
Figure 4: Performance of each method on a five-source input over a 32 m by 32 m region, with
time-frequency masks on the left and location estimates on the right (where shading represents
confidence and colored crosses represent predicted point locations). Note that the LGAP method is
able to localize all five sources to their approximate locations, although the separation of the red and
purple sources are mixed for low frequencies. Colors are assigned so that each extracted source is
colored identically to the ground-truth source it is paired with (if any).
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Figure 5: Performance of each method for a three-source mixture over a 256 m by 256 m region. In
this space, significant time delays cause the sources to have different temporal alignments relative
to each other at each microphone pair. Note that LGAP is able to compensate for this due to the
propagation transformation, whereas the independent tied technique fails to separate events with
short duration due to its strong assumption that delays are negligible. Also note that MESSL obtains
good separation for some microphone pairs but not others, since it cannot use information across
microphones to refine its estimates.
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A Proofs

To simplify notation, if A is a matrix in R(n1⇥n2⇥···⇥nk)⇥(n1⇥n2⇥···⇥nk) and v is a vector
in Rn1⇥n2⇥···⇥nk , we will denote the elements of v as v

(i1,i2,...,ik) and the elements of A
as A

(i1,i2,...,ik), (j1,j2,...,jk), where (i
1

, i
2

, . . . , ik) can be interpreted as shorthand for the index
(((i

1

n
2

+ i
2

)n
3

+ i
3

)n
4

+ · · · )nk + ik into the flattened vector of elements.

Lemma 1. If
B = In1 ⌦A⌦ In3 ,

where A 2 Rn2⇥n2 and ⌦ denotes the Kronecker product, then B can be multiplied by a vector
v 2 Rn1⇥n2⇥n3 in

O
⇣
n
1

n
3

n2

2

⌘

arithmetic operations.

Proof. By the definition of the Kronecker product,

B
(i1,i2,i3), (j1,j2,j3) = (In1)i1,j1 Ai2,j2 (In3)i3,j3 =

⇢
Ai2,j2 i

1

= j
1

, i
3

= j
3

,

0 otherwise.

We can thus compute

(Bv)
(i1,i2,i3) =

X

j1,j2,j3

B
(i1,i2,i3), (j1,j2,j3) v(j1,j2,j3) =

n2X

j2=1

B
(j1,i2,j3), (j1,j2,j3) v(j1,j2,j3).

Each element of Bv can thus be computed using O(n
2

) operations, so since there are n
1

n
2

n
3

elements of Bv, the full product can be computed in O
⇣
n
1

n
3

n2

2

⌘
operations as desired.

Lemma 2. If a matrix A 2 R(n1⇥n2⇥···⇥nk)⇥(n1⇥n2⇥···⇥nk) can be expressed as the Kronecker
product

A = A(1) ⌦A(2) ⌦ · · ·⌦A(k),

of smaller matrices A(i) 2 Rni⇥ni , then A can be multiplied by a vector v 2 Rn1⇥n2⇥···⇥nk in

O
⇣
n
1

n
2

. . . nk(n1

+ n
2

+ · · ·+ nk)

⌘

arithmetic operations.

Proof. By the mixed-product property of Kronecker-factored matrices, we know

A = (A(1) ⌦ In2 ⌦ · · ·⌦ Ink)(In1 ⌦A(2) ⌦ · · ·⌦ Ink) · · · (In1 ⌦ In2 ⌦ · · ·⌦A(k)
)

= (I
1

⌦A(1) ⌦ In2n3...nk)(In1 ⌦A(2) ⌦ In3n4...nk) · · · (In1n2...nk�1 ⌦A(k) ⌦ I
1

).

By Lemma 1, we can compute the product of a vector with each of the matrices

In1...ni�1 ⌦A(i) ⌦ Ini+1...nk

in O(n
1

n
2

. . . nkni) arithmetic operations. We can calculate Av by multiplying v by each of these
matrices in sequence, for an overall runtime of

O
⇣
n
1

n
2

. . . nk(n1

+ n
2

+ · · ·+ nk)

⌘

arithmetic operations, as desired.

Lemma 3. Let A 2 Rn⇥n be an invertible matrix such that we can compute Av and A�1v (for
v 2 Rn) in O(↵n) operations, and B be a positive semidefinite matrix with rank r. Further suppose
that AAT

+B is invertible. Then there exists a matrix C 2 Rn⇥n with

CCT
= AAT

+B

such that we can compute Cv and C�1v in O(↵n+ rn) operations.
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Proof. Since B is positive semidefinite with rank r, we can write B = UDUT where U 2 Rn⇥r

has orthonormal columns and D = diag(�
1

, . . . ,�r). Note then that

AAT
+B = AAT

+ UDUT

= A
�
In +A�1UDUT

(AT
)

�1

�
AT

= A
�
In + (A�1U)D(A�1U)

T
�
AT .

Let X = A�1U 2 Rn⇥r. Using the singular value decomposition, we can write X = V EWT where
V 2 Rn⇥r,W 2 Rr⇥r have orthonormal columns and E 2 Rr⇥r is diagonal. Then

AAT
+B = A

�
In +XDXT

�
AT

= A
�
In + V EWTDWEV T

�
AT .

Now let Y = EWTDWE 2 Rr⇥r and note that Y is symmetric. It can thus be orthogonally diag-
onalized as Y = PFPT with P 2 Rr⇥r having orthogonal columns and F = diag(µ

1

, . . . , µr) 2
Rr⇥r. Thus

AAT
+B = A

�
In + V Y V T

�
AT

= A
�
In + V PFPTV T

�
AT

= A
�
In + (V P )F (V P )

T
�
AT

= A
�
In +QFQT

�
AT

where Q = V P 2 Rn⇥r has orthonormal columns. Next let

G = (Ir + F )

1/2 � Ir = diag
⇣p

1 + µ
1

� 1, . . . ,
p

1 + µr � 1

⌘
.

We can extend Q, F , and G into eQ 2 Rn⇥n, eF 2 Rn⇥n, eG 2 Rn⇥n by adding additional orthonor-
mal columns to Q and zeros along the diagonal to F and G. Then QGQT

=

eQ eG eQT , QFQT
=

eQ eF eQT , and thus we must have
�
In +QGQT

��
In +QGQT

�T
=

�
In +QGQT

�
2

= In + 2QGQT
+QG2QT

= In + 2

eQ eG eQT
+

eQ eG2 eQT

=

eQ
⇣
In + 2

eG+

eG2

⌘
eQT

=

eQ
✓
In + 2

⇣
(In +

eF )

1/2 � I
⌘
+

⇣
(In +

eF )

1/2 � In

⌘
2

◆
eQT

=

eQ
⇣
In + 2(In +

eF )

1/2 � 2In + (In +

eF )� 2(In +

eF )

1/2
+ In

⌘
eQT

=

eQ
⇣
In +

eF
⌘
eQT

= In +

eQ eF eQT
= In +QFQT .

We can thus let C = A
�
In +QGQT

�
, which ensures that CCT

= AAT
+B.

Now consider the product Cv = A
�
In +QGQT

�
v for v 2 Rn. We can compute q = QGQT v in

O(rn) operations, add u = v + w in O(n) operations, and compute Au in O(↵n) operations, for a
total of O(↵n+ rn) operations.

By the Woodbury matrix identity, we also find that

C�1

=

�
In +QGQT

��1

A�1

=

⇣
In �Q

�
G�1

+QTQ
�
QT

⌘
A�1

=

⇣
In �Q

�
G�1

+ Ir
�
QT

⌘
A�1,

where we know G is invertible because it must be rank r for B to be rank r. By a similar argument as
above, we can compute C�1v in O(↵n+ rn) operations as well.
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Proposition 1. Suppose ⌃↵ : R(|T |⇥|F |⇥|S|)⇥(|T |⇥|F |⇥|S|) and ⌃� : R(|S|⇥|L|)⇥(|S|⇥|L|) are covari-
ance matrices arising from the evaluation of kernels (1) and (2) on a grid of points. There exist
factorizations ⌃↵ = S↵S

T
↵ , ⌃� = S�S

T
� such that multiplying vectors by S↵ and S� (and their

inverses) can be performed in O
�
|T | |F | |S| (|T |+ |F |+ |S|)

�
and O

�
|S| |L| (|S|+ |L|)

�
arithmetic

operations, respectively.

Proof. Since the matrices ⌃↵ and ⌃� arise from the evaluation of the kernel functions on grids
{(t, f, s)|t 2 T, f 2 F, s 2 S}, {(s, `)|s 2 S, ` 2 L}, we know

(⌃↵)
(t1,f1,s1), (t2,f2,s2) = k↵

⇣
(t

1

, f
1

, s
1

), (t
2

, f
2

, s
2

)

⌘

= kT (t1, t2) kF (f1, f2) kS1(s1, s2) + kS2(s1, s2),

(⌃�)
(s1,`1), (s2,`2) = k�

⇣
(s

1

, `
1

), (s
2

, `
2

)

⌘

= kL(`1, `2)kS1(s1, s2).

We can thus write

⌃↵ = ⌃

(T ) ⌦ ⌃

(F ) ⌦ ⌃

(S1)
+ J|T |⇥|F | ⌦ ⌃

(S2),

⌃� = ⌃

(S1) ⌦ ⌃

(L),

where

(⌃

(T )

)t1,t2 = kT (t1, t2), (⌃

(F )

)f1,f2 = kF (f1, f2), (⌃

(S1)
)s1,s2 = kS1(s1, s2),

(⌃

(S2)
)s1,s2 = kS2(s1, s2), (⌃

(L)

)`1,`2 = kL(`1, `2),

and J|T |⇥|F | 2 R(|T |⇥|F |)⇥(|T |⇥|F |) denotes a matrix of all ones.

Note also that we assume all our kernel functions are positive definite, and so ⌃↵, ⌃� , and all ⌃(⇤)

factors are positive definite. By properties of Kronecker products, this implies that for any p 2 R,
⇣
⌃

(T ) ⌦ ⌃

(F ) ⌦ ⌃

(S1)

⌘p
=

⇣
⌃

(T )

⌘p
⌦
⇣
⌃

(F )

⌘p
⌦
⇣
⌃

(S1)

⌘p
,

⌃

p
� =

⇣
⌃

(S1) ⌦ ⌃

(L)

⌘p
=

⇣
⌃

(S1)

⌘p
⌦
⇣
⌃

(L)

⌘p
.

Let
S� = ⌃

1/2
� =

⇣
⌃

(S1)

⌘
1/2

⌦
⇣
⌃

(L)

⌘
1/2

and note that S�1

� =

�
⌃

(S1)
��1/2 ⌦

�
⌃

(L)

��1/2
. We see that ⌃� = (S�)

2

= S�S
T
� , and Lemma 2

ensures that we can compute S�v and S�1

� v in O
�
|S| |L| (|S|+ |L|)

�
operations for all v 2 R|S|⇥|L|.

Next let

A =

⇣
⌃

(T )

⌘
1/2

⌦
⇣
⌃

(F )

⌘
1/2

⌦
⇣
⌃

(S1)

⌘
1/2

, B = J|T |⇥|F | ⌦ ⌃

(S2).

As above, Lemma 2 ensures that Av and A�1v can be computed in O
�
|T | |F | |S| (|T |+ |F |+ |S|)

�

operations for all v 2 R|T |⇥|F |⇥|S|. We further note that rank(J|T |⇥|F |) = 1, rank(⌃(S2)
) = |S|,

and so by properties of the Kronecker product rank(B) = |S|. Since

⌃↵ = AAT
+B,

Lemma 3 ensures that there exists a S↵ 2 R(|T |⇥|F |⇥|S|)⇥(|T |⇥|F |⇥|S|) such that S↵S
T
↵ = ⌃↵ and we

can compute S↵v and S�1

↵ v in O
�
|T | |F | |S| (|T |+ |F |+ |S|)

�
operations for all v 2 R|T |⇥|F |⇥|S|.
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