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Abstract

We present an approach for simultaneously separating and localizing multiple
sound sources using recorded microphone data. Inspired by topic models, our
approach is based on a probabilistic model of inter-microphone phase differences,
and poses separation and localization as a Bayesian inference problem. We assume
sound activity is locally smooth across time, frequency, and location, and use
the known position of the microphones to obtain a consistent separation. We
compare the performance of our method against existing algorithms on simulated
anechoic voice data and find that it obtains high performance across a variety of
input conditions.

1 Introduction

Traditional playback of real-world events is usually constrained to the viewpoints of the original
cameras and microphones, which limits the immersion of the experience. In contrast, if those events
are reconstructed in virtual space, they can be played back from perspectives without a corresponding
source recording and explored interactively. Such technology would enable users to experience events
in virtual reality with full freedom of motion.

Realistically reproducing the audio of a physical event in virtual space requires that sounds be both
faithfully separated from each other and accurately localized. Furthermore, in order to capture
events that happen over a large region in space, it is necessary to place microphones far away from
each other, which introduces non-negligible delays into the audio signals. As such, we focus on
the task of performing blind separation and localization in the presence of noise, where relatively
few microphones are placed far away from each other to cover a large area. This situation poses
difficulties for some existing separation and localization algorithms, which often assume large
numbers of microphones [Dorfan et al., 2015], an array of closely spaced microphones [Mandel et al.,
2009, Lewis, 2012], or known sound characteristics [Oldfield et al., 2015, Wang and Chen, 2017].

Specifically, we examine the situation of sound sources in a large, known, anechoic two-dimensional
space, with pairs of two omni-directional microphones placed at arbitrary points and orientations.
The presence of noise, as well as the potentially large distances between microphone pairs, means
that sources may not perfectly correspond across recordings, making separation an ill-posed problem.
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We propose a method for simultaneously separating and localizing sounds by performing Bayesian
maximum a posteriori inference in an approximate probabilistic model of sound propagation. We
model the phase differences between the microphones in each pair as arising from a latent source
activity array. A Gaussian process prior is used to ensure that it is locally smooth across time,
frequency, and spatial extent, and microphone locations are handled using a set of propagation
transformations. This approach is capable of separating sounds in a noisy environment, regardless of
the number of sources present, and localizing each source to a subset of a grid of possible locations.

Our algorithm makes the window-disjoint orthogonality assumption (W-DO), i.e., that the time-
frequency representations of the sound sources do not overlap [Jourjine et al., 2000]. This allows us
to model each element of the time-frequency spectrum as being generated by exactly one source at a
specific location. In particular, we model the phase difference as arising from a mixture of von Mises
distributions, with each distribution corresponding to the phase differences for an individual location.

We evaluate our method on synthetic data composed of multiple speakers located in a large space with
added white noise, and compare the results against those achieved by MESSL [Mandel et al., 2009]
and DALAS [Dorfan et al., 2015] for variable numbers of sources and microphone configurations.

1.1 Background Information

Our approach — along with many other source separation algorithms — uses the Short-Time Fourier
Transform (STFT) representation to analyze the different sounds present in a signal. The STFT
is the result of applying the Fourier Transform to short overlapping time windows, and gives a
representation of what frequencies are present in a signal in those windows.

Based on the speed of sound, there is a delay in the sound propagation as each source propagates to
each microphone. This produces a phase difference between the sounds recorded by the microphones
in each pair. Since the pair of microphones is sufficiently close, the phase delay for a given source
frequency at a given time is the multiplicative factor e?“°, where w is the sound frequency, and & is
the arrival delay between the two microphones [Rickard, 2007].

The mapping from delay to phase difference is invertible when the distance between the pair of
microphones is bounded by 7¢/w,,, where w,;, is the maximum source frequency and c is the speed
of sound [Rickard, 2007]. This gives an estimate of the true location of the active source. For larger
separations and higher frequencies, multiple delays correspond to the same phase difference, making
the correct location ambiguous, and requiring the use of additional assumptions to correctly separate
sounds on the basis of phase differences.

1.2 Prior Work

Blind source separation is a well-studied problem. However, many existing techniques (such as Non-
negative Matrix Factorization [Virtanen, 2007], Beamforming [Lewis, 2012], Independent Component
Analysis [Hyvirinen et al., 2004, Bell and Sejnowski, 1995, Yeredor, 2001], deep-learning based
approaches [Wang and Chen, 2017], and a heuristic sound-specific approach by Oldfield et al. [2015])
make strong assumptions about the spectral structure of the sources, geometry of the microphones,
and level of noise, which make them unsuitable for separating our mixtures of interest.

The Degenerate Unmixing Estimation Technique (DUET) focuses on separating degenerate mixtures
of sparse sounds that occur across space from two recordings [Rickard, 2007]. It assumes that the
sounds do not overlap significantly in the STFT time-frequency representation, so that different
sources are dominant at different frequencies at each moment in time. This assumption is known
as window-disjoint orthogonality (W-DO). DUET uses the phase differences in the STFT across
microphones to estimate the time difference of arrival between the two microphones for that source,
which can be used to approximate the direction from which the sound arrived. It then clusters
these directions to construct a series of masks that can isolate a large number of spatially separated
sounds given only two side-by-side recordings. However, this approach is limited in that it assumes a
noiseless environment, and can only accurately estimate time differences for low frequencies due to
the aliasing effect of high-frequency waveforms.

The Model-based EM Source Separation and Localization (MESSL) algorithm, proposed by Mandel
et al. [2009], builds upon DUET by using a probabilistic model that predicts phase differences
given true source delays, and separates sounds by performing maximum-likelihood estimation of
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Figure 1: Directed factor graph diagram [Dietz, 2010] of the LGAP model. Circles represent
random variables, diamonds represent deterministic functions of parent variables, and unmarked
symbols denote hyperparameters. Along edges, small black squares represent directed factors (i.e.,
conditional probability distributions of children given parents), small white diamonds represent
function application, and the small black circle represents a choice “gate” (see Dietz [2010]). Plate
notation indicates sets of independent variables, and array-valued variables are labeled below with
their index sets. N denotes a multivariate normal distribution, Cat denotes a categorical (multinomial)
distribution, and vM /U represents the von Mises-Uniform mixture described in Section 2.3.

the delay parameters. This approach avoids the aliasing problem, as the mapping from true delay to
phase difference is one-to-one. From this premise they identify the parts of the spectrogram of the
signal which best fit models being constructed of the mixture using an Expectation-Maximization
(EM) method. Although the original algorithm focuses on a single microphone pair and assumes
each time-frequency component is independent, MESSL has been extended to incorporate local
smoothness using a Markov random field [Mandel and Roman, 2015] and to work with more than
one microphone pair [Bagchi et al., 2015]. However, these extensions focus on the use of MESSL
for separating speech mixtures in small environments, and were not designed for use in large noisy
environments with distant microphones.

The Distributed Algorithm for Localization and Separation (DALAS) extends MESSL to work with
spatially-separated microphones in a known configuration [Dorfan et al., 2015]. The first step in
this approach is to run an incremental distributed expectation-maximization (IDEM) algorithm to
find the maximum likelihood estimate of the location distribution of the sources, using the known
configuration of microphones to model the possible phase differences associated with each spatial
position. Next, it associates each peak of the localization distribution with a source, and matches
each source to its closest microphone pair. Finally, a spectral mask is created using thresholding and
the node values are then filtered to give the separated sources. This technique has the advantage of
working with spatially separated microphones over a large area. However, it was not designed for
noisy environments, and assumes that every time-frequency component is independent, ignoring the
temporal and frequential structure of each sound source.

2 Probabilistic Model

We cast source separation and localization as a Bayesian inference problem. We model each
time-frequency bin as being assigned a latent dominating source and location that determines the
distribution of each observed phase difference. These assignments are in turn drawn proportional to a
smooth latent activity array A, which causes the assignments for nearby observations to be correlated.
To account for arrival time differences between microphones, this latent activity is corrected for each
microphone using a propagation function before being used to determine the dominating locations.
Using this model, which we call Latent Gaussian Activity Propagation (LGAP), sounds can then be
separated by performing Bayesian inference on the latent source and location assignments.

Let T be a set of time bins, F' a set of frequency bins, L a set of candidate locations, and M
a set of microphone pairs. A directed factor graph diagram [Dietz, 2010] of the LGAP model
is shown in Figure 1. We assume the sound was generated by a small set of sources S, and let



A € RITIXIFIXISIXIL] be an array-valued random variable such that A, f s ¢ is proportional to the
likelihood of hearing a sound from source s at location /, time ¢, and frequency f. We also assume that
the location of each source does not change with time or frequency, and thus express A as a product
of time-frequency activity and spatial extent terms, denoted o € RITIXIFIXIS| and g € RISIXILI,

This activity array is propagated through time for each microphone according to location-dependent
time delays, resulting in a propagated location-activity array for each microphone. Next, each time-
frequency bin of the observed audio is assigned a single dominating source and location, proportional
to the propagated activity of each. Finally, the phase difference observations are sampled from a
location-specific phase distribution.

2.1 Sound Activity

We encourage the latent activity array to be smooth by imposing Gaussian process priors over the
random variables « and 3. In particular, we interpret each element of « and /3 as evaluations of
a function over the index sets for those variables, i.e., we interpret o € RITIXIFIXIS] a5 a random
function @ : T x F' x S — R such that «(¢, f, s) yields the activity of source s at time ¢ and
frequency f, and specify the covariance matrix ., for a by evaluating a chosen Gaussian process
kernel over the set T x F' x S of possible times, frequencies, and sources, yielding multivariate
normal distribution o ~ N (0, ¥,,). By choosing these kernels to favor smooth functions, we encode
our prior belief that the latent activity arrays are smooth over specific time scales, frequency ranges,
or spatial areas.

In practice, |T|, |F|, and |L| may be very large, leading to memory and computation issues. To
efficiently enforce our smoothness priors over high dimensional spaces, we choose Gaussian process
kernels that factorize into combinations of axis-specific (positive definite) kernel functions, i.e.,

ko ((th f1,51), (t2, fa, 52)) = kr(ti,t2) kr(f1, f2) ks, (51, 52) + ks, (51, 52), 9]

ks (51, 02), (52, 02) ) = ki (03, £2) s, (51, 52), @)

Computations involving the resulting multivariate normal distributions require factorizing each
covariance matrix as ¥ = SS7 (where S is called a scale matrix) and multiplying vectors by these
matrices. Fortunately, the axis-aligned structure of our kernels makes these multiplications efficient.

Proposition 1. Suppose ¥, : RUTIXIFIXISDxTIXIFIXISD gpq Ys: RUSIKILDXASIXILD gre covari-
ance matrices arising from the evaluation of kernels (1) and (2) on a grid of points. There exist
factorizations ¥, = S,SL, Y5 = S’BSE such that multiplying vectors by S, and Sg (and their
inverses) can be performed in O(|T| |F||S|(|T|+ |F|+|S|)) and O(|S| |L| (|S| + |L|)) arithmetic
operations, respectively.

Specific kernels for kr, kr, and k7, can be chosen based on prior knowledge about the application
domain. For our experiments, we use rational quadratic kernels with length-scales of 0.1 seconds
and 1000 Hz for k and kg, respectively, with the o parameter set to 0.1, and use a mixture of two
equally-likely radial basis function kernels for k., with length scales of 3/32 and 5/8 times the size
of our test region.

We assume that individual sources are independent, i.e., we define kg, (s1,82) = ds, s, to avoid
enforcing any structure across sources. Additionally, we set ks, (s1, s2) = Cds, s,, where C' is chosen
to account for the magnitude of differences in average activity between sources. In our experiments,
we set C = 3 and similarly scale up the rational quadratic and radial basis function kernels to have
maximum value 3, as we found that this produced a plausible prior distribution of output assignments
after normalization (described in Section 2.3).

Since we interpret the activity matrix A as being proportional to the contribution of each source and
location, we need to ensure that its elements are nonnegative. We thus compute

exp(Bs,e)
Zé’ exp(ﬂs,f’) .

Note that the 5 contribution is normalized across locations for each source, which prevents sources
that are spread across multiple locations (or have uncertain location estimates during inference) from
being proportionally "louder" and dominating the final source assignments.

At f,5.0 = exp(a f.s)



2.2 Propagation

In a large environment, it is likely that sounds arrive at each microphone pair with a delay greater
than the resolution of our STFT time bins. The activity matrix A must thus be corrected for each
microphone pair location, by shifting activity from far locations forward in time so that they are heard
after the appropriate delay.

For a fixed location ¢ and microphone pair m, let 7,,, o denote the propagation time delay between a
sound wave leaving ¢ and arriving at m, and let 7, denote a reference delay for each location. We
compute A7, = fi (A) as

/ _
Am,tg,f,s,é = § w(tQ -l = Tm,e + Tf) At17f781Z7
t1€T

where w : R — R is a weighting function that peaks at zero. This shifts the values of A along the
time axis by 7,,, o — T¢ bins, the delay (in STFT frames) of microphone m relative to the reference
delay for a sound at location ¢, and also blurs it slightly across bins to account for uncertainty in
location and timing or misalignment between discrete timesteps. This operation can be efficiently
implemented as a convolution operation with a precomputed convolution filter. In practice, we let
T¢ = Tm+, ¢ for some chosen reference microphone pair m*, and choose w based on finite differences
of a logistic sigmoid function

1 1
w(t) = | TP (E05)/0) ~ Tep(—(=05)77) 57 <t <30,
0 otherwise,

where o is chosen based on how close points in L are each other (i.e., the delay uncertainty due to
our discretization of the region).

Due to the different offsets for each microphone, sounds that arrive at the microphones over a
particular time interval may be explained by activity that occurs outside of that interval. The
propagation transformation thus transforms our original set of timesteps 7" for our latent activity to a
slightly smaller set of timesteps 7" corresponding to the observed data.

2.3 Assignments and Observations

After propagation, we normalize the activity array A’ across sources and locations, obtaining source-
location probabilities

I
Am,t,f 18,4

Pmit,f,s,6 = Z A :
s'eSH' €L “ m,t, f,s’ 0

We then sample latent source and location assignments for each microphone pair m, time ¢, and
frequency f, representing the source and location that dominated the recording for that microphone
pair at that moment. In particular, we sample Sy, ¢, 7, €m,i,f ~ Cat(Dm, ¢, r), s0 that

P(sm,t,f =sA gm,t,f = g) = Pm,t,f,s.0-

Given the location /,, ; s that dominates a given time-frequency bin, we can predict the phase
difference ¢,, ; r received by a given microphone pair m. Let A,, ¢ denote the difference between
the distance of the first microphone in the pair to ¢ and the distance of the second microphone to /,
dm,¢ denote our uncertainty in the value of A, ¢ due to our discrete set of locations, and c denote the
speed of sound. We model ¢,,, ¢y as being drawn from a von Mises distribution VM (g, 1.0, Km, f.¢)
with probability 1 — €, f ¢, and from ¢/(0, 27) with probability €, ¢, Where

Am,f 5m,£ -2
Hm, f0 = QWfT mod 27T, Rm, fe = 27Tf7 s €Em,fl — 0.001.

For efficiency, we group the individual raw STFT bins into small regions, and assume all observations
within each region were generated by the same von Mises/Uniform mixture. This allows our 7" and F'
sets to be smaller than the number of true STFT components computed while still using all available
phase information.



2.4 Inference

Given a set of known phase observations ¢, we can separate and localize the sounds by performing
Bayesian inference on the assignments s, 1 ¢ and ., ; ¢ for each of our data points. We focus on
approximating the maximum a posteriori (MAP) estimate of the parameters, i.e., the most likely
separation given our observations.

We approximate the MAP solution by marginalizing out s,, ; y and £, ; s and performing gradient
ascent on the log posterior
log P(a, §|¢) = log P(a) + log P(3) + log P(¢|a, B) — log P(¢).

Note that, due to our smoothness assumption, the covariance matrices ¥, and ¥z are poorly con-
ditioned, with small eigenvalues along directions of rapid oscillation. These values can hamper
convergence of gradient descent, as the log-posterior term contains products with the inverse co-
variance matrices, leading to steep valleys in the loss landscape. We thus perform gradient descent
in the eigenspace of the covariance matrices, and use a preconditioning matrix to scale the small
eigenvalues so that the minimum eigenvalue of the system is 1. We also employ gradient clipping
to prevent the algorithm from diverging. For computational efficiency, we only consider a random
subset of frequencies at each iteration of gradient descent, since this gives an unbiased estimate of
the true gradient.

After obtaining estimates of « and (3, we can then estimate the posterior probabilities
P(Sm.t,f+lm.t,flce, B, ¢) by computing

P(smt,f: bt rla, B, @) o< P(Smt, g bmt,flct, B)P(S|lr )
These probabilities can be used to assign portions of the input to specific sources and locations.

2.5 Garbage Source

Microphone-specific noise, reverberations, and interactions between sources can produce phase
observations that are not consistent with any true source location. To enable the model to handle these
non-localized components, we follow Mandel et al. [2009] and designate one of the sources s, € S
as a “garbage source”. This source is constrained so that, instead of being assigned to a specific
2D coordinate, it is instead assigned to a “garbage location” ¢, € L with no associated time delay
(AW@E] = 0), and whose corresponding phase distribution is uniform over [0, 27) (so €m,f,0, = 1)
When using a garbage source, we let § range only over S \ {s,} and L\ {{,}, and compute

exp(ﬁs, )
eXp(at,f,s)m / 7é £g7 S 7é Sg,
At fs0 = exp(ay,f.s) =1y, s =sg4,
0 otherwise,

i.e., we constrain s, to assign all of its activity to £, and all other sources to assign none to /.

2.6 Initialization

The LGAP model is fairly sensitive to the initialization of the parameters o and 3. Following
Mandel et al. [2009], we start by computing the PHAT-histogram [Aarabi, 2002] of the input for each
microphone, and then identify peaks in the histogram to estimate potential source time delays. In our
case, we choose the microphone pair with the most cleanly-identified peaks as m*, and use the peaks
for that pair to initialize our source activity array «. In particular, we compute the likelihood of each
phase observation under a set of von Mises distributions centered at each peak (along with a uniform
distribution for the garbage source), then smooth these likelihoods over time and frequency using a
Gaussian blur, and initialize « from the logarithm of these smoothed likelihoods. This ensures that
our initial propagated activity array A’ assigns each of the peaks of the reference microphone to a
distinct source. §3 is initialized uninformatively to an array of zeros.

To optimize our parameters from this initialization, we start by holding « fixed and running gradient
ascent on our posterior probabilities with respect to 5. This gives us an initial estimate of the location
of each of the sources identified from our initialization. Next, we hold 5 constant, reset « to zero, and
run gradient ascent on « to re-estimate our time-frequency masks to be consistent with the identified
locations without being biased by the approximate PHAT-histogram masks. Finally, we perform
gradient ascent for a longer duration on both « and S to fine-tune our full activity matrix.
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Figure 2: Generated masks for one of our test examples, consisting of two sources recorded by five
microphone pairs over a 32 m by 32 m square. Top row: separated spectrograms of the recordings
from the center microphone pair, over four seconds (horizontal axis) across frequencies up to 22050
Hz (vertical axis). Bottom row: location estimates, where shading represents confidence and crosses
represent predicted point locations. For LGAP, location estimates are colored by source, since LGAP
estimates a separate location distribution for each.

3 Experiments

We evaluate our algorithm on a set of synthetic anechoic speech mixtures using audio from the
Mozilla Common Voice Dataset!. For each test, we place sound sources randomly within a square
region, and compute the waveforms received by each of the microphones, which are arranged parallel
to one side of this region with a pair spacing of 5 cm. To prevent unrealistic phase observations due
to inaudible contributions of sources at high frequencies, and to demonstrate robustness against noise,
we add a small amount of white noise to each of our microphones.

For our method, we use rational quadratic kernels for our time and frequency kernels and a mixture
of radial basis functions for our location kernel, as described in Section 2.1. We enable the garbage
source to handle the additional microphone noise, and group STFT bins into rectangular regions
consisting of 8 timesteps and 2 frequencies for computational efficiency.

‘We compare our method with a number of baselines:

e MESSL [Mandel et al., 2009, Mandel and Roman, 2015]: Although MESSL has been extended to
work with many-channel recordings [Bagchi et al., 2015], it assumes all microphones are adjacent
and does not give location estimates. We thus run MESSL individually on each of our microphone
pairs, using MRF smoothing and a garbage source. We do not incorporate level differences, as
these are not used by the other methods and are intended for use with a dummy head placed
between the pairs, which we do not simulate here.

e DALAS [Dorfan et al., 2015]: For consistency with our method, we modify DALAS to use an
identical von Mises distribution of phase offsets for each location, and select a fixed number of
sources to separate instead of choosing it dynamically.

e Independent tied-microphone model: A simple baseline, based on the DUET algorithm, that
assumes that the corresponding time-frequency bin for each microphone pair was generated by a
single location £, ; y = £ y (i.e., the same source dominates across all microphones, ignoring time
delays and noise), and that these locations were independently chosen and uniformly distributed
(ignoring smoothness over time and frequency). We calculate the posterior distribution over these
locations explicitly as

M M
Py gldrigs - dng) < Pllg) [T P@moaslles) o [T P(bmorsller)
m=1 m=1

where P (¢, ¢+, f|¢t, ¢) is the same von Mises-Uniform mixture described in Section 2.3. We then
choose a fixed number of locations with the highest likelihood averaged across all bins and use
those as the sources to extract.
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Figure 3: Experimental results for each method: — LGAP, — Indep. Tied, — DALAS, — MESSL
(All mics), — MESSL (Best mic), — Ideal Mask. Lines represent mean performance and shaded
regions represent one standard deviation, computed across all sources separately for each of five trials.
Location squared error is reported relative to the side length of the square region. Region size is in
meters. MESSL performance is reported averaged across all microphones as well as for the single
microphone pair with the best separation. For reference, Ideal Mask gives the performance of the
ideal ratio mask [Srinivasan et al., 2006].

For all methods, we compute the STFT using a Hann window with a frame size of 512 samples
and a step of 128 samples (for a 44100 Hz signal). Additionally, for all methods except MESSL,
we specify the set L of possible locations as a 40 by 40 grid covering this square region, along
with a garbage location. (The DALAS and independent-tied methods do not process this garbage
location separately, and instead simply treat it as another possible location.) For the DALAS and
independent-tied methods, after selecting our set of sources, we re-normalize the masks across those
sources so that mask values for each time-frequency bin sum to one, effectively conditioning on that
bin being generated at one of the (fixed number of) most likely source locations. We then divide
by the maximum mask value for each source to amplify sources detected with low confidence. See
Figure 2 for an example of the resulting masks and location estimates corresponding to each method.

We evaluate the performance of each algorithm on a suite of tests, varying three parameters: the
number of microphone pairs (from 1 to 10), the number of sources (from 1 to 8), and the size of the
square region (from 4 m to 512 m along each side). We conduct five experiments for each set of
parameters, varying each parameter while holding the others at default values (5 microphone pairs, 3
sources, 32 m).

To evaluate the localization performance of each method, we compute the squared error of the
estimate, normalized by the size of the square region. To evaluate separation performance, we
compare the masks produced by each algorithm to the ideal ratio mask [Srinivasan et al., 2006],
which assigns bins to sources proportionally to the ratio of the power spectral density of each source.
Letting R denote the ratio mask, M denote a separation method’s mask, and P denote the total power
spectral density of the recording, we compute bin precision, bin recall, power precision, and power
recall for a source s as

Yot f Mt f,s Rt 1,5 Yot f Mt s Rt 1,5

BPS = I BRS = I
2omit,t M.t fs Dot g Bmit fs
2ot f Moot f.5Bint. g6 Pt g5 2oyt f Mot f.5 Bt g6 Prat g5
PP, = = , PR, = =7 :
Zm,t,f Mm,t,f,st,t,f,s Zm,t,f Rm,t,f,st,t,f,s

Bin precision quantifies how much of the proposed mask corresponds to the source, and bin recall
quantifies how much of the source is recovered by the mask. Power precision and recall are weighted
by the audio power, and thus quantify how much of the energy passed through the mask corresponds



to the source and how much of the source energy is recovered by the mask. Note that power precision
is a (nonlinear) transformation of the signal-to-interference ratio. Since the true sources have no
definite ordering, we assign each true source to the proposed source that attains the highest bin
precision. In addition to computing these metrics for each of the methods, we also compute them for
the ratio mask itself. Since MESSL was computed for each microphone pair separately, we report
both the mean performance across microphone pairs and the performance on the microphone pair for
which MESSL performs the best.

Figure 3 shows the results of our experiments. We see that LGAP is competitive with the other
methods across all metrics. Note that the independent tied-microphone method has high precision,
but low recall, as its strong assumptions cause it to erroneously classify large fractions of the input as
noise, whereas MESSL obtains high recall but low precision, indicating that it recovers most of each
source but also admits some interference. LGAP, on the other hand, is able to maintain both high
precision and high recall. In addition, and of particular importance for virtual reality applications,
the LGAP model obtains reliably accurate location estimates, and consistently outperforms the other
localization methods across all input conditions.

Interestingly, the independent tied-microphone baseline performs quite well, especially in small
regions and with few sources. This suggests that, when propagation delays are small and there
are only a few events, independent consideration of the phase shifts at each time-frequency bin is
sufficient to obtain good source masks and location estimates. However, as region size grows and
more sources are added, the time delays cause different sources to be active at the same time, reducing
the effectiveness of this baseline method.

LGAP maintains high performance even with a small number of microphones. In addition, as the
number of microphones increases, LGAP is able to combine information across microphones and
improve its precision markedly. As the number of sources are increased, all methods show decreased
performance, but LGAP maintains relatively high precision across large numbers of sources. And as
the region size grows, the LGAP method is able to account for the increased propagation delays and
maintain high performance.

4 Conclusion

We have described a Bayesian method for sound separation and localization that incorporates known
microphone positions and smoothness assumptions to improve separation quality. This method is
robust to a variety of input conditions, and can combine information from distant microphones even
in the presence of significant time delays. Apart from the smoothness assumption, the method does
not depend on source statistics. It thus has the potential to be used for a variety of applications, and is
particularly suited to capturing audio events that are distributed across large real-world environments.

The experiments and analysis presented here use a simple microphone configuration and synthetic
dataset, and focus on how much of the sound is preserved and correctly separated by each method.
It would be interesting to compare the methods using other metrics, such as BSS_EVAL, which
decomposes the error into interference and artifact components [Vincent et al., 2006], or PEASS,
which estimates the subjective quality of the separation using the decomposed error [Emiya et al.,
2011]. Also of relevance would be to evaluate the methods using different microphone geometries,
types of audio, and distribution of noise. For instance, one could conduct an experiment using
diffuse noise that is correlated at low frequencies to mimic more realistic noise fields [Habets and
Gannot, 2007], or set up physical microphones to measure performance in a non-synthetic task. These
experiments are left to future work.

There is considerable room to extend the LGAP model presented here by imposing different structural
restrictions on the latent activity arrays. For instance, it would be possible to explicitly model sources
with different spatial, temporal and frequential characteristics by using distinct covariance matrices
for each, or modify the activity matrix to handle sources that move over time. Additionally, it would
be interesting to explore methods for making inference more efficient, such as by exploring simpler
local smoothness priors (instead of a global Gaussian process) or discretizing the set of possible phase
observations. The masks generated by LGAP could be post-processed to further improve separation,
for instance by using beamforming to combine audio across all microphones. Finally, LGAP could
easily be extended to work with more complex microphone geometries instead of pairs, which could
improve both separation and localization performance.
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