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Abstract

We study the statistical and computational aspects of kernel principal component
analysis using random Fourier features and show that under mild assumptions,
O(
√
n log (n)) features suffice to achieve O(1/ε2) sample complexity. Further-

more, we give a memory efficient streaming algorithm based on classical Oja’s
algorithm that achieves this rate.

1 Introduction
Kernel methods represent an important class of machine learning algorithms that simultaneously
enjoy strong theoretical guarantees as well as empirical performance. However, it is notoriously
hard to scale them to large datasets due to space and runtime complexity (typically O(n2) and
O(n3), respectively, for most problems) [Smola and Schölkopf, 1998]. There have been many efforts
to overcome these computational challenges, including Nyström method [Williams and Seeger,
2001], incomplete Cholesky factorization [Fine and Scheinberg, 2001], random Fourier features
(RFF) [Rahimi and Recht, 2007] and randomized sketching [Yang et al., 2015]. In this paper, we
focus on random Fourier features due to its broad applicability to a large class of kernel problems.

In a seminal paper by Rahimi and Recht [2007], the authors appealed to Bochner’s theorem to argue
that any shift-invariant kernel can be approximated as k(x, y) ≈ 〈z(x), z(y)〉, where the random
Fourier feature mapping z : Rd → Rm is obtained by sampling from the inverse Fourier transform
of the kernel function. This allows one to invoke fast linear techniques to solve the linear problem
in Rm. However, subsequent work analyzing kernel methods based on RFF for learning problems
suggests that to achieve the same asymptotic rates (as obtained using the true kernel) on the excess
risk, one requires m = Ω(n) random features [Rahimi and Recht, 2009], which defeats the purpose
of using random features from a computational perspective and fails to explain its empirical success.

Last year at NIPS, while Rahimi and Recht won the test-of-time award for their work on RFF [Rahimi
and Recht, 2007], Rudi and Rosasco [2017] showed for the first time that at least for the kernel ridge
regression problem, under some mild distributional assumptions and for appropriately chosen regular-
ization parameter, one can achieve minimax optimal statistical rates using only m = O(

√
n log (n))

random features. It is then natural to ask if the same holds for other kernel problems.

In this paper, we focus on Kernel Principal Component Analysis (KPCA) [Schölkopf et al., 1998],
which is a popular technique for unsupervised nonlinear representation learning. We argue that
scalability is an even bigger issue in the unsupervised setting since big data is largely unlabeled.
Furthermore, when extending the results from the supervised learning to unsupervised learning we
have to deal with additional challenges stemming from the non-convexity of the KPCA problem.
We pose KPCA as a stochastic optimization problem and investigate the tradeoff between statistical
samples and random features needed to guarantee ε-suboptimality on the population objective (aka a
small generalization error).

KPCA entails computing the top-k principal components of the data mapped into a Reproducing
Kernel Hilbert Space (RKHS) induced by a positive definite kernel [Aronszajn, 1950]. In Schölkopf
et al. [1998], authors showed that given a sample of n i.i.d. draws from the underlying distribution,
the infinite dimensional problem (over RKHS) can be reduced to a finite dimensional problem (in Rn)
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Algorithm Reference Sample complexity Per-iteration cost Memory

ERM Shawe-Taylor et al. [2005] Õ(1/ε2) Õ(k/ε4) O(1/ε4)

Blanchard et al. [2007]† Õ(1/ε) Õ(k/ε2) O(1/ε2)

RF-DSG Xie et al. [2015] Õ(1/ε2) Õ(k/ε2) O(k/ε2)

RF-ERM Lopez-Paz et al. [2014] Õ(1/ε2) Õ(k/ε4) Õ(1/ε4)
Corollary 4.4† Õ(1/ε2) Õ(k/ε3) Õ(1/ε3)

RF-Oja Corollary 4.4† Õ(1/ε2) Õ(k/ε) Õ(k/ε)

Table 1: Comparing different approaches to KPCA in terms of sample complexity, per-iteration
computational cost and space complexity. † : Optimistic rates realized under (potentially different)
higher-order distributional assumptions (See Corollary 4.3, and Blanchard et al. [2007]).

using the kernel trick. In particular, the solution entails computing the top-k eigenvectors of the kernel
matrix computed on the given sample. Statistical consistency of this approach was established in
Shawe-Taylor et al. [2005] and further improved in Blanchard et al. [2007]. However, computational
aspects of KPCA are less well understood. Note that the eigendecomposition of the kernel matrix
alone requires O(kn2) computation, which can be prohibitive for large datasets. Several recent works
have attempted to accelerate KPCA using random features. In Lopez-Paz et al. [2014], authors show
that the kernel matrix computed using random features converges to the true kernel matrix in operator
norm at a rate of O(n

√
(log n)/m). In Ghashami et al. [2016], authors extended this guarantee to a

streaming setting using the Frequent Direction algorithm [Liberty, 2013] on random features. In a
related line of work, Xie et al. [2015] propose a stochastic optimization algorithm based on doubly
stochastic gradients with a 1/n convergence in the sense of angle between subspaces. However, all
these results require m = Ω̃(n) random features to guarantee a O(1/

√
n) generalization bound.

More recently, Sriperumbudur and Sterge [2017] studied statistical consistency of ERM with ran-
domized Fourier features. They showed that the top-k eigenspace of the empirical covariance matrix
in the random feature space converges to that of the population covariance operator in the RKHS
when lifted to the space of square integrable functions, at a rate of O(1/

√
m+ 1/

√
n) 1. This result

suggests that statistical and computational efficiency cannot be achieved at the same time without
making further assumptions. In this paper, we assume a spectral decay on the distribution of the
data in the feature space to show that we can simultaneously guarantee spectral and computational
efficiency for KPCA using random features. Our main contributions are as follows.

1. We study kernel PCA as stochastic optimization problem and show that under mild distribu-
tional assumptions, for a wide range of kernels, the empirical risk minimizer (ERM) in the
random feature space converges in objective as O(1/

√
n) whenever m = Ω(k

√
n log (n)),

with overall runtime of O(kn
3
2 log (n)).

2. We propose a stochastic approximation algorithm based on classical Oja’s updates on
random features which enjoys the same statistical guarantees as the ERM above but with
better runtime and space requirements.

3. We overcome a key challenge associated with kernel PCA using random features which
is to ensure that the output of the algorithm corresponds to a projection operator in the
(potentially infinite dimensional) RKHS. We establish that the output of the proposed
algorithms converges to a projection operator.

4. In order to better understand the computational benefits of using random features, we also
consider the KPCA problem in a streaming setting, where at each iteration, the algorithm is
provided with a fresh sample drawn i.i.d. from the underlying distribution and is required to
output a solution based on the samples observed so far. In such a setting, comparison with
other algorithmic approaches suggests that Oja’s algorithm on random Fourier features (see
RF-Oja in Table 1) enjoys the best overall runtime as well as superior space complexity.

5. We contribute novel analytical tools that should be useful broadly when designing algo-
rithms for kernel methods based on random features. We provide crucial and novel insights
that exploit connections between covariance operators in RKHS and the space of square
integrable functions with respect to data distribution. This connection allows us to look

1While our paper was under review, Sriperumbudur and Sterge [2017], which initially focused on statistical
consistency of kernel PCA with random features, was replaced by Sriperumbudur and Sterge [2018], with a new
title and focus on computational and statistical tradeoffs of KPCA much like our paper.
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at the kernel approximation using random features as an estimation problem in the space
of square integrable functions, where we appeal to recent results in local Rademacher
complexity [Massart, 2000, Bartlett et al., 2002, Blanchard et al., 2007] to yield faster rates.

6. Finally, we provide empirical results on a real dataset to support our theoretical results.

The rest of the paper is organized as follows. In Section 2, we give the problem setup. In Section 3,
we provide mathematical preliminaries and introduce the key notation. The main algorithm and the
results are in Section 4 and the empirical results are discussed in Section 5.

2 Problem setup
Given a random vector x ∈ Rd with underlying distribution ρ, principal component analysis (PCA)
can be formulated as the following stochastic optimization problem [Arora et al., 2012, 2013]:

maximize Ex∼ρ〈P, xx>〉 s.t. P ∈ Pk , (1)

where Pk is the set of d × d rank-k orthogonal projection matrices. Essentially, PCA seeks a k-
dimensional subspace of Rd that captures maximal variation with respect to the underlying distribution.
It is well understood that the solution to the problem above is given by the projection matrix
corresponding to the subspace spanned by the top-k eigenvectors of the covariance matrix E

[
xx>

]
.

In most real world applications, however, the data does not have a linear structure. In other words, the
underlying distribution may not be well-represented by any low-rank subspace of the ambient space.
In such settings, the representations learned using PCA may not be very informative. This motivates
the need for non-linear dimensionality reduction methods. For example, in kernel PCA [Schölkopf
et al., 1998], a canonical approach for manifold learning, a nonlinear feature map lifts the data
into a higher (potentially infinite) dimensional Reproducing Kernel Hilbert Space (RKHS), where a
low-rank subspace corresponds to a (non-linear) low-dimensional manifold in ambient space. Hence,
solving the PCA problem in an RKHS can better capture the complicated nonlinear structure in data.

Formally, given a kernel function k(·, ·) : Rd × Rd → R, KPCA can be formulated as the following
stochastic optimization problem:

maximize Ex∼ρ〈P, k(x, ·)⊗H k(x, ·)〉 s.t. P ∈ PkHS(H) , (2)

where PkHS(H) is the set of all orthogonal projection operators onto a k-dimensional subspace of the
RKHS. The solution to the above problem is given by PkC, the projection operator corresponding to
the top-k eigenfunctions of the covariance operator C := Ex∼ρ[k(x, ·)⊗H k(x, ·)]. The primary goal
of any KPCA algorithm is then to guarantee generalization, i.e. providing a solution P̂ ∈ PkHS(H)

with a small excess risk:

E(P̂) := Ex∼ρ〈PkC, k(x, ·)⊗H k(x, ·)〉 − Ex∼ρ〈P̂, k(x, ·)⊗H k(x, ·)〉. (3)

Given access to i.i.d. samples {xi}ni=1 ∼ ρ, one approach to solving Problem (2) is Empirical Risk
Minimization (ERM), which amounts to finding the top-k eigenfunctions of the empirical covariance
operator Ĉ := 1

n

∑n
i=1 k(xi, ·)⊗ k(xi, ·). Using kernel trick, Schölkopf et al. [1998] showed that

this problem is equivalent of finding the top-k eigenvectors of the kernel matrix associated with
the samples. Alternatively, when approximating the kernel map with random features, Problem (2)
reduces to the PCA problem (given in Equation (1)) in the random feature space. Here, we discuss
two natural approaches to solve this problem. First, the ERM in the random feature space (called
RF-ERM), which is given by the top-k eigenvectors of the empirical covariance matrix of data in the
feature space. Second, the classical Oja’s algorithm (called RF-Oja) [Oja, 1982].

Note that while the output of ERM is guaranteed to induce a projection operator in the RKHS of
k(·, ·), this may not be the case when using RFF (equivalently, when working in the RKHS associated
with the approximate kernel map). Therefore, a key technical challenge when designing KPCA
algorithm based on RFF is to ensure that the output is close to the set of projection operators in the
true RKHS induced by k(·, ·), i.e. d(P̂,PkHS(H)) is small.

3 Mathematical Preliminaries and Notation
In this section, we review basic concepts we need from functional analysis [Reed and Simon, 1972].
We begin with a simple observation that given an underlying distribution on data, and a fixed kernel
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map, it induces a distribution on the feature map. We work with this distribution implicitly by
considering measurable Hilbert spaces. We denote matrices and Hilbert-Schmidt operators with
capital roman letters D, vectors with lower-case roman letters v, and scalars with lower-case letters a.
We denote operators over the space of Hilbert-Schmidt operators with capital Fraktur letters A.

Hilbert space notation and operator norm. Let H and H̃ be two separable Hilbert spaces over
fields F and F̃ with measures µ and µ̃, respectively. Let {ei}i≥1 and {ẽi}i≥1 denote some fixed
orthonormal basis forH and H̃ respectively. The inner product between two elements h1, h2 ∈ H is
denoted as 〈h1, h2〉H, or 〈h1, h2〉µ. Similarly, we denote the norm of an element h ∈ H as ‖h‖H, or
‖h‖µ. For h1, h2 ∈ H the outer product denoted as h1 ⊗H h2, or h1 ⊗µ h2, is a linear operator on
H that maps any h3 ∈ H to (h1 ⊗H h2)h3 = 〈h2, h3〉H h1. For a linear operator D : H → H̃, the
operator norm of D is defined as ‖D‖2 := sup{‖Dh‖H̃ , h ∈ H, ‖h‖H ≤ 1}.

Adjoint, Hilbert-Schmidt, and trace-class operators. The adjoint of a linear operator D : H →
H̃, is given as the linear operator D∗ : H̃ → H such that 〈Dh, h̃〉H̃ = 〈h,D∗h̃〉H, for all h ∈ H, h̃ ∈
H̃. A linear operator D : H → H is self-adjoint if D∗ = D. The linear operator D : H → H̃ is
compact if the image of any bounded set ofH is a relatively compact subset of H̃. A linear operator
D : H → H is a Hilbert-Schmidt operator if

∑
i≥1 ‖Dei‖

2
H =

∑
i,j≥1 〈Dei, ej〉

2
H < ∞. The

Hilbert-Schmidt norm of D, denoted as ‖D‖HS(H) or ‖D‖HS(µ), is defined as (
∑
i≥1 ‖Dei‖

2
H)

1
2 . The

space of all Hilbert-Schmidt operators onH is denoted as HS(H). A compact operator D : H → H
is trace-class if ‖D‖L1(H) :=

∑
i≥1

〈
(DD∗)1/2ei, ei

〉
H <∞, where ‖D‖L1(H) denotes the nuclear

norm of D. For a vector space X , L2(X , ρ) denotes the space of square integrable functions with
respect to measure ρ, i.e L2(X , ρ) = {f : X → R,

∫
X (f(x))2dρ(x) < ∞}. L2(X , ρ) is a Hilbert

space with the inner product denoted as 〈f, g〉ρ :=
∫
X f(x)g(x)dρ(x), where f, g ∈ L2(X , ρ). The

norm induced on L2(X , ρ) is denoted as ‖f‖ρ := 〈f, f〉1/2ρ for f ∈ L2(X , ρ).

Projection operators, spectral decomposition. Given a vector space X , let PkX denote the set of
rank-k projection operators on X . For a Hilbert-Schmidt operator D over a separable Hilbert space
H, let λi(D) denote its ith largest eigenvalue. The projection operator associated with the first k
eigenfunctions of D is denoted as PkD; given the spectral decomposition D =

∑∞
i=1 µiψi ⊗ ψi, we

have that PkD =
∑k
i=1 ψi⊗ψi. For a finite dimensional vector v, ‖v‖p denotes the `p-norm of v. For

operators D over finite dimensional spaces, ‖D‖2 and ‖D‖F denote the spectral and Frobenius norm
of D, respectively. For a metric space (Y, d) and a closed subset S ⊆ Y, we denote the distance from
q ∈ Y to S by d(q, S) = mins∈S d(q, s). In a Hilbert space, d is the underlying metric induced by
the respective norm. [n] denotes the set of natural numbers from 1 to n.

Mercer kernels, and random feature maps. Let X ⊆ Rd be a compact (data) domain and ρ
be a distribution on X . We are given n independent and identically distributed samples from ρ,
{xi}ni=1 ∼ ρn. Let k : X × X → R be a Mercer kernel with the following integral representation,
k(x, y) =

∫
Ω
z(x, ω)z(y, ω)dπ(ω). Here, (Ω, π) is the probability space induced by the Mercer

kernel. Let zω(·) := z(·, ω). We know that zω(·) ∈ L2(X , ρ) almost surely with respect to π. We
draw i.i.d. samples, ωi ∼ π, for i = 1, . . . ,m, to approximate the kernel function. Let z(·) denote
the random feature map, i.e. z : Rd → Rm, z(x) = 1√

m
(zω1(x), zω2(x), . . . , zωm(x)). Let F ⊆ Rm

be the linear subspace spanned by the range of z, with the inner product inherited from Rm. The
approximate kernel map is denoted as km(·, ·), where km(x, y) = 〈z(x), z(y)〉F . LetH denote the
separable RKHS associated with the kernel function k(·, ·).
Assumption 3.1. The kernel function k is a Mercer kernel (see Theorem A.5) and has the following
integral representation, k(x, y) =

∫
Ω
z(x, ω)z(y, ω)dπ(ω) ∀x, y ∈ X whereH is a separable RKHS

of real-valued functions on X with a bounded positive definite kernel k. We also assume that there
exists τ > 1 such that |z(x, ω)| ≤ τ for all x ∈ X , ω ∈ Ω.

Note that z(x, ·) are continuous functions because k(·, ·) is continuous. Note that when X is separable
and k(·, ·) is continuous,H is separable.
Definition 3.2. C : H → H is the covariance operator of the random variables k(x, ·) with measure ρ,
defined as Cf :=

∫
X k(x, ·)f(x)dρ(x). C is compact and self-adjoint, which implies C has a spectral
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decomposition C =
∑∞
i=1 λ̄iφ̄i ⊗H φ̄i, where λ̄i’s and φ̄i’s are the eigenvalues and eigenfunctions

of C, respectively. The set of eigenfunctions, {φ̄i}∞i=1, forms a unitary basis forH.

Since we are approximating the kernel k by sampling m i.i.d. copies of zω, this implies an approxi-
mation to the covariance operator C (in the space HS(ρ)) by a sample average of the random linear
operators zω ⊗ρ zω . The tools we use to establish concentration require a sufficient spectral decay of
the variance of this random operator, which we define next.

Definition 3.3. Let C1 denote the random linear operator on L2(X , ρ) given by C1 = zω ⊗ρ zω . Let
C2 = C1 ⊗HS(ρ) C1 and define the covariance operator of C1 to be C′ = Eπ [C2]−Eπ [C1]⊗HS(ρ)

Eπ [C1].

We note that C′ can also be interpreted as the fourth moment of the random variable zω in L2(X , ρ).
The spectrum of C′ plays a crucial role in our results through the following key-quantity:

κ(Bk, k,m) = inf
h≥0

Bkhm +

√
k

m

∑
j>h

λi(C′)

 , where Bk :=

√
Eπ
[
〈zω, zω〉4ρ

]
λ̄k − λ̄k+1

(4)

Essentially, we will see that the constant κ(Bk, k,m) is the dominating factor when bounding the
excess risk, and, therefore, will determine the rate of convergence of our algorithms.

From a practical perspective, working in HS(ρ) is not computationally feasible. However, our
approximation to C has a representation in the finite dimensional space F , as defined here.

Definition 3.4. Cm : F → F is the covariance operator in HS(F), defined as Cm :=
Eρ [z(x)⊗F z(x)]. Equivalently, for any v ∈ F ,Cmv =

∫
X 〈z(x), v〉 z(x)dρ(x). Cm is compact

and self-adjoint which implies that Cm has a spectral decomposition Cm =
∑m
i=1 λiφi ⊗F φi.

As mentioned at the beginning of the section, our convergence tools work most conveniently when
we can incorporate the randomness with respect to ρ in the geometry of the space we study, hence,
the need to study L2(X , ρ). Since we are essentially dealing with random operators on F ,H and
L2(X , ρ), it is most appropriate to also work in the respective spaces of Hilbert-Schmidt operators.
Thus, we introduce the inclusion and approximation operators, which allow us to transition with ease
between the aforementioned spaces.

Definition 3.5. [Inclusion Operators I and I] The inclusion operator is defined as
I : H → L2(X , ρ), (If) = f, where f ∈ H.

Also, for an operator D ∈ HS(H) with spectral decomposition D =
∑∞
i=1 µiψi ⊗ ψi,

I : HS(H)→ HS(ρ), ID :=

∞∑
i=1

µi
Iψi√

〈Cψi, ψi〉H
⊗ Iψi√

〈Cψi, ψi〉H
.

In Lemma A.8 and Lemma A.9 in the appendix, we show that the adjoint of the Inclusion operator I
is I∗ : L2(X , ρ)→ H given by (I∗g)(·) =

∫
k(x, ·)g(x)dρ(x), and that C = I∗I,L = II∗.

Definition 3.6. [Approximation Operators A and A] The Approximation operator A is defined as

A : F → L2(X, ρ), (Av)(·) = 〈z(·), v〉 , where v ∈ F .
For an operator D ∈ HS(F) with rank k with spectral decomposition D =

∑∞
i=1 µiψi ⊗ ψi, let Ψ

be the matrix with eigenvectors ψi as columns and let Φ be the matrix with eigenvectors of Cm as
columns (see Definition 3.4). Define

R∗ = arg min
R>R=RR>=I

‖ΨR− Φ‖2F , Ψ̃ := ΨR∗.

Let ψ̃i be the ith column of Ψ̃, define

A : HS(F)→ HS(ρ), AD :=

k∑
i=1

µi
Aψ̃i√

〈Cmψ̃i, ψ̃i〉F
⊗ρ

Aψ̃i√
〈Cmψ̃i, ψ̃i〉F

.
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In Lemma A.11 and Lemma A.12, we show that the adjoint of the Approximation Operator is
A∗ : L2(X, ρ)→ F , (A∗f)i =

∫
X f(x)zωi(x)dρ(x), and Cm = A∗A,Lm = AA∗.

We note that the definition of the approximation operator A requires knowledge of the covariance
matrix Cm to find the optimal rotation matrix R∗, but this is solely for the purpose of analysis and is
not used in the algorithm in any form.

The following definition enables us to bound the excess risk in HS(H) (Section B in the appendix).

Definition 3.7. [Operator L] Let P̃ ∈ HS(F). Let AP̃ =
∑k
i=1 p̃i ⊗ρ p̃i be P̃ lifted to HS(ρ).

Consider the equivalence relation pi ∼ pj if L1/2pi = L1/2pj . Let [pi] be the equivalence class such
that L1/2pi = p̃i. The operator L : HS(F) → HS(H) is defined as LP̂ =

∑k
i=1 I∗pi ⊗H I∗pi.

Here I∗ is the restriction of the operator I∗ to the quotient space L2(X , ρ)/ ∼.

The quotient space in the definition above is with respect to the kernel of L, i.e., L2(X , ρ)/ ∼≡
L2(X , ρ)/ker(L). This quotient is benign since the optimal solution to our optimization problem
lives in the range of L and intuitively we can disregard any components in the kernel of L.

X

L

HS(F)

F

HS(H)

H

HS(ρ)

L2(X , ρ)

A

A∗

A

II∗ I
z

k(x, ·)

Figure 1: Maps between the data domain
(X ), space of square integrable functions on X
(L2(X , ρ)), the RKHS of kernel k(·, ·), and RKHS
of the approximate feature map, as well as maps be-
tween Hilbert-Schmidt operators on these spaces.

Finally, to conclude the section we give a vi-
sual schematic in Figure 1 to help the reader
connect different spaces. To summarize, the
key spaces of interest are the data domain X ,
the RKHS H of the kernel map k(·, ·), and the
feature space F obtained via random feature
approximation. The space L2(X , ρ) consists of
functions over the data domainX that are square
integrable with respect to the data distribution
ρ. The space L2(X , ρ) allows us to embed ob-
jects from different spaces into a common space
so as to compare them. Specifically, we map
functions fromH to L2(X , ρ) via the inclusion
operator I, and vectors from F to L2(X , ρ) via
the approximation operator A. I∗ and A∗ de-
note the adjoints of I and A, respectively. The
space of Hilbert-Schmidt operators onH,F and
L2(X , ρ), are denoted by HS(H), HS(F) and
HS(ρ), respectively. Analogous to I and A, I
maps operators from HS(H) to HS(ρ), and A
maps operators from HS(F) to HS(ρ), respec-
tively. Specifically, these are essentially con-
structed by mapping eigenvectors of operators
via I and A respectively. The above mappings thus allow us to embed operators in the common space,
i.e., HS(ρ) and to bound estimation and approximation errors. However, the problem of Kernel PCA
is formulated in HS(H) and bounds in HS(ρ) are therefore not sufficient. To this end, we establish
an equivalence between kernel PCA in HS(H) and HS(ρ). We use the map A and the established
equivalence to get L, which maps operators from HS(F) to HS(H). We encourage the reader to go
through Sections A and B in the appendix for a gentler and a more rigorous presentation.

4 Main Results
Recall that our primary goal is to study the generalization behaviour of algorithms solving KPCA
using random features. Rather than stick to a particular algorithm, we define a class of algorithms
that are suitable to the problem. We characterize this class as follows.
Definition 4.1 (Efficient Subspace Learner (ESL)). Let A be an algorithm which takes as input
n points from F and outputs a rank-k projection matrix over F . Let P̂A denote the output of the
algorithm A and P̂A = Φ̃Φ̃> be an eigendecompostion of P̂A. Let Φ⊥k be an orthogonal matrix
corresponding to the orthogonal complement of the top k eigenvectors of Cm. We say that algorithm
A is an Efficient Subspace Learner if the following holds with probability at least 1− δ,∥∥∥(Φ⊥k )>Φ̃

∥∥∥2

F
≤
qρ,πA (1/δ, log (m) , log (n))

n
,
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Algorithm 1 KPCA with Random Features (Meta Algorithm)
Input: Training data X = {xi}ni=1

Output: P̂A
1: Obtain Training data X = {xt}ni=1 in a batch or stream
2: Sample ωi ∼ π, i.i.d, i = 1 to m
3: Z← RandomFeatures(X, {ωi}mi=1)

4: P̂A ← A(Z) //A is an Efficient Subspace Learner, Definition 4.1

where qρ,πA is a function given the triple (A, ρ, π) which has polynomial dependence on 1/δ, log (m)
and log (n). For notational convenience, we drop superscripts from qρ,πA and write it as qA henceforth.

Intuitively, an ESL is an algorithm which returns a projection onto a k-dimensional subspace such
that the angle between the subspace and the space spanned by the top k eigenvectors of Cm decays at
a sub-linear rate with the number of samples. Our guarantees are in terms of any algorithm which
belongs to this class. Algorithm 1 gives a high-level view of the algorithmic routine. To discuss the
associated computational aspects, we instantiate this with two specific algorithms, ERM and Oja’s
algorithm, and show how the result looks in terms of their algorithmic parameters. Similar results
can be obtained for other ESL algorithms such as `2-RMSG [Mianjy and Arora, 2018]. We now give
the main theorem of the paper which characterizes the excess risk of an ESL.

Theorem 4.2 (Main Theorem). Let A be an efficient subspace learner. Let P̂A be the output of A
run with m random features on n ≥ 2λ2

1qA(2/δ,log(m),log(n))2

λ2
k(
√

2−1)
points, where λi is the ith eigenvalue of

Cm. Then, with probability at least 1− δ it holds that

(a). E(LP̂A) ≤ 24κ(Bk, k,m) + log(δ/2)+7Bk

m +
√

qA(2/δ,log(m),log(n))
n ,

(b). d
(
LP̂A,PkHS(H)

)
≤
√

qA(2/δ,log(m),log(n))
n .

A few remarks are in order. First, as we forewarned the reader in Section 3, the error bound is
dominated by the additive term κ(Bk, k,m). This, in a sense, determines the hardness of the problem.
As we will see, under appropriate assumptions on data distribution in the feature space, this term can
be bounded by something that is in O(1/m). Second, the output of our algorithm, LP̂, need not be a
projection operator in the RKHS. This is precisely why we need to bound the difference between LP̂
and the set of all projection operators in HS(H), which we see is of the order O(1/

√
n). Third, note

that the dependence on the number of random features is at worst poly-logarithmic. From part (b)

of Theorem 4.2, it is easy to see that if we project LP̂A to the set of rank k projection operators in
HS(H), we get the same rate of convergence. This is presented as Corollary C.12 in the appendix.

Next, we characterize “easy” instances of KPCA problems under which we are guaranteed a fast rate.
Specifically, we show that if the decay of the spectrum of the fourth order moment, C′, of zω, is
exponential, then the dominating factor, κ(Bk, k,m) is in O(1/m). Then, optimizing the number of
random features w.r.t. the sample complexity term gives us the following result.
Corollary 4.3 (Main - Good decay). Along with the assumptions and notation of Theorem 4.2, if the
spectrum of the operator C′ has an exponential decay, i.e., λj(C′) = αj for some α < 1, then with
m = O(

√
n log (n)) random features, we have

E(LP̂A) ≤ cBk√
n

+
c′(k + log (δ/2) + 7Bk)√

n log (n)
+

√
qA(2/δ, log (m) , log (n))

n
,

where c and c′ are universal constants.

Finally, we instantiate the above corollary with two algorithms, namely ERM and Oja’s algorithm.
Corollary 4.4 (ERM and Oja). With the same assumptions and notation as in Corollary 4.3,

(a). RF-ERM is an ESL with qERM (1/δ, log (m) , log (n)) = kλ1τ
2

gap2 log
(
δ

2m

)2
.

(b). RF-Oja is an ESL with qoja(1/δ, log (m) , log (n)) = Θ̃
(

Λ
gap2

)
, where Λ =

∑k
i=1 λi.

where gap := λk(Cm)− λk+1(Cm).
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Error Decomposition: There are two sources of error when solving KPCA using random features
– the estimation error (εe) resulting from the fact that we have access to the distribution only through
an i.i.d. sample, and approximation error (εa) resulting from the approximate feature map. Therefore,
to get a better handle on the excess error, we decompose it as follows.

E(LP̂A) = 〈PkC,C〉HS(H) − 〈LPkCm
,C〉HS(H)︸ ︷︷ ︸

εa: Approximation Error

+ 〈LPkCm
,C〉HS(H) − 〈LP̂A,C〉HS(H)︸ ︷︷ ︸

εe: Estimation Error

.

The main idea behind controlling the approximation error is to interpret it as the error incurred in
eigenspace estimation in L2(X , ρ), and then use local Rademacher complexity to get faster rates. In
the context of Kernel PCA, this technique was first used by Blanchard et al. [2007] which allowed
them to get sharper O(1/n) excess risk. The estimation error is controlled by the definition of our
lifting map A together with the convergence rate implicit in the definition of an ESL. Below, we
guide the reader through the main steps taken to bound each of the error terms.

Bounding the Approximation error: Using simple algebraic manipulations, we can show that the
approximation error is exactly the error incurred by the ERM in estimating the top k eigenfunctions of
the kernel integral operator L using m samples drawn from π. This problem of eigenspace estimation
is well studied in the literature and has optimal statistical rates of O (1/

√
m) [Zwald and Blanchard,

2006]. This appears to be a key bottleneck and reinforces the view that the use of random features
cannot provide computational benefits – it suggests m=Ω(n) random features are required to get a
O (1/

√
n) rate. However, these rates are conservative when viewed in the sense of excess risk. This

has been extensively studied in empirical process theory and one of the primary techniques to get
sharper rates is the use of local Rademacher complexity [Bartlett et al., 2002]. The key idea is to
show that around the best hypothesis in the class, variance of the empirical process is bounded by a
constant times the mean of the difference from the best hypothesis (see Theorem F.3). This technique
was used in the context of Kernel PCA by Blanchard et al. [2007] to get fast O(1/m) rates. We now
state Lemma 4.5 which bounds the approximation error, the proof of which is deferred to appendix.
Lemma 4.5 (Approximation Error). With probability at least 1− δ, we have

εa ≤ 24κ(Bk, k,m) +
11τ2 log (δ) + 7Bk

m
.

Bounding the Estimation error: Since the objective with respect to the inner product in HS(ρ)
equals the objective with respect to the inner product in HS(H) (See Lemma B.4), we focus on
bounding the estimation error in L2(X , ρ). Using a Cauchy-Schwartz type of inequality in HS(ρ),
we see that it is enough to bound the difference ‖APkCm

− AP̂A‖HS(ρ). We can do this in two
steps – bound the error ‖PkCm

− P̂A‖F (we already have this from the ESL guarantee) and construct
A : HS(F)→ HS(ρ). We already have a lifting from F to L2(X , ρ) in the form of A. The natural
attempt to lift an operator on F would be by lifting and appropriately rescaling its eigenfunctions.
Since the eigendecomposition of P̂A is not unique, we need to choose an appropriate one to be
lifted. Since the goal of A is to preserve distances between operators, we choose the unique eigen-
decomposition for which the distance

∑k
i=1 ‖Ui−φi‖22 is minimized. Notice that the lifting operator

A depends on the eigendecomposition of Cm, which can not be obtained in practice. This is not a
problem, because A is only used for the purposes of showing the main result and is not part of the
proposed algorithms. We now state Lemma 4.6 which bounds the estimation error.
Lemma 4.6 (Estimation Error). With the same assumptions as Theorem 4.2, the following holds with
probability at least 1− δ,

εe ≤
λ2

1

(
√

2− 1)

√√√√ k∑
i=1

(
2λi + 4λ1

λ2
i

)2
qA(1/δ, log (m) , log (n))2

n
.

5 Experiments

The goal of this section is to provide empirical evidence supporting our theoretical findings in
Section 4. As we motivated in Section 2, the success of an algorithm is measured in terms of it’s
generalization ability, i.e. the variance captured by the output of the algorithm on the unseen data2.

2Details on how we evaluate objective for RF-ERM/Oja are deferred to Section E due to space limitations.
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Figure 2: Comparisons of ERM, Nyström, Oja+RFF, and Oja+ERM for KPCA on the MNIST dataset, in terms
of the objective value as a function of iterations (top) and as a function of CPU runtime (bottom).

We perform experiments on the MNIST dataset that consists of 70K samples, partitioned into a
training, tuning, and a test set of sizes 20K, 10K, and 40K, respectively. We use a fixed kernel in all
our experiments, since we are not concerned about model selection here. In particular, we choose the
RBF kernel k(x, x′)=exp

(
−‖x− x′‖2/2σ2

)
with bandwidth parameter σ2 = 50. The bandwidth is

chosen such that ERM converges in objective within observing few thousands training samples. The
objective of the ERM3 is used as the baseline. Furthermore, to evaluate the computational speedup
gained by using random features, we compare against Nyström method [Drineas and Mahoney,
2005] as a secondary baseline. In particular, upon receiving a new sample, we do a full Nyström
approximation and ERM on the set of samples observed so far. Finally, empirical risk minimization
(RF-ERM) and Oja’s algorithm (RF-Oja) are used with random features to verify the theoretical
results presented in Corollary 4.4.

Figure 2 shows the population objective as a function of iteration (top row) as well as the total runtime4

(bottom row). Each curve represents an average over 100 runs of the corresponding algorithm on
training samples drawn independently and uniformly at random from the whole dataset. Number of
random features and the size of Nyström approximation are set to 750 and 100, respectively. We note:

• As predicted by Corollary 4.4, for both RF-ERM and RF-Oja,
√
n log (n) ≈ 750 random

features is sufficient to achieve the same suboptimality as that of ERM.
• The performance of ERM is similar to that of RF-Oja and RF-ERM in terms to overall

runtime. However, due to larger space complexity of O(n2), ERM becomes infeasible for
large-scale problems; this makes a case for streaming/stochastic approximation algorithms.

Finally, we note that the iterates of RF-ERM and RF-Oja reduce the objective as they approach from
above to the maximizer of the population objective. Although it might seem counter-intuitive, we
note that the output of RF-ERM and RF-Oja are not necessarily projection operators. Hence, they
can achieve higher objective than the maximum. However, as guaranteed by Corollary 4.4, the output
of both algorithms will converge to a projection operator as more training samples are introduced.

3The kernel matrix is computed in an online fashion for computational efficiency
4Runtime is recorded in a controlled environment; each run executed on identical unloaded compute node.
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