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Abstract

We consider testing and learning problems on causal Bayesian networks as defined
by Pearl [Pea09]. Given a causal Bayesian network M on a graph with n discrete
variables and bounded in-degree and bounded “confounded components”, we
show that O(logn) interventions on an unknown causal Bayesian network X
on the same graph, and O(n/e?) samples per intervention, suffice to efficiently
distinguish whether X = M or whether there exists some intervention under
which X and M are farther than € in total variation distance. We also obtain
sample/time/intervention efficient algorithms for: (i) testing the identity of two
unknown causal Bayesian networks on the same graph; and (ii) learning a causal
Bayesian network on a given graph. Although our algorithms are non-adaptive, we
show that adaptivity does not help in general: Q(log n) interventions are necessary
for testing the identity of two unknown causal Bayesian networks on the same graph,
even adaptively. Our algorithms are enabled by a new subadditivity inequality for
the squared Hellinger distance between two causal Bayesian networks.

1 Introduction

A central task in statistical inference is learning properties of a high-dimensional distribution over
some variables of interest given observational data. However, probability distributions only capture
the association between variables of interest and may not suffice to predict what the consequences
would be of setting some of the variables to particular values. A standard example illustrating the
point is this: From observational data, we may learn that atmospheric air pressure and the readout of
a barometer are correlated. But can we predict whether the atmospheric pressure would stay the same
or go up if the barometer readout was forcefully increased by moving its needle?

Such issues are at the heart of causal inference, where the goal is to learn a causal model over some
variables of interest, which can predict the result of external interventions on the variables. For
example, a causal model on two variables of interest X and Y need not only determine conditional
probabilities of the form Pr[Y | X = x|, but also interventional probabilities Pr[Y | do(X = x)]
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where, following Pearl’s notation [Pea09], do(X = x) means that X has been forced to take the value
2 by an external action. In our previous example, Pr[Pressure | do(Barometer = b)] = Pr[Pressure]
but Pr[Barometer | do(Pressure = p)] # Pr[Barometer], reflecting that the atmospheric pressure
causes the barometer readout, not the other way around.

Causality has been the focus of extensive study, with a wide range of analytical frameworks proposed
to capture causal relationships and perform causal inference. A prevalent class of causal models are
graphical causal models, going back to Wright [Wri21] who introduced such models for path analysis,
and Haavelmo [Haa43|] who used them to define structural equation models. Today, graphical causal
models are widely used to represent causal relationships in a variety of ways [SDLC93||GC99, [Pea09,
SGS00, Nea04, [KF09].

In our work, we focus on the central model of causal Bayesian networks (CBNs) [PeaQ9, [SGSQ0,
Nea(4]. Recall that a (standard) Bayesian network is a distribution over several random variables
that is associated with a directed acyclic graph. The vertices of the graph are the random variables
over which the distribution is defined, and the graph describes conditional independence properties of
the distribution. In particular, every variable is independent of its non-descendants, conditioned on
the values of its parents in the graph. A CBN is also associated with a directed acyclic graph (DAG)
whose vertices are the random variables on which the distribution is defined. However, a CBN is not
a single distribution over these variables but the collection of all possible interventional distributions,
defined by setting any subset of the variables to any set of values. In particular, every vertex is both a
variable V' and a mechanism to generate the value of V' given the values of the parent vertices, and
the interventional distributions are defined in terms of these mechanisms.

We allow CBNs to contain both observable and unobservable (hidden) random variables. Importantly,
we allow unobservable confounding variables. These are variables that are not observable, yet they
are ancestors of at least two observable variables. These are especially tricky in statistical inference,
as they may lead to spurious associations.

1.1 Our Contributions
Consider the following situations:

1. An engineer designs a large circuit using a circuit simulation program and then builds it
in hardware. The simulator predicts relationships between the voltages and currents at
different nodes of the circuit. Now, the engineer would like to verify whether the simulator’s
predictions hold for the real circuit by doing a limited number of experiments (e.g., holding
some voltages at set levels, cutting some wires, etc.). If not, then she would want to learn a
model for the system that has sufficiently good accuracy.

2. A biologist is studying the role of a set of genes in migraine. He would like to know
whether the mechanisms relating the products of these genes are approximately the same for
patients with and without migraine. He has access to tools (e.g., CRISPR-based gene editing
technologies [DPL"16]) that generate data for gene activation and knockout experiments.

Motivated by such scenarios, we study the problems of hypothesis testing and learning CBNs when
both observational and interventional data are available. The main highlight of our work is that we
prove bounds on the number of samples, interventions, and time steps required by our algorithms.

To define our problems precisely, we need to specify what we consider to be a good approximation
of a causal model. Given € € (0,1), we say that two causal models M and N on a set of variables
V U U (observable and unobservable resp.) are e-close (denoted A(M, N') < ¢) if for every subset S
of V and assignment s to S, performing the same intervention do(S = s) to both M and N leads to
the two interventional distributions being e-close to each other in total variation distance. Otherwise,
the two models are said to be e-far and A(M,N) > e.

Thus, two models M and A are close according to the above definition if there is no intervention
which can make the resulting distributions differ significantly. This definition is motivated by the
philosophy articulated by Pearl (pp. 414, [Pea09]) that “causation is a summary of behavior under
intervention”. Intuitively, if there is some intervention that makes M and A behave differently, then
M and NV do not describe the same causal process. Without having any prior information about the



set of relevant interventions, we adopt a worst-case view and simply require that causal models M
and NV behave similarly for every intervention to be declared close to each otherE]

The goodness-of-fit testing problem can now be described as follows. Suppose that a collection
V U U (observable and unobservable resp.) of n random variables are causally related to each other.
Let M be a hypothesized causal model for V U U that we are given explicitly. Suppose that the
true model to describe the causal relationships is an unknown &’. Then, the goodness-of-fit testing
problem is to distinguish between: (i) X = M, versus (ii) A(X, M) > ¢, by sampling from and
experimenting on V, i.e. forcing some variables in V to certain values and sampling from the thus
intervened upon distribution.

We study goodness-of-fit testing assuming X’ and M are causal Bayesian networks over a known
DAG G. Given a DAG GG, CBN M and ¢ > 0, we denote the corresponding goodness-of-fit testing
problem CGFT(G, M, ¢). For example, the engineer above, who wants to determine whether the
circuit behaves as the simulation software predicts, is interested in the problem CGFT(G, M, ¢)
where M is the simulator’s prediction, G is determined by the circuit layout, and € is a user-specified
accuracy parameter. Here is our theorem for goodness-of-fit testing.

Theorem 1 (Goodness-of-fit Testing — Informal). Let G be a DAG on n vertices with bounded
in-degree and bounded “confounded components.” Let M be a given CBN over G. Then, there exists
an algorithm solving CGFT(G, M, €) that makes O(logn) interventions, takes O(n/€e?) samples

per intervention and runs in time O(n2 /€2). Namely, the algorithm gets access to a CBN X over G,
accepts with probability > 2/3 if X = M and rejects with probability > 2/3 if A(X, M) > e.

By “confounded component” in the above statement, we mean a c-component in GG, as defined in
Definition [7] Roughly, a c-component is a maximal set of observable vertices that are pairwise
connected by paths of the form V;, <~ U;, — Vi, < U;, — Vi, < --- = V;, where V;’sand U;’s
correspond to observable and unobservable variables respectively. The decomposition of CBNs into
c-components has been important in earlier work [TP0O2[] and continues to be an important structural
property here.

We can use our techniques to extend Theorem [I]in several ways:

(1) In the two-sample testing problem for causal models, the tester gets access to two unknown

causal models X and ) on the same set of variables V U U (observable and unobservable
resp.). For a given € > 0, the goal is to distinguish between (i) X = Y and (ii) A(X,)) > €
by sampling from and intervening on V in both X and ).
We solve the two-sample testing problem when the inputs are two CBNs over the same DAG
G in n variables; for a given € > 0 and DAG G, call the problem C2ST(G, €). Specifically,
we show an algorithm to solve C2ST(G, ¢) that makes O(log n) interventions on the input
models X' and ), uses O(n/e?) samples per intervention and runs in time O(n?/€?), when
G has bounded in-degree and c-component size

(2) For the C2ST(G, €) problem, the requirement that G be fully known is rather strict. Instead,
suppose the common graph G is unknown and only bounds on its in-degree and maximum c-
component size are given. For example, the biologist above who wants to test whether certain
causal mechanisms are identical for patients with and without migraine can reasonably
assume that the underlying causal graph is the same (even though he doesn’t know what it is
exactly) and that only the strengths of the relationships may differ between subjects with
and without migraine. For this problem, we obtain an efficient algorithm with nearly the
same number of samples and interventions as above.

(3) The problem of learning a causal model can be posed as follows: the learning algorithm
gets access to an unknown causal model X" over a set of variables V U U (observable and
unobservable resp.), and its objective is to output a causal model A/ such that A(X, N) < e.
We consider the problem CL(G, ¢€) of learning a CBN over a known DAG G on the observ-
able and unobservable variables. For example, this is the problem facing the engineer above

?To quote Pearl again, “It is the nature of any causal explanation that its utility be proven not over standard
situations but rather over novel settings that require innovative manipulations of the standards.” (pp. 219,
[Pea09]).

30f course, it is allowed for the two networks to be different subgraphs of G. So, X could be defined by the
graph GG1 and ) by G». Our result holds when G U G2 is a DAG with bounded in-degree and c-component

size.



who wants to learn a good model for his circuit by conducting some experiments; the DAG
G in this case is known from the circuit layout. Given a DAG G with bounded in-degree
and c-component size and a parameter € > 0, we design an algorithm that on getting access
to a CBN X defined over G, makes O(logn) interventions, uses O(n?/e*) samples per
intervention, runs in time O(n3 /€e*), and returns an oracle N that can efficiently compute
Px[V\ T | do(T =t)] forany T C V and t € XTI with error at most ¢ in TV distance.

The sample complexity of our testing algorithms matches the state-of-the-art for testing identity of
(standard) Bayes nets [DP17,[CDKS17]. Designing a goodness-of-fit tester using o(n) samples is a
very interesting challenge and seems to require fundamentally new techniques.

We also show that the number of interventions for C2ST (G, €) and CL(G, ¢€) is nearly optimal, even
in its dependence on the in-degree and c-component size, and even when the algorithms are allowed
to be adaptive. By ‘adaptive’ we mean the algorithms are allowed to choose the future interventions
based on the samples observed from the past interventions. Specifically,

Theorem 2. There exists a causal graph G on n vertices, with maximum in-degree at most d and
largest c-component size at most {, such that Q(|S|**=2 log n) interventions are necessary for any
algorithm (even adaptive) that solves C2ST(G, €) or CL(G, €), where ¥ is the alphabet set from
which the variables take values.

We make no assumptions about the distributions or the functional relationships, and we show that in
the worst case, the K@ bound, that appears in the number of interventions, is unavoidable. However,
with further assumptions, one can hope to reduce this number. For example, if the graph has no
hidden variables and each assignment to the parent sets occurs with large enough probability, access
to interventions is not necessary. Or if the mechanism relating each variable to its parents can be
modeled as a linear function, then a covering set of interventions is not needed.

1.2 Related Work

(A longer discussion of previous work on causality as well as on testing/learning distributions is in
Appendix [A]) There is a huge and old literature on causality, for both and learning testing causal
relationships that is impossible to detail here. To the best of our knowledge, though, most previous
work is on testing/learning only the causal graph, whereas our objective is to test/learn the entire
causal model (i.e., the set of all interventional distributions). In fact, many of our results assume that
the causal graph is already known; as discussed in Section[I.4] we hope that in future work, this
requirement can be relaxed.

Motivated by the problem of testing causal graphs, Tian and Pearl [TP02] derive functional constraints
among the distributions of observed variables (not just conditional independence relations) in a causal
Bayesian network over the graph. Kang and Tian [KTO06] derive such functional constraints on
interventional distributions. Although these results yield non-trivial constraints, it is not clear how to
use them for testing goodness-of-fit with statistical guarantees.

The problem of learning causal graphs has been extensively studied. [PV95, VP92, |SGS00,|ARSZ05|
Zha08|] give algorithms to recover the class of causal graphs consistent with given conditional in-
dependence relations in observational data. Subsequent work considered the setting when both
observational and interventional data are available. This setting has been a recent focus of study
[HB12al WSYU17, [YKUI1S], motivated by advances in genomics that allow high-resolution observa-
tional and interventional data for gene expression using flow cytometry and CRISPR technologies
[SPP*05, IMBS™ 15| IDPL*16]. [EGSO03, [Ebe07, [HB12b] derived the minimum number of inter-
ventional distributions that suffice to fully identify the underlying causal graphs when there are no
confounding variables. Recently, Kocaoglu et al. [KSB17/]] showed an efficient randomized algorithm
to learn a causal graph with confounding variables while minimizing the number of interventions
from which conditional independence relations are obtained.

From the perspective of query learning, learning circuits with value injection queries was introduced
by Angluin et al. [AACWO09]. The value injection query model is a deterministic circuit defined
over an underlying directed acyclic graph whose output is determined by the value of the output
node. [AACWO09] considers the problem of learning the outputs of all value injection queries (i.e.,
interventions) where the learner has oracle access to value injection queries with the objective of



minimizing the number of queries, when the size of alphabet set is constant. This was later generalized
to large alphabet and analog circuits in [AACROS) [Rey09].

All the works mentioned above assume access to an oracle that gives conditional independence
relations between variables in the observed and interventional distributions. This is clearly a problem-
atic assumption because it implicitly requires unbounded training data. For example, Scheines and
Spirtes [SSO8|| have pointed out that measurement error, quantization and aggregation can easily alter
conditional independence relations. The problem of developing finite sample bounds for testing and
learning causal models has been repeatedly posed in the literature. The excellent survey by Guyon,
Janzing and Scholkopf [GJS10] on causality from a machine learning perspective underlines the issue
as one of the “ten open problems” in the area. To the best of our knowledge, our work is the first to
show finite sample complexity and running time bounds for inference problems on CBNs.

An application of our learning algorithm is to the problem of transportability, studied in [BP13,ISPOS|
LH13|PB11,BP12], which refers to the notion of transferring causal knowledge from a set of source
domains to a target domain to identify causal effects in the target domain, when there are certain
commonalities between the source and target domains. Most work in this area assume the existence
of an algorithm that learns the set of all interventions, that is the complete specification of the source
domain model. Our learning algorithm can be used for this purpose; it is efficient in terms of time,
interventions, and sample complexity, and it learns each intervention distribution to error at most €.

1.3 Overview of our Techniques

In this section, we give an overview of the proof of Theorem [I]and the lower bound construction.
We start by making a well-known observation [TP02, [VP90] that CBNs can be assumed to be over a
particular class of DAGs known as semi-Markovian causal graphs. A semi-Markovian causal graph
is a DAG where every vertex corresponding to an unobservable variable is a root and has exactly two
children, both observable. More details of the correspondence are given in Appendix I}

In a semi-Markovian causal graph, two observable vertices V; and V5 are said to be connected
by a bi-directed edge if there is a common unobservable parent of V; and V5. Each connected
component of the graph restricted to bi-directed edges is called a c-component. The decomposition
into c-components forms a partition of the observable vertices, which gives very useful structural
information about the causal model. In particular, a fact that is key to our whole analysis is that if
N is a semi-Markovian Bayesian network on observable and unobservable variables V U U with
c-components Cy, ..., C,, then for any v € xIVvI;

Py[v] =[] Pxlei | do(V\ Ci = v\ )] (1

i=1

where Y is the alphabet set, c; is the restriction of v to C; and v \ ¢; is the restriction of v to V' \ C;
[TPOZ2]. Moreover, one can write a similar formula (Lemma[9) for an interventional distribution on
N instead of the observable distribution Ppr[v].

The most direct approach to test whether two causal Bayes networks X’ and ) are identical is to test
whether each interventional distribution is identical in the two models. This strategy would require
(I2] 4+ 1)™ many interventions, each on a variable set of size O(n), where n is the total number of
observable vertices. To reduce the number of interventions as well as the sample complexity, a natural
approach, given (1)) and its extension to interventional distributions, is to test for identity between
each pair of “local” distributions

Px[S | do(v \ s)] and Py[S | do(v \ s)]

for every subset S of a c-component C and assignment v \ s to V \ S. We assume that each
c-component is bounded, so each local distribution has bounded support. Moreover, using the
conditional independence properties of Bayesian networks, note that in each local distribution, we
only need to intervene on observable parents of S that are outside S, not on all of V' \ S.

Through a probabilistic argument, we efficiently find a small set I of covering interventions, which
are defined as a set of interventions with the following property: For every subset S of a c-component
and for every assignment pa(S) to the observable parents of S, there is an intervention I € I that does
not intervene on S and sets the parents of S to exactly pa(S). Our test performs all the interventions
in I on both X and ) and hence can observe each of the local distributions P [S | do(pa(S))] and



Py[S | do(pa(S))]. What remains is to bound A(X’, Y) in terms of the distances between each pair
of local distributions.

To that end, we develop a subadditivity theorem about CBNs, and this is the main technical contribu-
tion of our upper bound results. We show that if each pair of local distributions is within distance 7 in
squared Hellinger distance, then for any intervention /, applying I to X and ) results in distributions
that are within O(n~) distance in squared Hellinger distance, assuming bounded in-degree and
c-component size of the underlying graph. A bound on the total variation distance between the
interventional distributions and hence A(X', )) follows. The subadditivity theorem is inspired from
[DP17]), where they showed that for Bayes networks, “closeness of local marginals implies closeness
of the joint distribution”. Our result is in a very different set-up, where we prove “closeness of local
interventions implies closeness of any joint interventional distribution”, and requires a new proof
technique. We relax the squared Hellinger distance between the interventional distributions as the
objective of a minimization program in which the constraints are that each pair of local distributions
is y-close in squared Hellinger distance. By a sequence of transformations of the program, we lower
bound its objective in terms of -y, thus proving our result. In the absence of unobservable variables,
the analysis becomes much simpler and is sketched in Appendix B}

Regarding the lower bound, we prove that the number of interventions required by our algorithms are
indeed necessary for any algorithm that solves C2ST(G, €) or CL(G, ¢), even if the algorithms are
provided with infinite samples/time. For any algorithm that fails to perform some local intervention I,
we provide a construction of two models which do not agree on I and agree on all other interventions.
Our construction is designed in such a way that it allows adaptive algorithms. The idea is to show
an adversary that, for each intervention, reveals a distribution to the algorithm. Towards the end,
when the algorithm fails to perform some local intervention I, we can show a construction of two
models such that: i) both the models do not agree on I, and the total variation distance between
the interventional distributions is equal to one; ii) and for all other interventions, the interventional
distributions revealed by the adversary match with the corresponding distributions on both the models.
This, together with a probabilitic argument, shows the existence of a causal graph that requires
sufficiently large number of interventions to solve C2ST(G, €) and CL(G, ¢).

1.4 Future Directions

We hope that this work paves the way for future research on designing efficient algorithms with
bounded sample complexity for learning and testing causal models. For the sake of concreteness, we
list a few open problems.

e Interventional experiments are often expensive or infeasible, so one would like to deduce causal
models from observations alone. In general, this is impossible. However, in identifiable CBNs
(see [Tia02]), one can identify causal effects from observational data alone. Is there an efficient
algorithm to learn an identifiable interventional distribution from samples?’|

o A deficiency of our learning algorithm is that we assume the underlying causal graph is fully known.
Can our learning algorithm be extended to the setting where the hypothesis only consists of
some limited information about the causal graph (e.g., in-degree, c-component size) instead
of the whole graph? This seems to be a hard problem. In fact, it is open how to efficiently learn
the distribution given by a standard Bayesian network based on samples from it if we don’t know
the underlying graph [DP17,ICDKS17].

e Our goodness-of-fit algorithm might reject even when the input X is very close to the hypothesis
M. TIs there a tolerant goodness-of-fit tester that accepts when A(X', M) < ¢; and rejects
when A(X, M) > e; for 0 < ¢; < €2 < 1? Our current analysis does not extend to a tolerant
tester. The same question holds for testing goodness-of-fit for standard Bayesian networks.

e In many applications, causal models are described in terms of structural equation models, in
which each variable is a deterministic function of its parents as well as some stochastic error terms.
Design sample and time efficient algorithms for testing and learning structural equation

4Schulman and Srivastava [SS16] have shown that under adversarial noise, there exist causal Bayesian
networks on 1 nodes where estimating an identifiable intervention to precision d requires precision d+exp(n®*°)
in the estimates of the probabilities of observed events. However, this instability is likely due to the adversarial
noise and does not preclude an efficient sampling-based algorithm, especially if we assume a balancedness
condition as in [CDKS17].



models. Other questions such as evaluating counterfactual queries or doing policy analysis (see
Chapter 7 of [Pea09]) also present interesting algorithmic problems.

2 Testing and Learning Algorithms for SMBNs

We use SMCG and SMBN to denote semi-Markovian causal graph and semi-Markovian Bayesian
network respectively on V U U, observable and unobservable variables respectively. Let G4 ¢ denotes
the class of SMCGs with maximum in-degree at most d and largest c-component size at most
¢. For any subset S of observable variables, we use Pa(S) to denote the observable parents of S
(excluding S), and pa(S) to denote an assignment to Pa(S). More formal definitions can be found in

Appendix [C]
First we recall a fast and sample-efficient test for squared Hellinger distance from [DKW18]].

Lemma 1. [Hellinger Test, [DKWI8|]] Given O(min(D?/3/e3/3, D3/ /e?)) samples from each
unknown distributions P and @, we can distinguish between P = Q vs H*(P,Q) > €* with
probability at least 2/3. This probability can be boosted to 1 — § at a cost of an additional
O(log(1/6)) factor in the sample complexity. The running time of the algorithm is quasi-linear in
the sample size

We also need the notion of covering intervention sets:

Definition 1. A set of interventions 1 is a covering intervention set if for every subset S of every

c-component, and every assignment pa(S) € Y|P there exists an I € 1 such that, (i) No node in
S is intervened in I; (ii) Every node in Pa(S) is intervened; and (iii) I restricted to Pa(S) has the
assignment pa(S).

Our algorithms comprise of two key arguments.

e A procedure to compute a covering intervention set I of small size, given as Lemma 2] below.

e A sub-additivity result, shown in TheoremE], for CBNs that allows us to localize the distances:
where we show that two CBNs are far implies there exist a marginal distribution of some interven-
tion in I such that the marginals are far.

Lemma 2. (Counting Lemma) Let G € Gy be a SMCG with n vertices and ¥ be an alphabet set
of size K. Then, there exists a covering intervention set 1 of size O(K*(3d)*(logn + ¢dlog K)). If
the total degree of G is bounded by d, then there exists such an 1 of size O(K*4(3d)*4d?log K). In

both cases, there is an O(n) time algorithm to output 1.

Theorem 3. (Subadditivity Theorem) Let M and N be two SMBNGs defined on a known and common
SMCG G € Gqy. For a given intervention do(t), let V' \ T partition into C = {Cy,Cs,...,C,},
the c-components with respect to the induced graph G|V \ T). Suppose

H2(Pm[C; | do(pa(C;))], Px[C; | do(pa(Cy)))) < v Vj € [p],¥pa(C;) € % Pa(onl,(z)
Then
H? (Pu[V\T | do(t)], Py[V\ T | do(t)]) <e  VtexIT 3)

where € = | 3|4+,

The proof of Lemma [2] is shown in Appendix The subadditivity theorem is proved in Ap-
pendix [E.2]

Our main testing algorithm for C2ST (G, ¢) is shown below in Theorem E} which gives Theorem as
a corollary, since two sample tests are harder than one sample tests. We also provide 1) an algorithm

for C2ST(G, €) when G € G4 ¢ is unknown, and 2) an algorithm for CL(G, €). Both these algorithms
are similar to the below algorithm and can be found in Appendix D]

>The sample complexity here is an improvement of the previously known result of [DK16].



Theorem 4 (Algorithm for C2ST(G, €)). Let G be a SMCG € G, with n vertices. Let the
variables take values over a set X of size K. Then, there is an algorithm to solve C2ST(G, ¢),

that makes O(K*X(3d)logn) interventions to each of the unknown SMBNs X and Y, taking
O(K 47/ ne=2) samples per intervention, in time O(2¢ K‘(24+7/4)p2¢=2),

When the maximum degree (in-degree plus out-degree) of G is bounded by d, then our algorithm uses
O(K*(3d)"4d? log K) interventions with the same sample complexity and running time as above.

Proof of Theoremd} Our algorithm is described in Algorithm[I] The algorithm starts with a covering
intervention set I. Lemma gives an I with O(K*4(3d)*(log n+ ¢dlog K)) interventions., and when
the maximum degree is bounded by d, then the same lemma gives an I of size O(K*?(3d)*¢d? log K).

Algorithm 1: Algorithm for C2ST(G, €)
I: Covering intervention set

1. Under each intervention I € I:

(a) Obtain O(K*(4+7/4)ne=2) samples from the interventional distribution of
in both models X and ).

(b) For any subset S of a c-component of G, if I does not set S but sets Pa(S)
to pa(S), then using Lemma and the obtained samples, test (with error
probability at most 1/(3K%42°n)):

62
Px[S|do(pa(S))] = Py[S|do(pa(S))] vs H? ( Rt ) > e
Output “A(X,Y) > ¢ if the latter.

2. Output “X = ).

We will now analyze the performance of our algorithm.

Number of interventions, time, and sample requirements. The number of interventions is the size
of I, bounded above. The number of samples per intervention is given in the algorithm. The algorithm
performs n2¢ K‘® sub-tests. And for each such sub-test, the algorithm’s running time is quasi-linear

in the sample complexity (Lemma , therefore taking a total time of O(QZK L2d+7/4)p2e=2),

Correctness. In Theorem [3} we show that when A(X,)) > e, there exists a subset S of some
c-component, and an I € I that does not intervene any node in S but intervenes Pa(S) with some
assignment pa(s) such that

H?(Px[S | do(pa(S))], Py[S | do(pa(8))]) > €*/(2K**+Dn).

This structural result is the key to our algorithm. This, together with the fact that the TV distance
between two distributions is at most v/2 times their Hellinger distance, proves that Py and Py are
far in terms of the total variation distance. To bound the error probability, note that the number of
total sub-tests we run is bounded by K*“n2¢, and the error probability for each subset is at most
1/(3K*2"n), by the union bound, we will have an error of at most 1/3 over the entire algorithm. [

3 Lower Bound on Interventional Complexity

Recall that in Section [2] we provided non-adaptive algorithms for C2ST(G, €), and CL(G, ¢). In this
section we provide lower bounds on the number of interventions that any algorithm must make to
solve these problems. Our lower bounds nearly match the upper bounds in Theorem[d] and Theorem |8}
even when the algorithm is allowed to be adaptive (namely future interventions are decided based
upon the samples observed from the past interventions). In other words, these lower bounds show
that in general, adaptivity cannot reduce the interventional complexity.

Theorem 5. There exists a SMCG G € G4 4 with n nodes such that Q(K*~2log n) interventions
are necessary for any algorithm (even adaptive) that solves C2ST (G, €) or CL(G, ¢).



This theorem is proved via the following ingredients.

Necessary Condition. We obtain a necessary condition on the set of interventions I of any algorithm
that solves C2ST(G, €) or CL(G, ¢).

We will consider SMCGs G with a specific structure, and prove the necessary condition for these
graphs: The vertices of GG are the union of two disjoint sets A, and B, such that G contains directed
edges from A to B, and bidirected edges within B. Further, all edges in G are one of these two types.
The next lemma is for graphs with this structure.

Lemma 3. Suppose an adaptive algorithm uses a sequence of interventions I to solve C2ST (G, €)

or CL(G,¢). Let C C B be a c-component of G. Then, for any assignment pa(C) € XIP2(C)l there
is an intervention I € I such that the following conditions hold:

C1. I intervenes Pa(C) with the corresponding assignment ofpa(C),E]

C2. I does not intervene on any node in C.

Existence. We then show that there is a graph with the structure mentioned above for which I must
be Q(K*2logn) in order for the condition to be satisfied. More precisely,

Lemma 4. There exists a G, and a constant ¢ such that for any set of interventions I with |I| <
c- K*=21ogn, there is a C C B, which is a c-component of G, and an assignment pa(C) such that
no intervention in 1

e assigns pa(C) ro Pa(C), and
e observes all variables in C.

Combining these two lemmas, we obtain the lower bound for the adaptive versions of C2ST(G, €)
and CL(G, €). The proofs of Lemmas [3|and [4] are described in Appendix [F}
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