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Abstract

Successful approaches to program induction require a hand-engineered domain-
specific language (DSL), constraining the space of allowed programs and imparting
prior knowledge of the domain. We contribute a program induction algorithm
called EC? that learns a DSL while jointly training a neural network to efficiently
search for programs in the learned DSL. We use our model to synthesize functions
on lists, edit text, and solve symbolic regression problems, showing how the model
learns a domain-specific library of program components for expressing solutions to
problems in the domain.

1 Introduction

Much of everyday human thinking and learning can be understood in terms of program induction:
constructing a procedure that maps inputs to desired outputs, based on observing example input-
output pairs. People can induce programs flexibly across many different domains, and remarkably,
often from just one or a few examples. For instance, if shown that a text-editing program should map
“Jane Morris Goodall” to “J. M. Goodall”, we can guess it maps “Richard Erskine Leakey” to “R. E.
Leakey”; if instead the first input mapped to “Dr. Jane”, “Goodall, Jane”, or "Morris”, we might have
guessed the latter should map to “Dr. Richard”, “Leakey, Richard”, or “Erskine”, respectively.

The FlashFill system [1]] developed by Microsoft researchers and now embedded in Excel solves
problems such as these and is probably the best known practical program-induction algorithm, but
researchers in programming languages and Al have built successful program induction algorithms
for many applications, such as handwriting recognition and generation [2]], procedural graphics [3],
cognitive modeling [4]], question answering [15] and robot motion planning [[6], to name just a few.
These systems work in different ways, but most hinge upon having a carefully engineered Domain
Specific Language (DSL). This is especially true for systems such as FlashFill that aim to induce
a wide range of programs very quickly, in a few seconds or less. DSLs constrain the search over
programs with strong prior knowledge in the form of a restricted set of programming primitives tuned
to the needs of the domain: for text editing, these are operations like appending strings and splitting
on characters.

In this work, we consider the problem of building agents that learn to solve program induction tasks,
and also the problem of acquiring the prior knowledge necessary to quickly solve these tasks in a new
domain. Representative problems in three domains are shown in Table[I] Our solution is an algorithm
that grows or boostraps a DSL while jointly training a neural network to help write programs in the
increasingly rich DSL.
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(f2: Abbreviates a sequence of words)
f3(a,b) = (foldr a b cons)
(f3: Concatenate strings a and b)

Table 1: Top: Tasks from each domain, each followed by the programs EC? discovers for them.
Bottom: Several examples from learned DSL. Notice that learned DSL primitives can call each other,
and that EC? rediscovers higher-order functions like filter (fjy in List Functions)

Because any computable learning problem can in principle be cast as program induction, it is important
to delimit our focus. In contrast to computer assisted programming [7] or genetic programming [,
our goal is not to automate software engineering, to learn to synthesize large bodies of code, or to
learn complex programs starting from scratch. Ours is a basic Al goal: capturing the human ability
to learn to think flexibly and efficiently in new domains — to learn what you need to know about a
domain so you don’t have to solve new problems starting from scratch. We are focused on the kinds
of problems that humans can solve relatively quickly, once they acquire the relevant domain expertise.
These correspond to tasks solved by short programs — if you have an expressive DSL. Even with a
good DSL, program search may be intractable; so we amortize the cost of search by training a neural
network to assist the search procedure.

Our algorithm takes inspiration from several ways that skilled human programmers have learned to
code: skilled coders build libraries of reusable subroutines that are shared across related programming
tasks, and can be composed to generate increasingly complex and powerful subroutines. In text
editing, a good library should support routines for splitting on characters, but also specialize these
routines to split on particular characters such as spaces or commas that are frequently used to delimit
substrings across tasks. Skilled coders also learn to recognize what kinds of programming idioms
and library routines would be useful for solving the task at hand, even if they cannot instantly work
out the details. In text editing, one might learn that if outputs are consistently shorter than inputs,
removing characters is likely to be part of the solution; if every output contains a constant substring
(e.g., “Dr.”), inserting or appending that constant string is likely to be a subroutine.

Our EC? (ECC, for Explore/Compress/Compile) algorithm incorporates these insights by iterating
through three steps. The Explore step takes a given set of tasks, typically several hundred, and
explores the space of programs, searching for compact programs that solve these tasks, guided by the
current DSL and neural network. The Compress step grows the library (or DSL) of domain-specific
subroutines which allow the agent to more compactly write programs in the domain; it modifies
the structure of the DSL by discovering regularities across programs found during the Explore step,
compressing them to distill out common code fragments across successful programs. The Compile
step improves the search procedure by training a neural network to write programs in the current
DSL, in the spirit of “amortized” or “compiled” inference [9}10].

The learned DSL effectively encodes a prior on programs likely to solve tasks in the domain, while
the neural net looks at the example input-output pairs for a specific task and produces a “posterior” for
programs likely to solve that specific task. The neural network thus functions as a recognition model
supporting a form of approximate Bayesian program induction, jointly trained with a generative
model for programs encoded in the DSL, in the spirit of the Helmholtz machine [[11]). The recognition



model ensures that searching for programs remains tractable even as the DSL (and hence the search
space for programs) expands.

We apply EC? to three domains: list processing; text editing (in the style of FlashFill [1]]); and
symbolic regression. For each of these we initially provide a generic set of programming primitives.
Our algorithm then constructs its own DSL for expressing solutions in the domain (Tbl. [T).

Prior work on program learning has largely assumed a fixed, hand-engineered DSL, both in classic
symbolic program learning approaches (e.g., Metagol: [12], FlashFill: [1]]), neural approaches (e.g.,
RobustFill: [[13]), and hybrids of neural and symbolic methods (e.g., Neural-guided deductive
search: [[14], DeepCoder: [[15]). A notable exception is the EC algorithm [16], which also learns
a library of subroutines. We find EC motivating, and go beyond it and other prior work through
the following contributions: (1) We show how to learn-to-learn programs in an expressive Lisp-like
programming language, including conditionals, variables, and higher-order recursive functions; (2)
We give an algorithm for learning DSLs, built on a formalism known as Fragment Grammars [17]];
and (3) We give a hierarchical Bayesian framing of the problem that allows joint inference of the
DSL and neural recognition model.

2 The EC? Algorithm

We first mathematically describe our 3-step algorithm as an inference procedure for a hierarchical
Bayesian model (Section [2.1)), and then describe each step algorithmically in detail (Section 2.4).

2.1 Hierarchical Bayesian Framing

EC? takes as input a set of tasks, written X, each of which is a program synthesis problem. It has at
its disposal a domain-specific likelihood model, written P[x|p], which scores the likelihood of a task
x € X given a program p. Its goal is to solve each of the tasks by writing a program, and also to
infer a DSL, written D. We equip D with a real-valued weight vector 6, and together (D, ) define a
generative model over programs. We frame our goal as maximum a posteriori (MAP) inference of
(D, 0) given X. Writing .J for the joint probability of (D, §) and X, we want the D* and 6* solving:

J(D,6) £ P[D, 6] [T > PlelplPlp|D, 6]

zeX p

D* = argmaX/J(D,G) de 0" = argmax J(D",0) (D
D 0

The above equations summarize the problem from the point of view of an ideal Bayesian learner.
However, Eq.[I)is wildly intractable because evaluating J (D, ) involves summing over the infinite
set of all programs. In practice we will only ever be able to sum over a finite set of programs. So, for
each task, we define a finite set of programs, called a frontier, and only marginalize over the frontiers:

Definition. A frontier of task x, written F,, is a finite set of programs s.t. P[z|p] > 0 for all p € F,.

Using the frontiers we define the following intuitive lower bound on the joint probability, called .Z":

J>22PD,6 [[ D PllpPpID, 0] @)

re€X pEF,

EC? does approximate MAP inference by maximizing this lower bound on the joint probability,
alternating maximization w.r.t. the frontiers (Explore) and the DSL (Compress):

Explore: Maxing . w.r.t. the frontiers. Here (D, 0) is fixed and we want to find new programs
to add to the frontiers so that . increases the most. . most increases by finding programs where
Plz|p|P[p|D, 0] is large.

Compress: Maxing [ . df w.r.t. the DSL. Here { ¥, } . y is held fixed, and so we can evaluate
Z. Now the problem is that of searching the discrete space of DSLs and finding one maximizing
| % db. Once we have a DSL D we can update 6 to arg max, .2 (D, 0, {F,}).

Searching for programs is hard because of the large combinatorial search space. We ease this difficulty
by training a neural recognition model, ¢(+|-), during the Compile step: ¢ is trained to approximate



the posterior over programs, ¢(p|z) = P[p|z, D, 0] < P[z|p]P[p|D, 6], thus amortizing the cost of
finding programs with high posterior probability.

Compile: learning to tractably maximize . w.r.t. the frontiers. Here we train ¢(p|z) to assign
high probability to programs p where IP[x|p]IP[p|D, 0] is large, because including those programs in
the frontiers will most increase .Z. We train ¢ both on programs found during the Explore step and
on samples from the current DSL.

Crucially, each of these three steps Search for
bootstraps the others (Fig.[T): improv- L7 programs: p RN
ing either the DSL or the recognition Inductive bias Makes tractable

model makes search easier, so we find (E>§P10re) (Explore)

more programs solving tasks; both im- 1
proving the DSL and solving more
tasks expands the training data for the
recognition model; and finding more Trains Recognition

programs that solve tasks gives more DSL:D (Compile) model: ¢
data from which to learn a DSL.

Figure 1: How these steps bootstrap each other.
2.2 Explore: Searching for Programs

Now our goal is to search for programs solving the tasks. We use the simple approach of enumerating
programs from the DSL in decreasing order of their probability, and then checking if a program p
assigns positive probability to a task (IP[x|p] > 0); if so, we incorporate p into the frontier F,.

To make this concrete we need to define what programs actually are and what form IP[p|D, 6] takes.
We represent programs as A-calculus expressions. A-calculus is a formalism for expressing functional
programs that closely resembles Lisp, including variables, function application, and the ability to
create new functions. Throughout this paper we will write A-calculus expressions in Lisp syntax. Our
programs are all strongly typed. We use the Hindley-Milner polymorphic typing system [18]] which
is used in functional programming languages like OCaml and Haskell. We now define DSLs:

Definition: (D, ). A DSL D is a set of typed A-calculus expressions. A weight vector # for a DSL
D is a vector of |D| 4 1 real numbers: one number for each DSL element e € D, written 6, and
controlling the probability of e occurring in a program, and a weight controlling the probability of a
variable occurring in a program, 0y,;.

Together with its weight vector, a DSL defines a distribution over programs, P[p|D, 6]. In the
supplement, we define this distribution by specifying a procedure for drawing samples from IP[p|D, 6)].

Why enumerate, when the program synthesis community has invented many sophisticated algorithms
that search for programs? [[7, [19} 20, 21} 22} [23]]. We have two reasons: (1) A key point of our work is
that learning the DSL, along with a neural recognition model, can make program induction tractable,
even if the search algorithm is very simple. (2) Enumeration is a general approach that can be applied
to any program induction problem. Many of these more sophisticated approaches require special
conditions on the space of programs.

However, a drawback of enumerative search is that we have no efficient means of solving for arbitrary
constants that might occur in a program. In Sec.d we will show how to find programs with real-
valued constants by automatically differentiating through the program and setting the constants using
gradient descent.

2.3 Compile: Learning a Neural Recognition Model

The purpose of training the recognition model is to amortize the cost of searching for programs. It
does this by learning to predict, for each task, programs with high likelihood according to P[z|p]
while also being probable under the prior (D, §). Concretely, the recognition model ¢ predicts, for
each task € X, a weight vector ¢(z) = @) e RIDI+L, Together with the DSL, this defines a
distribution over programs, P[p|D, § = ¢(x)]. We abbreviate this distribution as ¢(p|x). The crucial
aspect of this framing is that the neural network leverages the structure of the learned DSL, so it is not
responsible for generating programs wholesale. We share this aspect with DeepCoder [[15] and [24].



How should we get the data to train ¢? This is non-obvious because we are considering a weakly
supervised setting (i.e., learning only from tasks and not from task/program pairs). One approach is
to sample programs from the DSL, run them to get their input/outputs, and then train q to predict the
program from the input/outputs. This is like how the wake-sleep algorithm for the Helmholtz machine
trains its recognition model during its sleep phase [25]. The advantage of training on samples, or
“fantasies,” is that we can draw unlimited samples from the DSL, training on a large amount of data.
Another approach is to train ¢ on the (program, task) pairs discovered by the Explore step. The
advantage here is that the training data is much higher quality, because we are training on real tasks.
Due to these complementary advantages, we train on both these sources of data.

Formally, g should approximate the true posteriors over programs: minimizing the expected KL-
divergence, E [KL (P[p|z, D, 0]||q(p|z))], equivalently maximizing [ P[p|z, D, 0] log q(p|x)],
where the expectation is taken over tasks. Taking this expectation over the empirical distribution of
tasks trains ¢ on the real data; taking it over samples from the generative model trains ¢ on “fantasies.”
The objective for a recognition model (Lgy) combines the fantasy (Ly) and real-data (L;) objectives,
Lrm = L, + Ly

P [z,p|D, 0]
P [z,p'|D, 0]

Li =B ay~,0) logq(plz)] Li=E,x Z 5 log q(p|x)

pEFa. p'EFy

2.4 Compress: Learning a Generative Model (a DSL)

The purpose of the DSL is to offer a set of abstractions that allow an agent to easily express solutions
to the tasks at hand. Intuitively, we want the algorithm to look at the frontiers and generalize beyond
them, both so the DSL can better express the current solutions, and also so that the DSL might expose
new abstractions which will later be used to discover more programs. Formally, we want the DSL
maximizing [ .Z df (Sec. . We replace this marginal with an AIC approximation, giving the
following objective for DSL induction:

log P[D] + arg max Z log Z Plx|p]P[p|D, 6] + log P[0|D] — ||0]|0 3)
zeX PEF

We induce a DSL by searching locally through the space of DSLs, proposing small changes to D
until Eq. [3| fails to increase. The search moves work by introducing new A-expressions into the
DSL. We propose these new expressions by extracting fragments of programs already in the frontiers
(Tbl. 2). An important point here is that we are not simply adding subexpressions of programs to
D, as done in the EC algorithm [16] and other prior work [26]]. Instead, we are extracting fragments
that unify with programs in the frontiers. This idea of storing and reusing fragments of expressions
comes from Fragment Grammars [[17]] and Tree-Substitution Grammars [27], and is closely related
to the idea of antiunification [28, 29]]. Care must be taken to ensure that this ‘fragmenting’ obeys
variable scoping rules; Section 4 of the supplement gives an overview of Fragment Grammars and
how we adapt them to the lexical scoping rules of A-calculus. To define the prior distribution over
(D, 0), we penalize the syntactic complexity of the A-calculus expressions in the DSL, defining
P[D] oc exp(—A ), p size(p)) where size(p) measures the size of the syntax tree of program p,
and place a symmetric Dirichlet prior over the weight vector 6.

Putting all these ingredients together, Alg. [I]describes how we combine program search, recognition
model training, and DSL induction. For added robustness, we interleave an extra program search step
(Explore) before training the recognition model, and just enumerate from the prior (D, 6) during this
extra Explore step.

3 Programs that manipulate sequences

We apply EC? to list processing (Section and text editing (Section . For both these domains
we use a bidirectional GRU [30] for the recognition model, and initially provide the system with a
generic set of list processing primitives: foldr, unfold, if, map, length, index, =, +, -, 0, 1, cons,
car, cdr, nil, and is-nil.
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Figure 2: Left: syntax trees of two programs sharing common structure, highlighted in orange,
from which we extract a fragment and add it to the DSL (bottom). Right: actual programs, from
which we extract fragments that (top) slice from the beginning of a list or (bottom) perform character
substitutions.

Algorithm 1 The EC? Algorithm

Input: Initial DSL D, set of tasks X, iterations [
Hyperparameters: Enumeration timeout 7’
Initialize € < uniform
fori =1to I do
For each task z € X, set F¥ < {p|p € enum(D, 0, T) if P[z|p] > 0}  (Explore)

q < train recognition model, maximizing Lgy (see Sec. (Compile)
For each task = € X, set F4 < {p|p € enum(D, ¢q(x),T) if P[z|p] > 0} (Explore)
D, 0 «+induceDSL({F? U F?},ex) (see Sec.[2.4) (Compress)
end for
return D, 0, q

3.1 List Processing

Synthesizing programs that manipulate data structures is a widely studied problem in the programming
languages community [20]. We consider this problem within the context of learning functions that
manipulate lists, and which also perform arithmetic operations upon lists of numbers.

We created 236 human-interpretable list
manipulation tasks, each with 15 input/out-

put examples (Tbl. [2). Our data set is in- Name Input Output
teresting in three major ways: many of  repeat-2 [7 0] [7070]
the tasks require complex solutions; the drop-3 [03864] [6 4]
tasks were not generated from some latent rotate-2 [8 14 1 9] [19 8 14]
DSL; and the agent must learn to solve count-head-in-tail [1 2 1 1 3] 2

these complicated problems from only 236 keep-mod-5 [5914630] [50]
tasks. Our data set assumes arithmetic op-  product [716 2] 84

erations as well as sequence operations, so
we additionally provide our system with Table 2: Some tasks in our list function domain. See the
the following arithmetic primitives: mod, *, supplement for the complete data set.

>, is-square, is-prime.

We evaluated EC? on random 50/50 test/train split. Interestingly, we found that the recognition
model provided little benefit for the training tasks. However, it yielded faster search times on held out
tasks, allowing more tasks to be solved before timing out. The system composed 38 new subroutines,
yielding a more expressive DSL more closely matching the domain (left of Tbl. [I] right of Fig. [2).
See the supplement for a complete list of DSL primitives discovered by EC2.



3.2 Text Editing

Synthesizing programs that edit text is a classic problem in the programming languages and Al
literatures [24, [31], and algorithms that learn text editing programs ship in Microsoft Excel [1].
This prior work presumes a hand-engineered DSL. We show EC? can instead start out with generic
sequence manipulation primitives and recover many of the higher-level building blocks that have
made these other text editing systems successful.

Because our enumerative search procedure cannot generate string constants, we instead enumerate
programs with string-valued parameters. For example, to learn a program that prepends “Dr.”, we
enumerate (fs; string s) — where f3 is the learned appending primitive (Fig. [I)) — and then define
P[z|p] by approximately marginalizing out the string parameters via a simple dynamic program. In
Sec. ] we will use a similar trick to synthesize programs containing real numbers, but using gradient
descent instead of dynamic programming.

We trained our system on a corpus of 109 automatically generated text editing tasks, with 4 input/out-
put examples each. After three iterations, it assembles a DSL containing a dozen new functions (center
of Fig.[1) that let it solve all of the training tasks. But, how well does the learned DSL generalized to
real text-editing scenarios? We tested, but did not train, on the 108 text editing problems from the
SyGusS [32] program synthesis competition. Before any learning, EC? solves 3.7% of the problems
with an average search time of 235 seconds. After learning, it solves 74.1%, and does so much faster,
solving them in an average of 29 seconds. As of the 2017 SyGuS competition, the best-performing
algorithm solves 82.4% of the problems. But, SyGuS comes with a different hand-engineered DSL
for each text editing problem)'| Here we learned a single DSL that applied generically to all of the
tasks, and perform comparably to the best prior work.

4 Symbolic Regression: Programs from visual input

We apply EC? to symbolic regression problems. Here, the agent observes points along the curve
of a function, and must write a program that fits those points. We initially equip our learner with
addition, multiplication, and division, and task it with solving 100 symbolic regression problems, each
either a polynomial of degree 1-4 or a rational function. The recognition model is a convolutional
network that observes an image of the target function’s graph (Fig. [3) — visually, different kinds of
polynomials and rational functions produce different kinds of graphs, and so the recognition model
can learn to look at a graph and predict what kind of function best explains it. A key difficulty,
however, is that these problems are best solved with programs containing real numbers. Our solution
to this difficulty is to enumerate programs with real-valued parameters, and then fit those parameters
by automatically differentiating through the programs the system writes and use gradient descent to
fit the parameters. We define the likelihood model, P[z|p], by assuming a Gaussian noise model for
the input/output examples, and penalize the use of real-valued parameters using the BIC [33]].

EC? learns a DSL containing 13 new func-

tions, most of which are templates for poly- \/
nomials of different orders or ratios of poly- \

nomials. It also learns to find programs

that minimize the number of continuous de-

grees of freedom. For example, it learns to

represent linear functions with the program

(* real (+ x real)), which has two con-

tinuous degrees of freedom, and represents
quartic functions using the invented DSL
primitive f, in the rightmost column of
Fig. [1| which has five continuous param-
eters. This phenomenon arises from our
Bayesian framing — both the implicit bias
towards shorter programs and the likeli-
hood model’s BIC penalty.

Figure 3: Recognition model input for symbolic regres-
sion. DSL learns subroutines for polynomials (top row)
and rational functions (bottom row) while the recog-
nition model jointly learns to look at a graph of the
function (above) and predict which of those subroutines
best explains the observation.

'SyGuS text editing problems also prespecify the set of allowed string constants for each task. For these
experiments, our system did not use this assistance.



5 Quantitative Results

We compare with ablations of our model on held out tasks. The purpose of this ablation study is
both to examine the role of each component of EC?, as well as to compare with prior approaches
in the literature: a head-to-head comparison of program synthesizers is complicated by the fact that
each system, including ours, makes idiosyncratic assumptions about the space of programs and the
statement of tasks. Nevertheless, much prior work can be modeled within our setup. We compare
with the following ablations (Tbl 3} Fig @):

No NN: lesions the recognition model.

NPS, which does not learn the DSL, instead learning the recognition model from samples drawn
from the fixed DSL. We call this NPS (Neural Program Synthesis) because this is closest to how
RobustFill [13]] and DeepCoder [[15]] are trained.

SE, which lesions the recognition model and restricts the DSL learning algorithm to only add
SubExpressions of programs in the frontiers to the DSL. This is how most prior approaches have
learned libraries of functions [16l 34, [26].

PCFG, which lesions the recognition model and does not learn the DSL, but instead learns the
parameters of the DSL (), learning the parameters of a PCFG while not learning any of the structure.
Enum, which enumerates a frontier without any learning — equivalently, our first Explore step.

We are interested both in how many 'tasks Ours NoNN SE_NPS PCEG Enum
the agent can solve and how quickly it can

find those solutions. Tbl. [3]compares our List Processing

model against these alternatives. We con- % solved 94% 79% 71% 35% 62% 37%
sistently improve on the baselines, and also Solve time 88s 39s 1ls 35s 44s  20s

find that lesioning the recognition model Text Editing
impairs the convergence of the algorithm, "¢/ ¢olved 74% 43% 30% 33% 0% 4%
causing it to hit a lower ‘plateau’ after Solve time 29s 49s 38s 80s -— 235s

which it stops solving new tasks, following
an initial spurt of learning (Fig. [f) — with-
out the neural network, search becomes in-
tractable. This lowered ‘plateau’ supports
a view of the recognition model as a way Table 3: % held-out test tasks solved. Solve time: aver-

Symbolic Regression

% solved 84% 75% 62% 38% 38% 37%
Solve time 24s  40s 28s 31s 55s  29s

of amortizing the cost of search. aged over solved tasks.
List Functions Text Editing Symbolic Regression
100 N T ~100 T 100 3
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Figure 4: Learning curves for EC? both with (in orange) and without (in teal) the recognition model.
Solid lines: % holdout testing tasks solved. Dashed lines: Average solve time.

6 Related Work

Our work is far from the first for learning to learn programs, an idea that goes back to Solomonoff [35]:

Deep learning: Much recent work in the ML community has focused on creating neural networks
that regress from input/output examples to programs [13} 16, 24, [15]. EC?’s recognition model draws
heavily from this line of work, particularly from [24]. We see these prior works as operating in
a different regime: typically, they train with strong supervision (i.e., with annotated ground-truth
programs) on massive data sets (i.e., hundreds of millions [[L3]]). Our work considers a weakly-
supervised regime where ground truth programs are not provided and the agent must learn from at
most a few hundred tasks, which is facilitated by our “Helmholtz machine” style recognition model.



Inventing new subroutines for program induction: Several program induction algorithms, most
prominently the EC algorithm [[16]], take as their goal to learn new, reusable subroutines that are shared
in a multitask setting. We find this work inspiring and motivating, and extend it along two dimensions:
(1) we propose a new algorithm for inducing reusable subroutines, based on Fragment Grammars [[17];
and (2) we show how to combine these techniques with bottom-up neural recognition models. Other
instances of this related idea are [34]], Schmidhuber’s OOPS model [36], MagicHaskeller [37],
Bayesian program merging [29], and predicate invention in Inductive Logic Programming [26].
Closely allied ideas have been applied to mining ‘code idioms’ from programs [38], and, concurrent
with this work, using those idioms to better synthesize functional programs from natural language [39].

Bayesian Program Learning: Our work is an instance of Bayesian Program Learning (BPL;
see [2,[16} 140,134, 141])). Previous BPL systems have largely assumed a fixed DSL (but see [34])), and
our contribution here is a general way of doing BPL with less hand-engineering of the DSL.

7 Discussion

We contribute an algorithm, EC2, that learns to program by bootstrapping a DSL with new domain-
specific primitives that the algorithm itself discovers, together with a neural recognition model that
learns how to efficiently deploy the DSL on new tasks. We believe this integration of top-down
symbolic representations and bottom-up neural networks — both of them learned — helps make
program induction systems more generally useful for Al

A feature of our system is that it learns from (and also, critically needs) a corpus of training tasks.
Is constructing (or curating) corpra of tasks any easier or better than hand-engineering DSLs? In
the immediate future, we expect some degree of hand-engineering of DSLs to continue, especially
in domains where humans have strong intuitions about the underlying system of domain-specific
concepts, like text editing. However, if program induction is to become a standard part of the Al
toolkit, then, in the long-term, we need to build agents that autonomously acquire the knowledge
needed to navigate a new domain. So, through the lens of program synthesis, EC? carries the
restriction that it requires a high-quality corpus of training tasks; but, for the program-induction
approach to Al, this restriction is a feature, not a bug.

Many directions remain open. Two immediate goals are to integrate more sophisticated neural
recognition models [13]] and program synthesizers [[7]], which may improve performance in some
domains over the generic methods used here: while our focus in this work was learning to quickly
write small programs, we believe more sophisticated neural models, coupled with more powerful
program search algorithms, could extend our approach to synthesize larger bodies of code. Another
direction is to explore DSL meta-learning: can we find a single universal primitive set that could
effectively bootstrap DSLs for new domains, including the three domains considered, but also many
others?
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