n��2

Theorem 5
(n� k)��2 + k��2 log(n� k)

FWPD-�, ⌧
P(H1 ✓ S⌧ ) � 1� �

Theorem 3
(n� k)��2 log(k) + k��2

Theorem 4
(n� k)��2 log(k) + k��2 log(n� k)

Table 1: Informal summary of sample complexity results proved in this paper for |H1| = k, constant � (e.g.,
� = .05) and � = mini2H1 µi � µ0. Uniform sampling across all settings requires at least n��2 log(n/k)
samples, and in the FWER+FWPD setting requires n��2 log(n). Constants and log log factors are ignored.

sample complexity to increase as � decreases since at least ��2 samples are necessary to determine
whether an arm has mean µ0 versus µ0 +�. The next section will give explicit cases.
Remark 1 (Impossibility of stopping time). We emphasize that just as in the non-adaptive setting,
at no time can an algorithm stop and declare that it is TPR-�, ⌧ or FWPD-�, ⌧ for any finite ⌧ 2 N.
This is because there may be an arm in H1 with a mean infinitesimally close to µ0 but distinct such
that no algorithm can determine whether it is in H0 or H1. Thus, the algorithm must run indefinitely
or until it is stopped externally. However, using an anytime confidence bound (see Section 2) one can
always make statements like “either H1 ✓ St, or maxi2H1\St

µi � µ0  ✏” where the ✏ will depend
on the width of the confidence interval.

1.2 Contributions and Informal Summary of Main Results

In Section 2 we propose an algorithm that handles all four combinations of {FDR-�, FWER-�} and
{TPR-�, ⌧ , FWPD-�, ⌧}. A reader familiar with the multi-armed bandit literature would expect an
adaptive sampling algorithm to have a large advantage over uniform sampling when there is a large
diversity in the means of H1 since larger means can be distinguished from µ0 with fewer samples.
However, one should note that to declare all of H1 as discoveries, one must sample every arm in H0 at
least as many times as the most sampled arm in H1, otherwise they are statistically indistinguishable.
As discoveries are typically uncovering rare phenomenon, it is common to assume |H1| = n� for
� 2 (0, 1) [4, 5], or |H1| = o(n), but this implies that the number of samples taken from the arms
in H1, regardless of how samples are allocated to those arms, will almost always be dwarfed by the
number of samples allocated to those arms in H0 since there are ⌦(n) of them. This line of reasoning,
in part, is what motivates us to give our sample complexity results in terms of the quantities that
best describe the contributions from those arms in H0, namely, the cardinality |H1| = n� |H0|, the
confidence parameter � (e.g., � = .05), and the gap � := mini2H1 µi � µ0 between the means of
the arms in H0 and the smallest mean in H1. Reporting sample complexity results in terms of �
also allows us to compare to known lower bounds in the literature [6, 4, 7, 8]. Nevertheless, we do
address the case where the means of H1 are varied in Theorem 2.

An informal summary of the sample complexity results proven in this work are found in Table 1 for
|H1| = k. For the least strict setting of FDR+TPR, the upper-left quadrant of Table 1 matches the
lower bound of [4], a sample complexity of just ��2n. In this FDR+TPR setting (which requires
the fewest samples of the four settings), uniform sampling which pulls each arm an equal number of
times has a sample complexity of at least n��2 log(n/|H1|) (see Theorem 7 in Appendix G), which
exceeds all results in Table 1 demonstrating the statistical power gained by adaptive sampling. For the
most strict setting of FWER+FWPD, the lower-right quadrant of Table 1 matches the lower bounds
of [7, 9, 8], a sample complexity of (n� k)��2 log(k) + k��2 log(n� k). Uniform sampling in
the FWER+FWPD setting has a sample complexity lower bounded by n��2 log(n) (see Theorem 8
in Appendix G). The settings of FDR+FWPD and FWER+TPR are sandwiched between these results,
and we are unaware of existing lower bounds for these settings.

All the results in Table 1 are novel, and to the best of our knowledge are the first non-trivial sample
complexity results for an adaptive algorithm in the fixed confidence setting where a desired confidence
� is set, and the algorithm attempts to minimize the number of samples taken to meet the desired
conditions. We also derive tools that we believe may be useful outside this work: for always valid
p-values (c.f. [3, 10]) we show that FDR is controlled for all times using the Benjamini-Hochberg
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procedure [11] (see Lemma 1), and also provide an anytime high probability bound on the false
discovery proportion (see Lemma 2).

Finally, as a direct consequence of the theoretical guarantees proven in this work and the empirical
performance of the FDR+TPR variant of the algorithm on real data, an algorithm faithful to the theory
was implemented and is in use in production at a leading A/B testing platform [12].

1.3 Related work

Identifying arms with means above a threshold, or equivalently, multiple testing via rejecting null-
hypotheses with small p-values, is an ubiquitous problem in the biological sciences. In the standard
setup, each arm is given an equal number of measurements (i.e., a uniform sampling strategy),
a p-value Pi is produced for each arm where P(Pi  x)  x for all x 2 (0, 1] and i 2 H0,
and a procedure is then run on these p-values to declare small p-values as rejections of the null-
hypothesis, or discoveries. For a set of p-values P1  P2  · · ·  Pn, the so-called Bonferroni
selection rule selects SBF = {i : Pi  �/n}. The fact that FWER control implies FDR control,
E[|SBF \ H0|]  P(

S
i2H0

{Pi  �/n})  � |H0|

n
 �, suggests that greater statistical power

(i.e. more discoveries) could be achieved with procedures designed specifically for FDR. The BH
procedure [11] is one such procedure to control FDR and is widely used in practice (with its many
extensions [6] and performance investigations [5]). Recall that a uniform measurement strategy where
every arm is sampled the same number of times requires n��2 log(n/k) samples in the FDR+TPR
setting, and n��2 log(n) samples in the FWER+FWPD setting (Theorems 7 and 8 in Appendix G),
which can be substantially worse than our adaptive procedure (see Table 1).

Adaptive sequential testing has been previously addressed in the fixed budget setting: the procedure
takes a sampling budget as input, and the guarantee states that if the given budget is larger than a
problem dependent constant, the procedure drives the error probability to zero and the detection
probability to one. One of the first methods called distilled sensing [13] assumed that arms from
H0 were Gaussian with mean at most µ0, and successively discarded arms after repeated sampling
by thresholding at µ0–at most the median of the null distribution–thereby discarding about half
the nulls at each round. The procedure made guarantees about FDR and TPR, which were later
shown to be nearly optimal [4]. Specifically, [4, Corollary 4.2] implies that any procedure with
max{FDR + (1 � TPR)}  � requires a budget of at least ��2n log(1/�), which is consistent
with our work. Later, another thresholding algorithm for the fixed budget setting addressed the
FWER and FWPD metrics [7]. In particular, if their procedure is given a budget exceeding (n �

|H1|)��2 log(|H1|) + |H1|��2 log(n� |H1|) then the FWER is driven to zero, and the FWPD is
driven to one. By appealing to the optimality properties of the SPRT (which knows the distributions
precisely) it was argued that this is optimal. These previous works mostly focused on the asymptotic
regime as n ! 1 and |H1| = o(n).

Our paper, in contrast to these previous works considers the fixed confidence setting: the procedure
takes a desired FDR (or FWER) and TPR (or FWPD) and aims to minimize the number of samples
taken before these constraints are met. To the best of our knowledge, our paper is the first to propose
a scheme for this problem in the fixed confidence regime with near-optimal sample complexity
guarantees.

A related line of work is the threshold bandit problem, where all the means of H1 are assumed to be
strictly above a given threshold, and the means of H0 are assumed to be strictly below the threshold
[14, 15]. To identify this partition, each arm must be pulled a number of times inversely proportional
to the square of its deviation from the threshold. This contrasts with our work, where the majority of
arms may have means equal to the threshold and the goal is to identify arms with means greater than
the threshold subject to discovery constraints. If the arms in H0 are assumed to be strictly below the
threshold it is possible to declare arms as in H0. In our setting we can only ever determine that an
arm is in H1 and not H0, but it is impossible to detect that an arm is in H0 and not in H1.

Note that the problem considered in this paper is very related to the top-k identification problem
where the objective is to identify the unique k arms with the highest means with high probability
[16, 9, 8]. Indeed, if we knew |H1|, then our FWER+FWPD setting is equivalent to the top-k problem
with k = |H1|. Lower bounds derived for the top-k problem assume the algorithm has knowledge of
the values of the means, just not their indices [16, 8]. Thus, these lower bounds also apply to our
setting and are what are referenced in Section 1.2.
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Algorithm 1 An algorithm for identifying arms with means above a threshold µ0 using as few samples as
possible subject to false alarm and true discovery conditions. The set St is designed to control FDR at level �.
The set Rt is designed to control FWER at level �.

Input: Threshold µ0, confidence � 2 (0, e�1], confidence interval �(·, ·)
Initialize: Pull each arm i 2 [n] once and let Ti(t) denote the number of times arm i has been pulled
up to time t. Set Sn+1 = ;, Rn+1 = ;, and
If TPR

⇠t = 1, and ⌫t = 1 8t
Else if FWPD

⇠t = max{2|St|,
5

3(1�4�) log(1/�)}, and ⌫t = max{|St|, 1} 8t

For t = n+ 1, n+ 2, . . .
Pull arm It = arg max

i2[n]\St

bµi,Ti(t) + �(Ti(t),
�

⇠t
),

Apply Benjamini-Hochberg [11] selection at level �0 = �

6.4 log(36/�) to obtain � FDR-controlled
set St:

s(k) = {i 2 [n] : bµi,Ti(t) � �(Ti(t), �0
k

n
) � µ0}, 8k 2 [n]

St+1 = s(bk) where bk = max{k 2 [n] : |s(k)| � k} (if 6 9bk set St+1 = St)
If FWER and St 6= ;:

Pull arm Jt = arg max
i2St\Rt

bµi,Ti(t) + �(Ti(t),
�

⌫t
)

Apply Bonferroni-like selection to obtain FWER-controlled set Rt:
�t = n� (1� 2�0(1 + 4�0))|St|+

4(1+4�0)
3 log(5 log2(n/�

0)/�0)
Rt+1 = Rt [ {i 2 St : bµi,Ti(t) � �(Ti(t),

�

�t
) � µ0}

As pointed out by [14], both our setting and the threshold bandit problem can be posed as a combi-
natorial bandits problem as studied in [17, 18], but such generality leads to unnecessary log factors.
The techniques used in this work aim to reduce extraneous log factors, a topic of recent interest in
the top-1 and top-k arm identification problem [19, 20, 21, 22, 16, 8]. While these works are most
similar to exact identification (FWER+FWPD), there also exist examples of approximate top-k where
the objective is to find any k means that are each within ✏ of the best k means [9]. Approximate
recovery is also studied in a ranking context with a symmetric difference metric [23] which is more
similar to the FDR and TPR setting, but neither this nor that work subsumes one another.

Finally, maximizing the number of discoveries subject to a FDR constraint has been studied in a
sequential setting in the context of A/B testing with uniform sampling [3]. This work popularized the
concept of an always valid p-value that we employ here (see Section 2). The work of [10] controls
FDR over a sequence of independent bandit problems that each outputs at most one discovery. While
[10] shares much of the same vocabulary as this paper, the problem settings are very different.

2 Algorithm and Discussion

Throughout, we will assume the existence of an anytime confidence interval. Namely, if bµi,t denotes
the empirical mean of the first t bounded i.i.d. rewards in [0, 1] from arm i, then for any � 2 (0, 1) we
assume the existence of a function � such that for any � we have P (

T
1

t=1{|bµi,t � µi|  �(t, �)}) �
1��. We assume that �(t, �) is non-increasing in its second argument and that there exists an absolute

constant c� such that �(t, �) 
q

c� log(log2(2t)/�)
t

. It suffices to define � with this upper bound with
c� = 4 but there are much sharper known bounds that should be used in practice (e.g., they may take
empirical variance into account), see [21, 24, 25, 26]. Anytime bounds constructed with such a �(t, �)
are known to be tight in the sense that P(

S
1

t=1{|bµi,t � µi| � �(t, �)})  � and that there exists an
absolute constant h 2 (0, 1) such that P({|bµi,t � µi| � h�(t, �) for infinitely many t 2 N}) = 1 by
the Law of the Iterated Logarithm [27].

Consider Algorithm 1. Before entering the for loop, time-dependent variables ⇠t and ⌫t are defined
that should be updated at each time t for different settings. If just FDR control is desired, the
algorithm merely loops over the three lines following the for loop, pulling the arm It not in St that
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has the highest upper confidence bound; such strategies are common for pure-exploration problems
[21, 10]. But if FWER control is desired then at most one additional arm Jt is pulled per round to
provide an extra layer of filtering and evidence before an arm is added to Rt. Below we describe
the main elements of the algorithm and along the way sketch out the main arguments of the analysis,
shedding light on the constants ⇠t and ⌫t.

2.1 False alarm control

St is FDR-controlled. In addition to its use as a confident bound, we can also use �(t, �) to construct:

Pi,t := sup{↵ 2 (0, 1] : bµi,t � µ0  �(t,↵)}  log2(2t) exp(�t(bµi,t � µ0)
2/c�). (1)

Proposition 1 of [10] (and the proof of our Lemma 1) shows that if i 2 H0 so that µi = µ0 then
Pi,t is an anytime, sub-uniformly distributed p-value in the sense that P(

S
1

t=1{Pi,t  x})  x.
Sequences that have this property are sometimes referred to as always-valid p-values [3]. Note that
if i 2 H1 so that µi > µ0, we would intuitively expect the sequence {Pi,t}

1

t=1 to be point-wise
smaller than if µi = µ0 by the property that �(·, ·) is non-increasing in its second argument. This
leads to the intuitive rule to reject the null-hypothesis (i.e., declare i /2 H0) for those arms i 2 [n]
where Pi,t is very small. The Benjamini-Hochberg (BH) procedure introduced in [11] proceeds
by first sorting the p-values so that P(1),T(1)(t)  P(2),T(2)(t)  · · ·  P(n),T(n)(t), then defines
bk = max{k : P(k),T(k)(t)  � k

n
}, and sets SBH = {i : Pi,Ti(t)  �

bk
n
}. Note that this procedure is

identical to defining sets

s(k) = {i : Pi,Ti(t)  � k

n
} = {i : bµi,Ti(t) � �(Ti(t), �

k

n
) � µ0},

setting bk = max{k : |s(k)| � k}, and SBH = s(bk), which is exactly the set St = SBH in Algo-
rithm 1. Thus, St in Algorithm 1 is equivalent to applying the BH procedure at a level O(�/ log(1/�))
to the anytime p-values of (1). We now discuss the extra logarithmic factor.

Because the algorithm is pulling arms sequentially, some dependence between the p-values may be
introduced. Because the anytime p-values are not independent, the BH procedure at level � does not
directly guarantee FDR-control at level �. However, it has been shown [28] that for even arbitrarily
dependent p-values the BH procedure at level � controls FDR at level � log(n) (and that it is nearly
tight). Similarly, the following theorem, which may be of independent interest, is a significant
improvement when applied to our setting.
Theorem 1. Fix � 2 (0, e�1). Let p1, . . . , pn be random variables such that {pi}i2H0 are indepen-
dent and sub-uniformly distributed so that maxi2H0 P(pi  x)  x. For any k 2 {0, 1, . . . , n}, let
Rk := {i : pi  � k

n
} and \FDP (Rk) :=

maxpi2Rk
pi

|Rk|_1 .

E
"

max
k:\FDP (Rk)�

FDP (Rk)

#


|H0|�

n

⇣
2 log( 2n

|H0|�
) + log(8e5 log( 8n

|H0|�
))
⌘

 4� log(9/�)

In other words, any procedure that chooses a set {i : pi  �k

n
} satisfying |{i : pi 

�k

n
}| � k is FDR

controlled at level O(� log(1/�)).

Recall, if bk = max{k : \FDP (Rk)  �} then E[FDP (Rbk)]  � by the standard BH result. When
running the algorithm we recommend using BH at level �, not level O(�/ log(1/�)). As Ti gets very
large, Pi,Ti(t) ! Pi,⇤ and we know that if BH is run on Pi,⇤ at level � then FDR would be controlled
at level �. We believe this inflation to be somewhat of an artifact of our proofs.

Rt is FWER-controlled. A core obstacle in our analysis is the fact that we don’t know the cardinality
of H1. If we did know |H1| (and equivalently know |H0| = n�|H1|) then a FWER+FWPD algorithm
is equivalent to the so-called top-k multi-armed bandit problem [9, 8] and controlling FWER would
be relatively simple using a Bonferroni correction:

P
⇣ [

i2H0

[
1

t=1{bµi,t � �(t, �

n�|H1|
) � µ0}

⌘


X

i2H0

P
⇣
[
1

t=1{bµi,t � �(t, �

|H0|
) � µ0}

⌘
 |H0|

�

|H0|

which implies FWER-�. Comparing the first expression immediately above to the definition of Rt

in the algorithm, it is clear our strategy is to use |St| as a surrogate for |H1|. Note that we could
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use the bound |H0| = n� |H1|  n to guarantee FWER-�, but this could be very loose and induce
an n log(n) sample complexity. Using |St| as a surrogate for |H1| in Rt is intuitive because by the
FDR guarantee, we know |H1| � E[|St \H1|] = E[|St|]�E[|St \H0|] � (1� �)E[|St|], implying
that |H0| = n � |H1|  n � (1 � �)E[|St|] which may be much tighter than n if E[|St|] ! |H1|.
Because we only know |St| and not its expectation, the extra factors in the surrogate expression used
in Rt are used to ensure correctness with high-probability (see Lemma 7).

2.2 Sampling strategies to boost statistical power

The above discussion about controlling false alarms for St and Rt holds for any choice of arms It
and Jt that may be pulled at time t. Thus, It and Jt are chosen in order to minimize the amount of
time necessary to add arms into St and Rt, respectively, and optimize the sample complexity.

TPR-�, ⌧ setting implies ⇠t = ⌫t = 1. Define the random set I = {i 2 H1 : bµi,Ti(t)+�(Ti(t), �) �
µi 8t 2 N}. Because � is an anytime confidence bound, E [|I|] � (1��)|H1|. If � = mini2H1 µi�

µ0, then mini2I µi � µ0 +� and we claim that with probability at least 1�O(�) (Section C)
P

1

t=1 1{It 2 H0, I 6✓ St} 
P

1

t=1 1{It 2 H0, bµIt,TIt (t)
+ �(TIt(t), �) � µ0 +�}

 c|H0|�
�2 log(log(��2/�).

Thus once this number of samples has been taken, either I ✓ St, or arms in I will be repeatedly
sampled until they are added to St since each arm i 2 I has its upper confidence bound larger than
those arms in H0 by definition. It is clear that an arm in H1 that is repeatedly sampled will eventually
be added to St since its anytime p-value of (1) approaches 0 at an exponential rate as it is pulled, and
BH selects for low p-values. A similar argument holds for Jt and adding arms to Rt.
Remark 2. While the main objective of Algorithm 1 is to identify all arms with means above a
given threshold, we note that prior to adding an arm to St in the TPR setting (i.e., when ⇠t = 1)
Algorithm 1 behaves identically to the nearly optimal best-arm identification algorithm lil’UCB of
[21]. Thus, whether the goal is best-arm identification or to identify all arms with means above a
certain threshold, Algorithm 1 is applicable.

FWPD-�, ⌧ setting is more delicate and uses inflated values of ⇠t and ⌫t. This time, we must ensure
that {H1 6✓ St} =) maxi2H1\S

c
t
bµi,Ti(t) + �(Ti(t), �) � mini2H1\S

c
t
µi � µ0 +�. Because

then we could argue that either H1 ⇢ St, or only arms in H1 are sampled until they are added to St

(mirroring the TPR argument). As in the FWER setting above, if we knew the value of |H1| the we
could set ⇠t � |H1| to observe that

P(
S

i2H1
[
1

t=1{bµi,t + �(t, �

⇠t
) < µi}) 

P
i2H1

P
⇣
[
1

t=1{bµi,t + �(t, �

⇠t
) < µi}

⌘
 |H1|

�

⇠t

which is less than �, to guarantee such a condition. But we don’t know |H1| so we use |St|

as a surrogate, resulting in the inflated definitions of ⇠t and ⌫t relative to the TPR setting. The
key argument is that either I 6✓ St so that maxi2I\S

c
t
bµi,Ti(t) + �(Ti(t),

�

⇠t
) � µ0 + � by the

definition of I (since ⇠t � 1), or I ⇢ St and |St| �
1
2 |H1| with high probability which implies

⇠t = max{2|St|,
5

3(1�4�) log(1/�)} � |H1| and the union bound of the display above holds.

3 Main Results

In what follows, we say f . g if there exists a c > 0 that is independent of all problem parameters
and f  cg. The theorems provide an upper bound on the sample complexity ⌧ 2 N as defined in
Section 1.1 for TPR-�, ⌧ or FWER-�, ⌧ that holds with probability at least 1� c� for different values
of c3. We begin with the least restrictive setting, resulting in the smallest sample complexity of all the
results presented in this work. Note the slight generalization in the below theorem where the means
of H0 are assumed to be no greater than µ0.
Theorem 2 (FDR, TPR). Let H1 = {i 2 [n] : µi > µ0}, H0 = {i 2 [n] : µi  µ0}. Define
�i = µi � µ0 for i 2 H1, � = mini2H1 �i, and �i = minj2H1 µj � µi = � + (µ0 � µi) for

3 Each theorem relies on different events holding with high probability, and consequently a different c for
each. To have c = 1 for each of the four settings, we would have had to define different constants in the
algorithm for each setting. We hope the reader forgives us for this attempt at minimizing clutter.
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i 2 H0. For all t 2 N we have E[ |St\H0|

|St|_1 ]  �. Moreover, with probability at least 1 � 2� there
exists a T such that

T . min
�
n��2 log(log(��2)/�),
P

i2H0
��2

i
log(log(��2

i
)/�) +

P
i2H1

��2
i

log(n log(��2
i

)/�)
 

and E[ |St\H1|

|H1|
] � 1� � for all t � T . Neither argument of the minimum follows from the other.

If the means of H1 are very diverse so that maxi2H1 µi � µ0 � mini2H1 µi � µ0 then the second
argument of the min in Theorem 2 can be tighter than the first. But as discussed above, this advantage
is inconsequential if |H1| = o(n). The remaining theorems are given in terms of just �. The
log log(��2) dependence is due to inverting the � confidence interval and is unavoidable on at least
one arm when � is unknown a priori due to the law of the iterated logarithm [27, 21, 22].

Informally, Theorem 2 states that if just most true detections suffice while not making too many
mistakes, then O(n) samples suffice. The first argument of the min is known to be tight in a minimax
sense up to doubly logarithmic factors due to the lower bound of [4]. As a consequence of this work,
an algorithm inspired by Algorithm 1 in this setting is now in production at one of the largest A/B
testing platforms on the web. The full proof of Theorem 2 (and all others) is given in the Appendix
due to space.

Theorem 3 (FDR, FWPD). For all t 2 N we have E[ |St\H0|

|St|_1 ]  �. Moreover, with probability at
least 1� 5�, there exists a T such that

T . (n� |H1|)�
�2 log(max{|H1|, log log(n/�)} log(�

�2)/�) + |H1|�
�2 log(log(��2)/�)

and H1 ✓ St for all t � T .

Here T roughly scales like (n � |H1|)max{log(|H1|), log log log(n/�)} + |H1| where the
log log log(n/�) term comes from a high probability bound on the false discovery proportion for
anytime p-values (in contrast to just expectation) in Lemma 2 that may be of independent interest.
While negligible for all practical purposes, it appears unnatural and we suspect that this is an artifact of
our analysis. We note that if |H1| = ⌦(log(n)) then the sample complexity sheds this awkwardness4.

The next two theorems are concerned with controlling FWER on the set Rt and determining how
long it takes before the claimed detection conditions are satisfied on the set Rt. Note we still have
that FDR is controlled on the set St but now this set feeds into Rt.

Theorem 4 (FWER, FWPD). For all t we have E[ |St\H0|

|St|_1 ]  �. Moreover, with probability at least
1� 6�, we have H0 \Rt = ; for all t 2 N and there exists a T such that

T .(n� |H1|)�
�2 log(max{|H1|, log log(n/�)} log(�

�2)/�)

+ |H1|�
�2 log(max{n� (1� 2�(1 + 4�))|H1|, log log(n/�)} log(�

�2)/�)

and H1 ✓ Rt for all t � T . Note, together this implies H1 = Rt for all t � T .

Theorem 4 has the strongest conditions, and therefore the largest sample complexity. Ignoring
log log log(n) factors, T roughly scales as (n�|H1|) log(|H1|)+|H1| log(n�(1�2�(1+4�))|H1|).
Inspecting the top-k lower bound of [8] where the arms’ means in H1 are equal to µ0 +�, the arms’
means in H0 are equal to µ0, and the algorithm has knowledge of the cardinality of H1, a necessary
sample complexity of (n� |H1|) log(|H1|)+ |H1| log(n� |H1|) is given. It is not clear whether this
small difference of log(n� (1� 2�(1+ 4�))|H1|) versus log(n� |H1|) is an artifact of our analysis,
or a fundamental limitation when the cardinality |H1| is unknown. We now state our final theorem.

Theorem 5 (FWER, TPR). For all t we have E[ |St\H0|

|St|_1 ]  �. Moreover, with probability at least
1� 7� we have H0 \Rt = ; for all t 2 N and there exists a T such that

T .(n� |H1|)�
�2 log(log(��2)/�)

+ |H1|�
�2 log(max{n� (1� ⌘)|H1|, log log(n log(1/�)/�)} log(��2)/�)

and E[ |Rt\H1|

|H1|
] � 1� � for all t � T , where ⌘ = (1� 3� �

p
2� log(1/�)/|H1|).

4In the asymptotic n regime, it is common to study the case when |H1| = n� for � 2 (0, 1) [4, 13].
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4 Experiments

The distribution of each arm equals ⌫i = N (µi, 1) where µi = µ0 = 0 if i 2 H0, and µi > 0 if
i 2 H1. We consider three algorithms: i) uniform allocation with anytime BH selection as done in
Algorithm 1, ii) successive elimination (SE) (see Appendix G)5 that performs uniform allocation
on only those arms that have not yet been selected by BH, and iii) Algorithm 1 (UCB). Algorithm

1 and the BH selection rule for all algorithms use �(t, �) =
q

2 log(1/�)+6 log log(1/�)+3 log(log(et/2))
t

from [25, Theorem 8]. In addition, we ran BH at level � instead of �/(6.4 log(36/�)) as discussed
in section 3. Here we present the sample complexity for TPR+FDR with � = 0.05 and different
parameterizations of µ, n, |H1|.

The first panel shows an empirical estimate of E[ |St\H1|

|H1|
] at each time t for each algorithm, averaged

over 1000 trials. The black dashed line on the first panel denotes the level E[ |St\H1|

|H1|
] = 1� � = .95,

and corresponds to the dashed black line on the second panel. The right four panels show the number
of samples each algorithm takes before the true positive rate exceeds 1 � � = .95, relative to the
number of samples taken by UCB, for various parameterizations. Panels two, three, and four have
�i = � for i 2 H1 while panel five is a case where the �i’s are linear for i 2 H1. While the
differences are most clear on the second panel when |H1| = 2 = o(n), over all cases UCB uses at
least ⇡ 3 times fewer samples than uniform and SE. For FDR+TPR, Appendix G shows uniform
sampling roughly has a sample complexity that scales like n��2 log( n

|H1|
) while SE’s is upper

bounded by min{n��2 log( n

|H1|
), (n � |H1|)��2 log( n

|H1|
) +

P
i2H1

��2
i

log(n)}. Comparing
with Theorem 2 for the difference cases (i.e., |H1| = 2,

p
n, n/5) provides insight into the relative

difference between UCB, uniform, and SE on the different panels.
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