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Abstract

Understanding how humans and animals learn about statistical regularities in sta-
ble and volatile environments, and utilize these regularities to make predictions
and decisions, is an important problem in neuroscience and psychology. Using a
Bayesian modeling framework, specifically the Dynamic Belief Model (DBM),
it has previously been shown that humans tend to make the default assumption
that environmental statistics undergo abrupt, unsignaled changes, even when envi-
ronmental statistics are actually stable. Because exact Bayesian inference in this
setting, an example of switching state space models, is computationally intensive, a
number of approximately Bayesian and heuristic algorithms have been proposed to
account for learning/prediction in the brain. Here, we examine a neurally plausible
algorithm, a special case of leaky integration dynamics we denote as EXP (for
exponential filtering), that is significantly simpler than all previously suggested
algorithms except for the delta-learning rule, and which far outperforms the delta
rule in approximating Bayesian prediction performance. We derive the theoretical
relationship between DBM and EXP, and show that EXP gains computational
efficiency by foregoing the representation of inferential uncertainty (as does the
delta rule), but that it nevertheless achieves near-Bayesian performance due to its
ability to incorporate a "persistent prior" influence unique to DBM and absent from
the other algorithms. Furthermore, we show that EXP is comparable to DBM but
better than all other models in reproducing human behavior in a visual search task,
suggesting that human learning and prediction also incorporates an element of
persistent prior. More broadly, our work demonstrates that when observations are
information-poor, detecting changes or modulating the learning rate is both difficult
and thus unnecessary for making Bayes-optimal predictions.

Introduction

Understanding how humans and animals make future predictions based on changing environmental
statistics is an important problem in both neuroscience and psychology [1, 2, 3, 4, 5, 6]. Intriguingly,
even when environmental statistics are stable, Bayesian models of human learning and prediction
suggest a default human tendency to assume that statistical contingencies undergo abrupt, unsignaled
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changes, also known as "change points" [7, 8, 9, 10, 11, 12]. The behavioral consequence of this is
that humans all too readily discard long-term knowledge in favor of recent, unexpected observations,
leading to excessively volatile learning and prediction. It has been suggested that this default
assumption of non-stationarity helps the brain to adapt when the environment is truly volatile [7].
Here, we propose another reason why a default assumption of volatility is difficult to overcome:
one’s ability to discern whether unexpected outcomes arise from change points or simply noise is
fundamentally limited when the observations are very noisy (e.g. when it is binary as opposed to
real-valued) [7]. We focus on categorical data (including binary) case, whose information-poor data
(in a predictive information sense [13]) make the detection of change points and the estimation of
hidden variables particularly difficult.

Previously, Bayesian and Bayes-inspired models of varying complexity have been suggested to
capture human learning and prediction behavior while making implicit [3, 7] or explicit [1, 5]
predictions among categorical choices. The most complex of these is exact Bayes [1, 3, 5, 7], such as
the Dynamic Belief Model (DBM) [7], a hidden Markov model that assumes the observations to be
drawn from a Bernoulli (if binary) [7] or categorical (if more than two outcomes) [11] distribution,
whose parameters undergo abrupt, unsignaled changes from time to time. An alternative Bayesian
model is the Fixed Belief Model (FBM) [7], which assumes environmental statistics to be fixed
over time (no change points). It has been found that DBM captures human behavior better than
FBM, even though the latter more veridically captures experimental design in a variety of tasks,
e.g. 2-alternative forced choice [7], inhibitory control [9, 10], multi-armed bandit [12, 14], and
visual search [11]. However, exact learning/prediction in DBM is computationally intensive, given
that it is an example of switching state space models [15]. Consequently, several approximate and
heuristic learning rules have also been proposed [1, 16, 17], all of which make some claim to neural
plausibility and probabilistic interpretation. Separately, very simple, non-probabilistic forms of
learning rules have also been used to model online learning in the brain. We explore two of them
here: (1) a delta-learning rule [18, 19], also known as Q-learning or reinforcement learning (RL)
in the neuroscience literature [5], (2) a variant of exponential filtering (EXP) [2, 7], equivalent to a
particular form of leaky-integrating neuronal dynamics [7].

Although all of the algorithms described above have been used to model sequential learning and
prediction in the brain, there has been little theoretical analysis of the statistical relationship among
them, or a systematic validation by comparing them to the same set of behavioral data. In this work,
we present just such a theoretical analysis and human data comparison [11].

The rest of the paper is organized as follows. In section 1, we will formally describe how the different
algorithms learn online from binary data and make predictions about upcoming data. In section
2, we will present a theoretical analysis of the various algorithms and their relationships to each
other. In section 2.5, we will extend the results to m-ary data. In section 3, we will compare model
performance in terms of their ability to predict human behavior in a visual search task [11]. In section
4, we will discuss implications, links to related work, and future work.

1 Learning Models

In this section, we formally describe the learning models: the first two are principled Bayesian
models, while the latter two are simple, mechanistic algorithms commonly used in neuroscience and
psychology. Here, we assume the observations xt are binary. In a later section, we will show that our
results easily generalize to the m-ary case.

1.1 Dynamic Belief Model (DBM)

The Dynamic Belief Model (DBM) is a hidden Markov model that assumes the observations are drawn
from a Bernoulli distribution whose rate parameter undergoes unsignaled changes with probability
1− α at each time step.

Generative Model. The hidden variable γt denotes probability of xt = 1 and has a Markovian
dependence on γt−1:

p(γt = γ|γt−1) = αδ(γ − γt−1) + (1− α)p0(γ), (1)

i.e., γt remains the same (γt = γt−1) with a fixed probability α, and redrawn from the prior
p0(γ) = Beta(γ; a, b) with probability 1− α.
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Recognition model. The prior p(γt|x1:t−1) and the posterior p(γt|x1:t) are recursively computed:

p(γt = γ|x1:t−1) = αp(γt−1 = γ|x1:t−1) + (1− α)p0(γt = γ), (2)
p(γt|x1:t) ∝ p(xt|γt)p(γt|x1:t−1). (3)

Prediction. The predictive probability for trial t+ 1, given the past observations x1:t is computed as

PDBM,t+1 , P (xt+1 = 1|x1:t) =

∫
γp(γt+1 = γ|x1:t)dγ = Ep(γt+1|x1:t)[γ], (4)

and has an implicit marginalization over every possible timing of the most recent change point.
In practice, one can either marginalize over the timing of the last change point, or discretize the
belief state (posterior distribution over γt). Thus, the computation of the predictive probabilities is
computationally and representationally expensive.

1.2 Fixed Belief Model (FBM)

FBM is a special case of the DBM with no change point, i.e α = 1. It is simply a beta-Bernoulli
process. The posterior and predictive probabilities are:

p(γ|x1:t) ∝ P (x1:t|γ)p(γ) = γ
∑
xτ+a−1(1− γ)

∑
x̄τ+b−1; PFBM,t+1 ,

a+
∑
xτ

a+ b+ t
, (5)

where x̄τ , 1− xτ .

1.3 Exponential Filtering (EXP)

EXP is a simple algorithm that linearly sums past observations, while exponentially discounting into
the past [2], to predict the probability of encountering different outcomes on the next trial [7]:

PEXP,t+1 , PEXP(xt+1 = 1|x1:t) = C + ηβ

t−1∑
τ=0

βτxt−τ = C(1− β) + ηβxt + βPEXP,t, (6)

where the parameters (C, η, β) are constrained as 0 ≤ C, η ≤ 1, 0 ≤ β < 1, C + ηβ
1−β < 1. This

model was introduced in relation to DBM [7], inspired by related work showing that monkeys’
choices when tracking reward biases that undergo change points are discounted in an approximately
exponential fashion [2]. The last expression in Eq. 6 shows how it can be implemented by correctly
tuned leaky integration dynamics (in a single neuron!) [7]: the first term is a constant bias, the second
"feedforward" term depends on the current input (ηβ specifies the weight on the input), and the third
“recurrent” term depends on the previous state (β specifies the weight of the recurrent term).

1.4 Delta-Learning Rule (RL)

The delta-learning rule, a form of simple Q-learning or reinforcement learning (RL) [19] is commonly
used for online learning in both neuroscience [18, 5] and machine learning [19]. Here, we adapt it to
estimate predictive probabilities:

PRL,t+1 , εxt + (1− ε)PRL,t. (7)

Note that this version of RL is similar in form to EXP. It has a feedforward term and a recurrent term,
one parameter to trade off between the two, and no bias term.

2 Relationship Among the Models

In this section, we analyze the relationship among the models. We will first show that while DBM
online prediction can be viewed as a delta-like learning rule with an adaptive gain, and EXP, with a
constant learning rate, can nevertheless approximate DBM well under certain conditions. We will
also show when and why EXP outperforms RL, as well as how the parameters of EXP can be tuned
online in a neurally plausible manner. Finally, we will analyze the parameter regime under which the
DBM ≈ EXP approximation breaks down.
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2.1 DBM Prediction as an Adaptive Delta Rule

The exact, nonlinear Bayesian update rule for the predictive probability PDBM,t+1, denoted as Pt+1

in this section to be concise, may also be written as:

Pt+1 = (1− α)〈γ〉p0(γ) + αxt
Qt − P 2

t

Pt(1− Pt)
+ αPt

Pt −Qt
Pt(1− Pt)

(8)

= (1− α)P0 + αxtGt + αPt(1−Gt) = (1− α)P0 + α(Pt +Gt(xt − Pt)), (9)

where Qt , Ep(γt|x1:t−1)[γ
2], P0 , Ep0(γ)[γ] and Gt ,

Qt−P 2
t

Pt(1−Pt) = var(γt|x1:t−1)
var(Bern(Pt))

. The form in
Eq. (9) is reminiscent of the delta rule: Gt (0 ≤ Gt ≤ 1, for any binary sequence x1:t) acts like
an adaptive learning rate, governing the trade-off between new data xt and the previous predictive
mean, Pt; an additional parameter α governs the trade-off between this combined prediction and a
constant bias P0, which inserts persistent prior influence due to the recurring probability of γ being
re-sampled.

Intuitively, Gt is modulated by how “surprising” recent observations are. Surprising recent obser-
vations, i.e those inducing large prediction error, could indicate a switch in environment statistics,
prompting an increase in the learning rate. However, categorical data are information-poor, making
prompt detection of a true change in the environment difficult. This suggests that the Bayesian
update rule for predicting future outcomes can be simplified by approximating Gt with an appropriate
constant. These intuitions are formalized in the following theorem.
Theorem 1. The adaptive learning rate Gt has the following property,

1−Gt = (1−G) + αcα(−ax̄t−1 + bxt−1) +O(α2), (10)

where G = 1
(a+b+1) and cα = (a2−b2)

ab(a+b+1)2(a+b+2) . Approximating Gt by G yields a linear update
rule for the predictive probability Pt+1, correct to O(α2),

Pt+1 = (1− α)P0 + α(Gxt + Pt(1−G)) +O(α2). (11)

Proof. We rewrite the update rule (9) for the predictive probability Pt+1 as:

Pt+1 = (1− α)P0 + α(Pt +Gt(xt − Pt)) = (1− α)P0 + αLt,

where Lt , xtGt +Pt(1−Gt). Analogous to the update rule for Pt (Eq. 8), Qt has the update rule:

Qt+1 = (1− α)Q0 + αxt
Rt −QtPt
Pt(1− Pt)

+ αQt
Qt −Rt
Qt(1− Pt)

, (12)

where Rt , Ep(γt|x1:t−1)[γ
3]. Next, we make O(α2) approximations to the numerator (Pt − Qt)

and the denominator Pt(1− Pt) of 1−Gt as

Pt(1− Pt) = P0P̄0 + α[P̄0Lt−1 + P0L̄t−1 − 2P0P̄0] + α2(P0 − Lt−1)(P̄0 − L̄t−1)

(∗)
= P0P̄0 + α

(a− b)
(a+ b)2(a+ b+ 1)

(−ax̄t−1 + bxt−1) +O(α2), (13)

Pt −Qt
(∗)
= (P0 −Q0)− α (a− b)

(a+ b)(a+ b+ 1)(a+ b+ 2)
(−ax̄t−1 + bxt−1) +O(α2), (14)

where P̄0 = 1− P0 and L̄t−1 = 1− Lt−1 and (∗) follows by setting Pt−1 = P0 +O(α), Qt−1 =
Q0 +O(α), Rt−1 = R0 +O(α). Upon substituting the approximations (13), (14) for (Pt −Qt) and
Pt(1− Pt) and using (l0 + αl1 + O(α2))−1 = l−1

0 − αl1l−2
0 + O(α2), the O(α2) approximation

(10) for Gt directly follows.

Setting Gt = G+O(α) in (9) gives (11), the linear update rule for the predictive probability Pt+1

correct to O(α2).

Based on the theorem, Gt can be approximated as a constant with O(α) error, or as a linear function
of the last observation with O(α2) error; the corresponding linear update rule has either O(α2) or
O(α3) error, respectively. Furthermore, |cα(−ax̄t−1 + bxt−1)| can be shown to be upper bounded
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by a small number of 0.062 (proof omitted) for a, b ≥ 1, so replacing Gt by G should work well in
practice.

As a corollary to the theorem, for a uniform prior a = b = 1, the O(α) term in 1 − Gt is exactly
zero, so that replacing Gt by G incurs only O(α3) error. In many behavioral tasks (e.g. 2-alternative
forced choice), a uniform prior is a reasonable choice; we employ a uniform prior for all simulations
in the paper. All these results imply that the approximations are particularly accurate when α is
relatively small.

On a separate note, it is important to note that the proof, and thus the approximation, does not make
any specific generative assumptions about the sequence x1:t, and is therefore valid for arbitrary
binary sequences. In other words, the constant Gt approximation is valid for arbitrary environments
and does not depend on whether humans truly have mis-specified generative assumptions, as having
been previously suggested [7, 11, 12].

2.2 Relationship of EXP to DBM and RL

We define EXP using Eq. 11. We will show that while two critical features of DBM – exponential
discounting of past observations and "persistent" influence of the prior – are captured by EXP, only
the former is captured by RL. Moreover, in volatile environments (relatively small α, which appears
to be the default assumption for humans, see sec. 4), EXP will be shown to be especially effective at
approximating DBM, while also enjoying a particular advantage over RL.

Eq. 11 shows how the parameters of EXP are related to those of DBM: β = α a+b
a+b+1 , η = 1

a+b ,

C = (1−α)P0

1−β . In other words, the exponential discount parameter of EXP, β, is proportional to the
volatility parameter α in DBM (for uniform prior, β ≈ 2

3α, matching a previous conjecture [7]),
and the constant bias, (1− α)P0, is proportional to the prior mean P0 and thus injects a persistent
additive influence of the prior. In a set of simulations with α = .7 (similar to those found in humans,
see sec. 4), we regress PDBM,t+1 against past observations xt, xt−1, . . . , and find that our analytical
EXP approximation closely matches both DBM and the best freely fitted EXP (best linear estimator)
(Fig. 1a). We also see that this excellent performance is underpinned by an approximately constant
learning rate Gt that is quite insensitive to the timing of true change points (Fig. 1b). Indeed, EXP
approximates DBM equally well whether there is a switch on the last time step or not (Fig. 1c).

We can gain additional intuition about DBM (and EXP) by noticing that the parameter C is the lower
bound on Pt, determined by the stability of the environment α and the prior p0(γ). This lower bound
is attained asymptotically in the limit of observing an infinite sequence of 0’s. Similarly, the upper
bound in the limit of observing infinite 1’s is C+ ηβ

1−β (see the last ten trials in Fig. 1a). This bounded
behavior is characteristic of DBM, and well captured by appropriately parameterized EXP.

Like EXP, RL has an element of exponential discounting if we write PRL,t+1 =
∑t−1
τ=0 ε(1− ε)τxt−τ .

However, RL has no analytic setting for its free parameter ε, and parameter fitting yields a discount
behavior different from DBM and EXP (Fig. 1d). An even bigger problem is that RL cannot capture
a persistent prior influence, due to the lack of a bias term. In a small-α environment, the persistent
prior influence is especially critical (Eq. 9), and EXP enjoys a particular advantage over RL (Fig. 1a).
This pattern also translates to the behaviorally more relevant measure of predictive accuracy (Fig. 1e),
which assumes the observer to make a binary outcome prediction choice (by taking the max) based
on predictive probabilities.

It is worth noting that even in this regime of relatively frequent switches, prediction is not trivial, in
that it depends sensitively on the data and not only the prior (Fig. 1a;d); a prediction algorithm that
only relies on the prior performs poorly (Fig. 1e). Indeed, smaller α makes DBM and EXP especially
sensitive to local statistics (recent data), since they are more willing to discard long-term statistics
due to the stronger belief that environmental statistics can drastically change any time.

2.3 Adapting to Volatility

Humans appear to be able to adapt their choice behavior according to changing volatility (1− α) of
the environment [5]. Exact Bayesian is computationally intensive. However, the EXP approximation,
denoted P̂t, to the DBM permits a simple, principled update rule for α via stochastic gradient descent
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Figure 1: Simulation results: validity of EXP approximation. Data generated from DBM (α = 0.7)
(a-d): m = 2 (binary data), p0(γ) = Beta(1, 1). (a) Exact and approximate predictive probabilities
(of observing 1) for an example sequence of synthetic data (1’s depicted by blue dots, 0’s not shown).
(b) Exact Gt and approximate G learning rates of an example sequence; black dots denote true
change points. (c) Approximate predictive probability P̂t (EXP) versus exact Pt (DBM), following
no change point (blue) or a change point (red). (d) DBM dependence on previous observations (blue:
linear regression coefficients) is approximately exponential (green), and well-approximated by EXP
(red). Fitted RL yields a very different exponential curve (purple). e Predictive accuracy (fraction of
correct predictions): DBM≈EXP≈EXP fitted > RL > FBM. (f) Analogous to (a) but for m = 4 and
p0(γ) = Dir(1, 1, 1, 1). Different colors represent the four outcomes.

[7]:

α̂← α̂+ ε(xt − P̂t)
dP̂t
dα̂

;
dP̂t
dα̂

= P̂t−1 +G(xt − P̂t−1)− P0. (15)

2.4 Breakdown of DBM ≈ EXP

For α ≈ 1, EXP is not a good approximation to exact-Bayes predictive probabilities (Fig. 2a). Indeed,
for a stable FBM environment (α = 1), Gt = 1

a+b+t , which is clearly not constant. However, fitting
EXP’s parameters freely still performs close to DBM (Fig. 2a); while the deviation between our
analytical approximation of the discount parameter β and the best fitting β grows as a function of α
(Fig. 2c). For larger α, even though Gt increases more after a true change point, because real change
points are rare, their influence is minor relative to the stable value of Gt in between change points.
In any case, in terms of the behaviorally more relevant predictive accuracy measure (analogous to
Fig. 1e), EXP still approximates DBM well (Fig. 2b). Interestingly, fitted RL also approximates
DBM well (Fig. 2a;b), since the persistent prior influence in Eq. 11 is more negligible. This makes a
broader point about prediction in stable but noisy environments: simple, cheap prediction algorithms
can perform well relative to complex models, since each data point contains little information and
there are many consecutive opportunities to learn from the data.

2.5 Generalization to m-ary Data

DBM and EXP easily extend to m-ary data. We assume a Dirichlet prior p0(γ) = Dir(a), where
a = (a1, . . . , am), ak ≥ 1. We say x(i)

t = 1 if the observation on trial t is category i. Denoting
P

(i)
t+1 , P (x

(i)
t+1 = 1|x(i)

1:t) and a−i ,
∑
k 6=i ak, the following corollary is easy to show (proof

omitted):

Corollary 1. The adaptive learning rate Gt has the following property,

1−Gt = (1−G) + αc(i)α (−aix̄(i)
t−1 + a−ix

(i)
t−1) +O(α2), (16)
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Figure 2: Simulation results: large α. DBM parameters: m = 2, p0(γ) = Beta(1, 1). (a) Exact
and approximate predictive probabilities, analogous to Fig. 1a. α = 0.95. (b) Predictive accuracy,
analogous to Fig. 1e, on the scale of 1/(1 − α) instead of α to better visualize performance for
large α. (c) EXP fitted parameters β deviates from our approximation for larger α. Comparison of
analytical approximation of β versus best fitted β, as a function of α.

where G = 1
(
∑
k ak+1) and cα =

(a2i−a
2
−i)

aia−i(
∑
k ak+1)2(

∑
k ak+2) . Approximating Gt by G yields a linear

update rule for the predictive probability P (i)
t+1, correct to O(α2),

P
(i)
t+1 = (1− α)P

(i)
0 + α(Gx

(i)
t + P

(i)
t (1−G)) +O(α2). (17)

Though we maintain approximate updates for each P (i)
t separately, it is easily shown by induction

that normalization is preserved,
∑m
i=1 P

(i)
t = 1. Since identical bounds on the coefficient of O(α)

term in Gt hold for m > 2, the quality of the approximation will be the same as the binary case,
so that in volatile environments, near-Bayesian prediction can be achieved simply by using m− 1
separate linear-exponential filters with no recurrent or complex interactions among the alternatives.
We will use this novel m-EXP model in section 3 to model human data.

3 Case Study: Visual Search Task

We will evaluate the models by comparing the models to human behavior in a visual search task
[11]. The objective of the task is to find the target among three stimuli (target is a random-dot patch
moving in the direction opposite to the two distractor patches, see Fig. 3a). The location of the target
on each trial is drawn independently from a fixed distribution (1/13, 3/13, 9/13). We collapse the
spatial configuration and refer to the patches corresponding to prior probabilities 1/13, 3/13, 9/13 as
patches 1, 3 and 9, respectively. The spatial configuration is fixed in a block (90 trials per block),
and counter-balanced across blocks for each subject. Eye-movements are tracked; we only analyze
first-fixation location here, as an indication of where a subject perceives as the currently most probable
target location. Subsequent fixations are much more complex complex, being "contaminated" by
sensory and motor processes [20]. Subjects are given feedback of true target location on each trial.
The data are from 11 subjects and are from [11].

3.1 Model Fitting

Learning of environmental statistics by the participants is modeled using each of DBM, EXP, RL and
FBM. DBM and FBM both assume an uninformative prior p0(γ) = Dir(γ; 1, 1, 1). Since the actual
spatial configuration is fixed over a block, FBM is the correct generative model. The probability of
the first fixation choice (choice fraction) qt,i at time t is modeled by polynomial softmax [4, 11] as

qt,i =
(P

(i)
t+1)β∑

i(P
(i)
t+1)β

.

We fit the learning and decision making models at an individual level by maximizing the likelihood of
first fixation choices (averaged over trials). Each of DBM, EXP and RL have one free parameter (α
for DBM/Exp, ε for RL), while FBM has none. The learning rate G in EXP is set to 1

(
∑
ak+1) = 1

4

according to the main theorem.
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3.2 Results

As shown in [11], the aggregate choice statistics appear to correspond to matching [21] but belie the
more complex temporal patterns in choice behaviour. In Fig. 3b, note that when the previous target
was 1 or 3, the first fixation choice fractions on the next trial show a much higher choice fraction of 1
or 3, respectively. This bar graph is re-plotted in a different representation in Fig. 3c, where each
choice distribution is represented by a point in this 2D probability simplex (2D because the three
probabilities add up to 1), affine-transformed to achieve symmetry across the three choices. We see
that, in comparison to the case when last target was location 9, human choice fractions on the current
trial are pulled toward 1 or 3, when the last target was 1 or 3, respectively. DBM and EXP are biased
to a similar extent. However, FBM, which asymptotically ignores the last data point, shows very
little variation in average choice distribution as a function of last trial location. RL, which shares the
exponential discounting element of DBM and EXP but not the persistent prior component, exhibits
some influence of the last target location, but not as much as humans/DBM/EXP. Note that all model
results are on held out data, and therefore independent of model complexity.

Figure 3: Model comparison to human data in visual search task. (a) Schematic of the task. (b)
Human choice fractions conditioned on the last target location. (c) Model-predicted choice fractions
and human choice fractions, on an affine transformation of the probability simplex. Last target
location: 1 - 4, 3 - ◦, 9 - �. Model predictions are based on actual sequences of held out stimuli
subjects experienced in 6-fold maximum likelihood cross validation. Error bars = SEM over subjects.

4 Discussion

We have shown that the DBM-like human learning/prediction found in previous studies can be
implemented by appropriately tuned leaky integrating neuronal dynamics (EXP). While we derived
an analytical form for the appropriate EXP parameters for volatile environments, we have also shown
that even for less volatile environments, where our analytical approximation does not hold, the
empirically fitted EXP still achieves near-Bayes performance. This leaves open the possibility that the
brain may utilize EXP-like learning for quite a large range of possible volatility, via feedback-driven
incremental tuning. In any case, in previous tasks where human behavior has been shown to be
fitted well by DBM, fitted α ranges between 0.7 and 0.8 [7, 11, 12, 9, 10]) – in the range where our
analytically derived EXP would perform very close to Bayes-optimal.

Our work demystifies human learning [7, 14, 11, 12, 9, 10] by decomposing DBM into two simple
mechanistic components. We showed that EXP approximates DBM well in all but extremely stable
environments, and does so via both exponential discounting of past observations, and a persistent
influence of a prior bias that is injected on every trial. Our work shows that when observations
are information-poor, detecting changes or modulating the learning rate explicitly or implicitly
(e.g. by discretizing belief state space [7] or averaging over possible change point times [22, 17])
is both difficult and (thus) unnecessary for making Bayes-optimal predictions. In practice, m-ary
DBM is typically implemented via discretization of the belief state space [7, 11, 9, 10], which has
a computational and representational complexity of O(ekm) per observation, where k depends on
fineness of the discretization, while the near exact-Bayes approximation EXP is only O(m).

We found that DBM & EXP both explain human choice behavior in a visual search task [11] better
than RL, which has exponential discounting but no persistent prior influence, and FBM, which has
neither. This is broadly consonant with our related finding that DBM not only provides a better
trial-by-trial account of human-choices in a multi-arm bandit task, but is able to recover a systematic
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underestimation in human prior reward rate expectation – this “pessimism bias” is incompletely cap-
tured by RL and FBM [14]. Together, these findings suggest that a more comprehensive comparison
of these models in their ability to capture diverse behavioral patterns is needed in the future.

Note that we are not suggesting that humans can only do prediction with a constant learning rate.
In “information-abundant” settings, change-points are relatively easy to detect, and their detection
is critical for Bayes-optimal learning and prediction. We have done separate simulations (data
not shown) to show that, in comparison to binary or categorical data, when mutual information
between hidden state and observations is high, Bayesian detection of change points can be highly
accurate, and the corresponding “learning rate” of its equivalent leaky-integrating update equation
significantly increases after detecting such a change. In these scenarios, the EXP approximation with
a constant learning rate would clearly do a poor job. Indeed, there is evidence that in information-
abundant settings, human learning rate may be modulated by uncertainty [16], and subjects are able
to detect change points and report uncertainty [23]. It is quite possible that different parts of the
brain may implement different kinds of learning/prediction algorithms. Different approximations
may come into play depending on information-abundance or whether the task explicitly necessitates
the representation of uncertainty (e.g. in [23]).

Given how well EXP does as an approximate recognition model for DBM, and EXP does not bother
to detect change points or modify its learning rate in response to detected change points, there might
exist a generative model for which EXP would be an exact Bayesian recognition model. In particular,
one might consider a model that assumes the underlying real-valued hidden variable to undergo
persistent stochastic changes with constant noisy characteristics, such as a Gaussian process, which
then gives rise to noisy binary or categorical observations. Finally, we note that our approximation
technique does not preclude an approximation in which the learning rate is modulated from trial
to trial. In fact, a proof technique similar to the one used here may be utilized to determine an
approximate update rule for higher order moments of p(γt+1|x1:t) (proof not shown), which could be
used as a neurally plausible approximation to confidence in information-abundant settings. Whether
such an approximation can account for human reported confidence as in [23] is a worthy line of
inquiry for future work.
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