
RetGK: Graph Kernels based on Return Probabilities
of Random Walks

Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai
Department of Electrical and Systems Engineering

Washington University in St. Louis
St. Louis, MO 63130

{zhen.zhang, mianzhi.wang, yijian.xiang, yanhuang640, nehorai}@wustl.edu

Abstract

Graph-structured data arise in wide applications, such as computer vision, bioinfor-
matics, and social networks. Quantifying similarities among graphs is a fundamen-
tal problem. In this paper, we develop a framework for computing graph kernels,
based on return probabilities of random walks. The advantages of our proposed
kernels are that they can effectively exploit various node attributes, while being
scalable to large datasets. We conduct extensive graph classification experiments to
evaluate our graph kernels. The experimental results show that our graph kernels
significantly outperform existing state-of-the-art approaches in both accuracy and
computational efficiency.

1 Introduction

Structured data modeled as graphs arise in many application domains, such as computer vision,
bioinformatics, and social network mining. One interesting problem for graph-type data is quantifying
their similarities based on the connectivity structure and attribute information. Graph kernels, which
are positive definite functions on graphs, are powerful similarity measures, in the sense that they
make various kernel-based learning algorithms, for example, clustering, classification, and regression,
applicable to structured data. For instance, it is possible to classify proteins by predicting whether a
given protein is an enzyme or not.

There are several technical challenges in developing effective graph kernels: (i) When designing graph
kernels, one might come across the graph isomorphism problem, a well-known NP problem. The
kernels should satisfy the isomorphism-invariant property, while being informative on the topological
structure difference. (ii) Graphs are usually coupled with multiple types of node attributes, e.g.,
discrete1 or continuous attributes. For example, a chemical compound may have both discrete and
continuous attributes, which respectively describe the type and position of atoms. A crucial problem
is how to integrate the graph structure and node attribute information in graph kernels. (iii) In some
applications, e.g., social networks, graphs tend to be very large, with thousands or even millions of
nodes, which requires strongly scalable graph kernels.

In this work, we propose novel methods to overcome these challenges. We revisit the concept
of random walks, introducing a new node structural role descriptor, the return probability feature
(RPF). We rigorously show that the RPF is isomorphism-invariant and encodes very rich connectivity
information. Moreover, RPF allows us to consider attributed and nonattributed graphs in a unified
framework. With the RPF, we can embed (non-)attributed graphs into a Hilbert space. After that, we
naturally obtain our return probability-based graph kernels ("RetGK" for short). Combining with the
approximate feature maps technique, we represent each graph with a multi-dimensional tensor and
design a family of computationally efficient graphs kernels.

1In the literature, the discrete node attributes are usually called "labels".

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Related work. There are various graph kernels, many of which explore the R-convolutional frame-
work [12]. The key idea is decomposing a whole graph into small substructures and building graph
kernels based on the similarities among these components. Such kernels differ from each other in the
way they decompose graphs. For example, graphlet kernels [26] are based on small subgraphs up to
a fixed size. Weisfeiler-Lehman graph kernels [25] and tree-based kernels [6] are developed with
subtree patterns. Shortest path kernels [1] are derived by comparing the paths between graphs. Still
other graph kernels, such as [30] and [10], are developed by counting the number of common random
walks on direct product graphs. Recently, subgraph matching kernels [18] and graph invariant kernels
[22] were proposed for handling continuous attributes. However, all the above R-convolution based
graph kernels suffer from a drawback. As pointed out in [32], increasing the size of substructures
will largely decrease the probability that two graphs contain similar substructures, which usually
results in the "diagonal dominance issue" [14]. Our return probability based kernels are significantly
different from the above ones. We measure the similarity between two graphs by directly comparing
their node structural role distributions, avoiding substructures decomposition.

More recently, new methods have been proposed for comparing graphs, which is done by quantifying
the dissimilarity between the distributions of pairwise distances between nodes. [24] uses the shortest
path distance, and [29] uses the diffusion distance. However, these methods can be applied only to
non-attributed (unlabeled) graphs, which largely limits their applications in the real world.

Organization. In Section 2, we introduce the necessary background, including graph concepts and
tensor algebra. In Section 3, we discuss the favorable properties of and computational methods for
RPF. In Section 4, we present the Hilbert space embedding of graphs, and develop the corresponding
graph kernels. In Section 5, we show the tensor representation of graphs, and derive computational
efficient graph kernels. In Section 6, we report the experimental results on 21 benchmark datasets. In
the supplementary material, we provide proofs of all mathematical results in the paper.

2 Background

2.1 Graph concepts

An undirect graphG consists of a set of nodes VG = {v1, v2, ..., vn} and a set of edgesEG ⊆ VG×VG.
Each edge (vi, vj) is assigned with a positive value wij describing the connection strength between vi
and vj . For an unweighted graph, all the edge weights are set to be one, i.e., wij = 1,∀(vi, vj) ∈ EG.
Two graphs G and H are isomorphic if there exists a permutation map τ : VG → VH , such that
∀(vi, vj) ∈ EG,

(
τ(vi), τ(vj)

)
∈ EH , and the corresponding edge weights are preserved.

The adjacent matrixAG is an n× n symmetric matrix withAG(i, j) = wij . The degree matrixDG

is diagonal matrix whose diagonal terms areDG(i, i) =
∑

(vi,vj)∈EG
wij . The volume of G is the

summation of all node degrees, i.e., VolG =
∑n
i=1DG(i, i). An S-step walk starting from node v0

is a sequence of nodes {v0, v1, v2, ..., vS}, with (vs, vs+1) ∈ EG, 0 ≤ s ≤ S − 1. A random walk
on G is a Markov chain (X0, X1, X2, ...), whose transition probabilities are

Pr(Xi+1 = vi+1|Xi = vi, ..., X0 = v0) = Pr(Xi+1 = vi+1|Xi = vi) =
wij

DG(i, i)
, (1)

which induces the transition probability matrix PG = D−1G AG. More generally, P s
G is the s-step

transition matrix, where P s
G(i, j) is the transition probability in s steps from node vi to vj .

In our paper, we also consider the case that nodes are associated with multiple attributes. Let A
denote a attribute domain. Typically, A can be a alphabet set or a subset of a Euclidean space, which
corresponds to discrete attributes and continuous attributes, respectively.

2.2 Tensor algebra

A tensor [17] is a multidimensional array, which has multiple indices.2 We use RI1×I2×...×IN to
denote the set of tensors of order N with dimension (I1, I2, ..., IN). If U ∈ RI1×I2×...×IN , then
Ui1i2,...,iN ∈ R, where 1 ≤ i1 ≤ I1, ..., 1 ≤ iN ≤ IN .

2A vector ~u ∈ RD is a first-order tensor, and a matrix A ∈ RD1×D2 is a second-order tensor.

2

The inner product between tensors U, V ∈ RI1×I2×...×IN is defined such that

〈U, V 〉T = vec(U)Tvec(V) =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Ui1i2,...,iNVi1i2,...,iN . (2)

A rank-one tensor W ∈ RI1×I2×...×IN is the tensor (outer) product of N vectors, i.e., W =

~w(1) ◦ ~w(2) ◦ ... ◦ ~w(N), Wi1i2,...,iN = ~w
(1)
i1
~w
(2)
i2
... ~w

(N)
iN

.

3 Return probabilities of random walks

Given a graph G, as we can see from (1), the transition probability matrix, PG, encodes all the
connectivity information, which leads to a natural intuition: We can compare two graphs by quantify-
ing the difference between their transition probability matrices. However, big technical difficulties
exist, since the sizes of two matrices are not necessarily the same, and their rows or columns do not
correspond in most cases.

To tackle the above issues, we make use of the S-step return probabilities of random walks on G. To
do this, we assign each node vi ∈ VG an S-dimensional feature called "return probability feature"
("RPF" for short), which describes the "structural role" of vi, i.e.,

~pi = [P 1
G(i, i),P

2
G(i, i), ...,P

S
G(i, i)]

T , (3)

where P s
G(i, i), s = 1, 2, ..., S, is the return probability of a s-step random walk starting from vi.

Now each graph is represented by a set of feature vectors in RS : RPFSG = {~p1, ~p2, ..., ~pn}. The
RPF has three nice properties: isomorphism-invariance, multi-resolution, and informativeness.

3.1 The properties of RPF

Isomorphism-invariance. The isomorphism-invariance property of return probability features is
summarized in the following proposition.
Proposition 1. Let G and H be two isomorphic graphs of n nodes, and let τ : {1, 2, ..., n} →
{1, 2, ..., n} be the corresponding isomorphism. Then,

∀vi ∈ VG, s = 1, 2, ...,∞, P s
G(i, i) = P

s
H(τ(i), τ(i)). (4)

Clearly, isomorphic graphs have the same set of RPF, i.e., RPFSG = RPFSH , ∀S = 1, 2, ...,∞. Such
a property can be used to check graph isomorphism, i.e., if ∃S, s.t. RPFSG 6= RPFSH , then G and H
are not isomorphic. Moreover, Proposition 1 allows us to directly compare the structural role of any
two nodes in different graphs, without considering the matching problems.

Multi-resolution. RPF characterizes the "structural role" of nodes with multi-resolutions. Roughly
speaking, P s

G(i, i) reflects the interaction between node vi and the subgraph involving vi. With an
increase in s, the subgraph becomes larger. We use a toy example to illustrate our idea. Fig. 1(a)
presents an unweighted graphG, and C1, C2, and C3 are three center nodes inG, which play different
structural roles. In Fig. 1(b), we plot their s-step return probabilities, s = 1, 2, ..., 200. C1, C2, and
C3 have the same degree, as do their neighbors. Thus their first two return probabilities are the same.
Since C1 and C2 share the similar neighbourhoods at larger scales, their return probability values
are close until the eighth step. Because C3 plays a very different structural role from C1 and C2, its
return probabilities values deviate from those of C1 and C2 in early steps.

In addition, as shown in Fig. 1(b), when the random walk step s approaches infinity, the return
probability P s

G(i, i) will not change much and will converge to a certain value, which is known as
the stationary probability in Markov chain theory [5]. Therefore, if s is already sufficiently large, we
gain very little new information from the RPF by increasing s.

Informativeness. The RPF provides very rich information on the graph structure, in the sense that if
two graphs has the same RPF sets, they share very similar spectral properties.
Theorem 1. Let G and H be two connected graphs of the same size n and volume Vol, and let PG
andPH be the corresponding transition probability matrices. Let {(λk, ~ψk)}nk=1 and {(µk, ~ϕk)}nk=1
be eigenpairs of PG and PH , respectively. Let τ : {1, 2, ..., n} → {1, 2, ..., n} be a permutation
map. If P s

G(i, i) = P
s
H(τ(i), τ(i)),∀vi ∈ VG,∀s = 1, 2, ..., n, i.e., RPFnG = RPFnH , then,

3

(a) (b)

Figure 1: (a) Toy Graph G; (b) The s-step return probability of the nodes C1, C2 and C3 in the toy
graph, s = 1, 2, ..., 200. The nested figure is a close-up view of the rectangular region.

1. RPFSG = RPFSH , ∀S = n+ 1, n+ 2, ...,∞;

2. {λ1, λ2, ..., λn} = {µ1, µ2, ..., µn};

3. If the eigenvalues sorted by their magnitudes satisfy: |λ1| > |λ2| > ... > |λm| > 0,
|λm+1| = ... = |λn| = 0, then we have that | ~ψk(i)| = |~ϕk(τ(i))|, ∀vi ∈ VG, ∀k =
1, 2, ...,m.

The first conclusion states that the graph structure information contained in RPFnG and RPFSG, S ≥ n
are the same, coinciding with our previous discussions on RPF with large random walk steps. The
second and third conclusions bridge the RPF with spectral representations of graphs [4], which
contains almost all graph structure information.

Relation to eigenvector embeddings (EE). One popular way of embedding graph nodes in a Eu-
clidean space uses the eigenvectors of Laplacian or adjacent matrices as the coordinates. In [21], a
class of graph kernels are developed based on the eigenvector embeddings. From Theorem 1, we
see that both RPF and EE encode the spectral information of graphs. However, our RPF has several
advantages over EE. (i) The eigenvector embeddings reflect the closeness among nodes in the same
graph, which makes it difficult to compare node across graphs. (ii) The EE representations, which are
computed up to a change in sign (or more generally, orthonormal transformation in the eigenspace),
may not be invariant under graph isomorphisms. A counterexample is shown in Fig. 2. G and G’ are
two isomorphic graphs, we visualize their first three-dimensional embeddings with RPF and EE 3.
It can be seen that RPFs are invariant while eigenvectors are not. (iii) The eigenvector embeddings
are unstable. The perturbation theory says that two eigenvectors may switch if their eigenvalues are
close.

3.2 The computation of RPF

Given a graphG, the brute-force computation of RPFSG requires (S−1)×n×nmatrix multiplication
of PG. Therefore, the time complexity is (S − 1)n3, which is quite high when S is large.

Since only the diagonal terms of transition matrices are needed, we have efficient techniques. Write

PG =D−1G AG =D
− 1

2

G (D
− 1

2

G AGD
− 1

2

G)D
1
2

G =D
− 1

2

G BGD
1
2

G, (5)

whereBG =D
− 1

2

G AGD
− 1

2

G is a symmetric matrix. Then P s
G =D

− 1
2

G Bs
GD

1
2

G. Let {(λk, ~uk)}nk=1

be the eigenpairs ofBG, i.e.,BG =
∑n
k=1 λk~uk~u

T
k . Then the return probabilities are

P s
G(i, i) = B

s
G(i, i) =

n∑
k=1

λsk
[
~uk(i)

]2
,∀vi ∈ VG,∀s = 1, 2, ..., S. (6)

Let U = [~u1, ~u2, ..., ~un], let V = U � U , where � denotes Hadamard product, and let ~Λs =

[λs1, λ
s
2, ..., λ

s
n]
T . Then we can obtain all nodes’ s-step return probabilities in the vector V ~Λs. The

3Note that since the signs of these eigenvectors are not fixed, we use the absolute value as in [21]

4

eigen-decomposition of BG requires time O(n3). Computing V or V ~Λs, ∀s = 1, 2, ..., S, takes
time O(n2). So the total time complexity of the above computational method is O

(
n3 + (S + 1)n2

)
.

3.2.1 Monte Carlo simulation method

If the graph node number, n, is large, i.e., n > 105, the eigendecomposition of an n× n matrix is
relatively time-consuming. To make RPF scalable to large graphs, we use the Monte Carlo method to
simulate random walks. Given a graph G, for each node vi ∈ VG, we can simulate a random walk
of length S based on the transition probability matrix PG. We repeat the above procedure M times,
obtaining M sequences of random walks. For each step s = 1, 2, ..., S, we use the relative frequency
of returning to the starting point as the estimation of the corresponding s-step return probability. The
random walk simulation is parallelizable and can be implemented efficiently, characteristics of which
both contribute to the scalability of RPF.

4 Hilbert space embeddings of graphs

In this section, we introduce the Hilbert space embeddings of graphs, based on the RPF. With such
Hilbert space embeddings, we can naturally obtain the corresponding graph kernels.

As discussed in Section 3, the structural role of each node vi can be characterized by an
S−dimensional return probability vector ~pi (see 3), and thus a nonattributed graph can be rep-
resented by the set RPFSG = {~pi}ni=1. Since the isomorphism-invariance property allows direct
comparison of nodes’ structural roles across different graphs, we can view the RPF as a special type
of attribute, namely, "the structural role attribute" (whose domain is denoted as A0), associated with
nodes. Clearly, A0 = RS .

The nodes of attributed graphs usually have other types of attributes, which are obtained by physical
measurements. Let A1,A2, ...,AL be their attribute domains. When combined with RPF, an
attributed graph can be represented by the set {(~pi, a1i , ..., aLi)}ni=1 ⊆ A0 ×A1 × ...×AL (denoted
as ×Ll=0Al). Such a representation allows us to consider both attributed and nonattributed graphs in
a unified framework, since if L = 0, the above set just degenerates to the nonattributed case. The
set representation forms an empirical distribution µ = 1

n

∑n
i=1 δ(~pi,a1i ,...,a

L
i) on A = ×Ll=0Al, which

can be embedded into a reproducing kernel Hilbert space (RKHS) by kernel mean embedding [11].

Let kl, l = 0, 1, ..., L be a kernel on Al. Let Hl and φl be the corresponding RKHS and implicit
feature map, respectively. Then we can define a kernel onA through the tensor product of kernels [28],
i.e., k = ⊗Ll=0kl, k

[
(~p, a1, a2, ..., aL), (~q, b1, b2, ..., bL)

]
= k0(~p, ~q)

∏L
l=1 kl(a

l, bl). Its associated
RKHS, H, is the tensor product space generated by Hl, i.e., H = ⊗Ll=0Hl. Let φ : A → H be the

(a) (b) (c)

Figure 2: Toy graph G and its adjacent matrix; (b) Toy graph G’ and its adjacent matrix; (c) 3-
D eigenvector and RPF embeddings of nodes in G and G’, respectively. We can see that our RPF
correctly reflects the structural roles. That is, the nodes V3, V4, V5 in graph G and the nodes V ′1 , V

′
3 , V

′
5

in graph G’ have the same structural role. And the nodes V1, V2 in graph G and the nodes V ′2 , V
′
4 in

graph G’ have the same structural role.

5

implicit feature map. Then given a graph G, we can embed it intoH in the following procedure,

G→ µG → mG, andmG =

∫
A
φdµG =

1

n

n∑
i=1

φ(pi, a
1
i , ..., a

L
i). (7)

4.1 Graph kernels (I)

An important benefit of Hilbert space embedding of graphs is that it is straightforward to generalize
the positive definite kernels defined on Euclidean spaces to the set of graphs.

Given two graphs G and H , let {4Gi }
nG
i=1 and {4Hi }

nH
j=1 be the respective set representations(

4Gi = (~pi, a
1
i , a

2
i , ..., a

L
i) and likewise4Hj

)
. LetKGG,KHH , andKGH be the kernel matrices,

induced by the embedding kernel k. That is, they are defined such that (KGG)ij = k(4Gi ,4Gj),
(KHH)ij = k(4Hi ,4Hj), and (KGH)ij = k(4Gi ,4Hj).

Proposition 2. Let G be the set of graphs with attribute domains A1,A2, ...,AL. Let G and H be
two graphs in G. Let mG and mH be the corresponding graph embeddings. Then the following
functions are positive definite graph kernels defined on G × G.

K1(G,H) = (c+ 〈mG,mH〉H)d = (c+
1

nGnH
~1TnG

KGH
~1nH

)d, c ≥ 0, d ∈ N, (8a)

K2(G,H) = exp(−γ‖mG −mH‖pH) = exp
[
− γMMDp(µG, µH)

]
, γ > 0, 0 < p ≤ 2, (8b)

where MMD(µG, µH) = (1
n2
G

~1TnG
KGG

~1nG
+ 1

n2
H

~1TnH
KHH

~1nH
− 2

nGnH

~1TnG
KGH

~1nH
)

1
2 is the

maximum mean discrepancy (MMD) [11].

Kernel selection. In real applications, such as bioinformatics, graphs may have discrete labels
and (multi-dimensional) real-valued attributes. Hence, three attributes domains are involved in the
computation of our graph kernels: the structural role attribute domainA0, the discrete attribute domain
Ad, and the continuous attribute domain Ac. For Ad, we can use the Delta kernel kd(a, b) = I{a=b}.
For A0 and Ac, which are just the Euclidean spaces, we can use the Gaussian RBF kernel, the
Laplacian RBF kernel, or the polynomial kernel.

5 Approximated Hilbert space embedding of graphs

Based on the above discussions, we see that obtaining a graph kernel value between each pair of
graphs requires calculating the inner product or the L2 distance between two Hilbert embeddings
(see (8a) and (8b)), both of which scale quadratically to the node numbers. Such time complexity
precludes application to large graph datasets. To tackle the above issues, we employ the recently
emerged approximate explicit feature maps [23].

For a kernel kl on the attribute domain Al, l = 0, 1, ..., L, we find an explicit map φ̂ : Al → RDl , so
that

∀a, b ∈ Al, 〈φ̂(a), φ̂(b)〉 = k̂l(a, b), and k̂l(a, b)→ kl(a, b) as Dl →∞. (9)

The explicit feature maps will be directly used to compute the approximate graph embeddings, by
virtue of tensor algebra (see Section 2.2). The following theorem says that the approximate explicit
graph embeddings can be written as the linear combination of rank-one tensors.

Theorem 2. Let G and H be any two graphs in G. Let {(~pi, a1i , a2i , ..., aLi)}
nG
i=1 and

{(~qj , b1j , b2j , ..., bLj)}
nH
j=1 be the respective set representations of G and H . Then their approxi-

mate explicit graph embeddings, m̂G and m̂H , are tensors in RD0×D1×...×DL , and can be written as

m̂G =
1

nG

nG∑
i=1

φ̂0(~pi)◦ φ̂1(a1i)◦ ...◦ φ̂L(aLi), m̂H =
1

nH

nH∑
j=1

φ̂0(~qj)◦ φ̂1(b1j)◦ ...◦ φ̂L(bLj). (10)

That is, as D0, D1, ..., DL →∞, we have 〈m̂G, m̂H〉T → 〈mG,mH〉H.

6

5.1 Graph Kernels (II)

With approximate tensor embeddings (10), we obtain new graph kernels.
Proposition 3. The following functions are positive definite graph kernels defined on G × G.

K̂1(G,H) = (c+ 〈m̂G, m̂H〉T)d =
[
c+ vec(m̂G)

Tvec(m̂H)
]d
, c ≥ 0, d ∈ N, (11a)

K̂2(G,H) = exp(−γ‖m̂G − m̂H‖pT) = exp(−γ‖vec(m̂G)− vec(m̂H)‖p2), γ > 0, 0 < p ≤ 2..
(11b)

Moreover, asD0, D1, ..., DL →∞, we have K̂1(G,H)→ K1(G,H) and K̂2(G,H)→ K2(G,H).

The vectorization of m̂G (or m̂H) can be easily implemented by the Kronecker product, i.e.,
vec(m̂G) =

1
nG

∑nG

i=1 φ̂0(~pi)⊗ φ̂1(a1i)⊗ ...⊗ φ̂L(aLi). To obtain above graph kernels, we need only
to compute the Euclidean inner product or distance between vectors. More notably, the size of the
tensor representation does not depends on node numbers, making it scalable to large graphs.

Approximate explicit feature map selection. For the Delta kernel on the discrete attribute domain,
we directly use the one-hot vector. For shift-invariant kernels, i.e., k(~x, ~y) = k(~x− ~y), on Euclidean
spaces, e.g., A0 and Ac, we make use of random Fourier feature map [23], φ̂ : Rd → RD, satisfying
〈φ̂(~x), φ̂(~y)〉 ≈ k(~x, ~y). To do this, we first draw D i.i.d. samples ω1, ω2, ..., ωD from a proper
distribution p(ω). (Note that in this paper, we use p(ω) = 1

(
√
2πσ)D

exp(−‖ω‖
2
2

2σ2).) Next, we draw
D i.i.d. samples b1, b2, ..., bD from the uniform distribution on [0, 2π]. Finally, we can calculate

φ̂(~x) =
√

2
D

[
cos(ωT1 ~x+ b1), ..., cos(ω

T
D~x+ bD)

]T ∈ RD.

6 Experiments

In this section, we conduct extensive experiments to demonstrate the effectiveness of our graph
kernels. We run all the experiments on a laptop with an Intel i7-7820HQ, 2.90GHz CPU and 64GB
RAM. We implement our algorithms in Matlab, except for the Monte Carlo based computation of
RPF (see Section 3.2,1), which is implemented in C++.

6.1 Datasets

We conduct graph classification on four types of benchmark datasets [16]. (i) Non-attributed (unla-
beled) graphs datasets: COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-
MULTI(5K), and REDDIT-MULTI(12K) [31] are generated from social networks. (ii) Graphs with
discrete attributes (labels): DD [8] are proteins. MUTAG [7], NCI1 [25], PTC-FM, PTC-FR, PTC-
MM, and PTC-MR [13] are chemical compounds. (iii) Graphs with continuous attributes: FRANK is
a chemical molecule dataset [15]. SYNTHETIC and Synthie are synthetic datasets based on random
graphs, which were first introduced in [9] and [19], respectively. (iv) Graphs with both discrete
and continuous attributes: ENZYMES and PROTEINS [2] are graph representations of proteins.
BZR, COX2, and DHFR [27] are chemical compounds. Detailed descriptions, including statistical
properties, of these 21 datasets are provided in the supplementary material.

6.2 Experimental setup

We demonstrate both the graph kernels (I) and (II) introduced in Section 4.1 and Section 5.1, which are
denoted by RetGKI and RetGKII, respectively. The Monte Carlo computation of return probability
features, denoted by RetGKII(MC), is also considered. In our experiments, we repeat 200 Monte
Carlo trials, i.e., M = 200, for obtaining RPF. For handling the isolated nodes, whose degrees are
zero, we artificially add a self-loop for each node in graphs.

Parameters. In all experiments, we set the random walk step S = 50. For RetGKI, we use the
Laplacian RBF kernel for both the structural role domainA0, and the continuous attribute domainAc,
i.e., k0(~p, ~q) = exp(−γ0‖~p− ~q‖2) and kc(~a,~b) = exp(−γc‖~a− ~b‖2). We set γ0 to be the inverse
of the median of all pairwise distances, and set γc to be the inverse of the square root of the attributes’
dimension, except for the FRANK dataset, whose γc is set to be the recommended value

√
0.0073

7

in the paper [22] and [19]. For RetGKII, on the first three types of graphs, we set the dimensions
of random Fourier feature maps on A0 and Ac both to be 200, i.e., D0 = Dc = 200, except for the
FRANK dataset, whose Dc is set to be 500 because its attributes lie in a much higher dimensional
space. On the graphs with both discrete and continuous attributes, for the sake of computational
efficiency, we set D0 = Dc = 100. For both RetGKI and RetGKII, we make use of the graph
kernels with exponential forms, exp(−γ‖ · ‖p), (see (8b) and (11b)). We select p from {1, 2}, and
set γ = 1

distp , where dist is the median of all the pairwise graph embedding distances.

We compare our graph kernels with many state-of-the-art graph classification algorithms: (i) the
shortest path kernel (SP) [1], (ii) the Weisfeiler-Lehman subtree kernel (WL) [25], (iii) the graphlet
count kernel (GK)[26], (iv) deep graph kernels (DGK) [31], (v) PATCHY-SAN convolutional neural
network (PSCN) [20], (vi) deep graph convolutional neural network (DGCNN) [33], (vii) graph
invariant kernels (GIK) [22], (viii) hashing Weisfeiler-Lehman graph kernels (HGK(WL)) [19], and
(IX) subgraph matching kernels (CSM) [18].

For all kinds of graph kernels, we employ SVM [3] as the final classifier. The tradeoff parameter C
is selected from {10−3, 10−2, 10−1, 1, 10, 102, 103}. We perform 10-fold cross-validations, using
9 folds for training and 1 for testing, and repeat the experiments 10 times. We report average
classification accuracies and standard errors.

6.3 Experimental Results

The classification results4 on four types of datasets are shown in Tables 1, 2, 3, and 4. The best
results are highlighted in bold. We also report the total time of computing the graph kernels of all the
datasets in each table. It can be seen that graph kernels RetGKI and RetGKII both achieve superior
or comparable performance on all the benchmark datasets. Especially on the datasets COLLAB,
REDDIT-BINARY, REDDIT-MULTI(12K), Synthie, BZR, COX2, our approaches significantly
outperform other state-of-the-art algorithms. The classification accuracies of our approaches on
these datasets are at least six percentage points higher than those of the best baseline algorithms.
Moreover, we see that RetGKII and RetGKII(MC) are faster than baseline methods. Their running
times remain perfectly practical. On the large social network datasets (see Table 1), RetGKII(MC)
is almost one order of magnitude faster than the Weisfeiler-Lehman subtree kernel, which is well
known for its computational efficiency.

6.4 Sensitivity analysis

Here, we conduct a parameter sensitivity analysis of RetGKII on the datasets REDDIT-BINARY,
NCI1, SYNTHETIC, Synthie, ENZYMES, and PROTEINS. We test the stability of RetGKII by
varying the values of the random walk steps S, the dimension D0 of the approximate explicit feature
map on A0, and the dimension Dc of the feature map on Ac. We plot the average classification
accuracy of ten repetitions of 10-fold cross-validations with respect to S, D0, and Dc in Fig. 3. It can
be concluded that RetGKII performs consistently across a wide range of parameter values.

Table 1: Classification results (in %) for non-attributed (unlabeled) graph datasets

Datasets WL GK DGK PSCN RetGKI RetGKII RetGKII(MC)
COLLAB 74.8(0.2) 72.8(0.3) 73.1(0.3) 72.6(2.2) 81.0(0.3) 80.6(0.3) 73.6(0.3)

IMDB-BINARY 70.8(0.5) 65.9(1.0) 67.0(0.6) 71.0(2.3) 71.9(1.0) 72.3(0.6) 71.0(0.6)
IMDB-MULTI 49.8(0.5) 43.9(0.4) 44.6(0.5) 45.2(2.8) 47.7(0.3) 48.7(0.6) 46.7(0.6)

REDDIT-BINARY 68.2(0.2) 77.3(0.2) 78.0(0.4) 86.3(1.6) 92.6(0.3) 91.6(0.2) 90.8(0.2)
REDDIT-MULTI(5K) 51.2(0.3) 41.0(0.2) 41.3(0.2) 49.1(0.7) 56.1(0.5) 55.3(0.3) 54.2(0.3)

REDDIT-MULTI(12K) 32.6(0.3) 31.8(0.1) 32.2(0.1) 41.3(0.4) 48.7(0.2) 47.1(0.3) 45.9(0.2)
Total time 2h3m – – – 48h14m 17m14s 6m9s

4The accuracies of WL, SP and GK are obtained from our own experiments. For others competing algorithms,
we directly quote the values from their papers.

8

Table 2: Classification results (in %) for graph datasets with discrete attributes

Datasets SP WL GK CSM DGCNN DGK PSCN RetGKI RetGKII

ENZYMES 38.6(1.5) 53.4(0.9) – 60.4(1.6) – 53.4(0.9) – 60.4(0.8) 59.1(1.1)
PROTEINS 73.3(0.9) 71.2(0.8) 71.7(0.6) – 75.5(0.9) 75.7(0.5) 75.0(2.5) 75.8(0.6) 75.2(0.3)

MUTAG 85.2(2.3) 84.4(1.5) 81.6(2.1) 85.4(1.2) 85.8(1.7) 87.4(2.7) 89.0(4.4) 90.3(1.1) 90.1(1.0)
DD >24h 78.6(0.4) 78.5(0.3) – 79.4(0.9) – 76.2(2.6) 81.6(0.3) 81.0(0.5)

NCI1 74.8(0.4) 85.4(0.3) 62.3(0.3) – 74.4(0.5) 80.3(0.5) 76.3(1.7) 84.5(0.2) 83.5(0.2)
PTC-FM 60.5(1.7) 55.2(2.3) – 63.8(1.0) – – – 62.3(1.0) 63.9(1.3)
PTC-FR 61.6(1.0) 63.9(1.4) – 65.5(1.4) – – – 66.7(1.4) 67.8(1.1)

PTC-MM 62.9(1.4) 60.6(1.1) – 63.3(1.7) – – – 65.6(1.1) 67.9(1.4)
PTC-MR 57.8(2.1) 55.4(1.5) 57.3(1.1) 58.1(1.6) 58.6(2.5) 60.1(2.6) 62.3(5.7) 62.5(1.6) 62.1(1.5)
Total time >24h 2m27s – – – – – 38m4s 49.9s

10 20 30 40 50 60 70 80 90 100

S

60

65

70

75

80

85

90

95

100

c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

10 50 100 200 500 1000 2000

D
0

60

65

70

75

80

85

90

95

100

c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

REDDIT-BINARY NCI1 SYNTHETIC Synthie ENZYMES PROTEINS

10 50 100 200 500 1000 2000

D
c

60

65

70

75

80

85

90

95

100

c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Figure 3: Parameter sensitivity study for RetGKII on six benchmark datasets

Table 3: Classification results (in %) for
graph datasets with continuous attributes

Datasets HGK(WL) RetGKI RetGKII

ENZYMES 63.9(1.1) 70.0(0.9) 70.7(0.9)
PROTEINS 74.9(0.6) 76.2(0.5) 75.9(0.4)

FRANK 73.2(0.3) 76.4(0.3) 76.7(0.4)
SYNTHETIC 97.6(0.4) 97.9(0.3) 98.9(0.4)

Synthie 80.3(1.4) 97.1(0.3) 96.2(0.3)
Total time – 45m30s 40.8s

Table 4: Classification results (in %) for graph
datasets with both discrete and continuous attributes

Datasets GIK CSM RetGKI RetGKII

ENZYMES 71.7(0.8) 69.8(0.7) 72.2(0.8) 70.6(0.7)
PROTEINS 76.1(0.3) – 78.0(0.3) 77.3(0.5)

BZR – 79.4(1.2) 86.4(1.2) 87.1(0.7)
COX2 – 74.4(1.7) 80.1(0.9) 81.4(0.6)
DHFR – 79.9(1.1) 81.5(0.9) 82.5(0.8)

Total time – – 4m17s 2m51s

7 Conclusion

In this paper, we introduced the return probability feature for characterizing and comparing the
structural role of nodes across graphs. Based on the RPF, we embedded graphs in an RKHS
and derived the corresponding graph kernels RetGKI. Then, making use of approximate explicit
feature maps, we represented each graph with a multi-dimensional tensor, and then obtained the
computationally efficient graph kernels RetGKII. We applied RetGKI and RetGKII to classify
graphs, and achieved promising results on many benchmark datasets. Given the prevalence of
structured data, we believe that our work can be potentially useful in many applications.

8 Acknowledgement

This work was supported in part by the AFOSR grant FA9550-16-1-0386.

References
[1] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Data Mining,

Fifth IEEE International Conference on, pages 8–pp. IEEE, 2005.

9

[2] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics,
21(suppl_1):i47–i56, 2005.

[3] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

[4] Fan RK Chung. Spectral graph theory. Number 92. American Mathematical Soc., 1997.

[5] Erhan Cinlar. Introduction to stochastic processes. Courier Corporation, 2013.

[6] Giovanni Da San Martino, Nicolò Navarin, and Alessandro Sperduti. Tree-based kernel for
graphs with continuous attributes. IEEE transactions on neural networks and learning systems,
2017.

[7] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
medicinal chemistry, 34(2):786–797, 1991.

[8] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of molecular biology, 330(4):771–783, 2003.

[9] Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt.
Scalable kernels for graphs with continuous attributes. In Advances in Neural Information
Processing Systems, pages 216–224, 2013.

[10] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Learning Theory and Kernel Machines, pages 129–143. Springer, 2003.

[11] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773,
2012.

[12] David Haussler. Convolution kernels on discrete structures. Technical report, Technical report,
Department of Computer Science, University of California at Santa Cruz, 1999.

[13] Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive
toxicology challenge 2000–2001. Bioinformatics, 17(1):107–108, 2001.

[14] Jaz Kandola, Thore Graepel, and John Shawe-Taylor. Reducing kernel matrix diagonal dom-
inance using semi-definite programming. In Learning Theory and Kernel Machines, pages
288–302. Springer, 2003.

[15] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores for
mutagenicity prediction. Journal of Medicinal Chemistry, 48(1):312–320, 2005.

[16] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann.
Benchmark data sets for graph kernels, 2016. http://graphkernels.cs.tu-dortmund.de.

[17] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[18] Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In ICML, 2012.

[19] Christopher Morris, Nils M Kriege, Kristian Kersting, and Petra Mutzel. Faster kernels for
graphs with continuous attributes via hashing. In Data Mining (ICDM), 2016 IEEE 16th
International Conference on, pages 1095–1100. IEEE, 2016.

[20] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In International conference on machine learning, pages 2014–2023, 2016.

[21] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. Matching node
embeddings for graph similarity. In AAAI, pages 2429–2435, 2017.

10

http://graphkernels.cs.tu-dortmund.de

[22] Francesco Orsini, Paolo Frasconi, and Luc De Raedt. Graph invariant kernels. In Proceedings
of the Twenty-fourth International Joint Conference on Artificial Intelligence, pages 3756–3762,
2015.

[23] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in neural information processing systems, pages 1177–1184, 2008.

[24] Tiago A Schieber, Laura Carpi, Albert Díaz-Guilera, Panos M Pardalos, Cristina Masoller, and
Martín G Ravetti. Quantification of network structural dissimilarities. Nature communications,
8:13928, 2017.

[25] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,
12(Sep):2539–2561, 2011.

[26] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and Statistics,
pages 488–495, 2009.

[27] Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a genetic
algorithm: A method for developing classification structure- activity relationships. Journal of
chemical information and computer sciences, 43(6):1906–1915, 2003.

[28] Zoltán Szabó and Bharath K Sriperumbudur. Characteristic and universal tensor product kernels.
arXiv preprint arXiv:1708.08157, 2017.

[29] Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast feature learning
on graphs. In Advances in Neural Information Processing Systems, pages 87–97, 2017.

[30] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.

[31] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1365–1374. ACM, 2015.

[32] Pinar Yanardag and SVN Vishwanathan. A structural smoothing framework for robust graph
comparison. In Advances in Neural Information Processing Systems, pages 2134–2142, 2015.

[33] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of AAAI Conference on Artificial Inteligence,
2018.

11

