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Abstract

Domain-independent probabilistic planners input an MDP description in a factored
representation language such as PPDDL or RDDL, and exploit the specifics of
the representation for faster planning. Traditional algorithms operate on each
problem instance independently, and good methods for transferring experience
from policies of other instances of a domain to a new instance do not exist. Recently,
researchers have begun exploring the use of deep reactive policies, trained via deep
reinforcement learning (RL), for MDP planning domains. One advantage of deep
reactive policies is that they are more amenable to transfer learning.
In this paper, we present the first domain-independent transfer algorithm for MDP
planning domains expressed in an RDDL representation. Our architecture exploits
the symbolic state configuration and transition function of the domain (available
via RDDL) to learn a shared embedding space for states and state-action pairs for
all problem instances of a domain. We then learn an RL agent in the embedding
space, making a near zero-shot transfer possible, i.e., without much training on the
new instance, and without using the domain simulator at all. Experiments on three
different benchmark domains underscore the value of our transfer algorithm. Com-
pared against planning from scratch, and a state-of-the-art RL transfer algorithm,
our transfer solution has significantly superior learning curves.

1 Introduction

The field of domain-independent planning designs planners that can be run for all symbolic planning
problems described in a given input representation. The planners use representation-specific algo-
rithms, thus allowing themselves to be run on all domains that can be expressed in the representation.

Two popular representation languages for expressing probabilistic planning problems are PPDDL,
Probabilistic Planning Domain Description Language [Younes et al., 2005], and RDDL, Relational
Dynamic Influence Diagram Language [Sanner, 2010]. These languages express Markov Decision
Processes (MDPs) with potentially large state spaces using a factored representation. Most traditional
algorithms for PPDDL and RDDL planning solve each problem instance independently are not able
to share policies between two or more problems in the same domain [Mausam and Kolobov, 2012].

Very recently, probabilistic planning researchers have begun exploring ideas from deep reinforcement
learning, which approximates state-value or state-action mappings via deep neural networks. Deep
RL algorithms only expect a domain simulator and do not expect any domain model. Since the
RDDL or PPDDL models can always be converted to a simulator, every model-free RL algorithm is
applicable to the MDP planning setting. Recent results have shown competitive performance of deep
reactive policies generated by RL on several planning benchmarks [Fern et al., 2018, Toyer et al.,
2018].

Because neural models can learn latent representations, they can be effective at efficient transfer from
one problem to another. In this paper, we present the first domain-independent transfer algorithm for
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MDP planning domains expressed in RDDL. As a first step towards this general research area, we
investigate transfer between equi-sized problems from the same domain, i.e. those with same state
variables, but different connectivity graphs.

We name our novel neural architecture, TORPIDO – Transfer of Reactive Policies Independent of
Domains. TORPIDO brings together several innovations that are well-suited to symbolic planning
problems. First, it exploits the given symbolic (factored) state and its connectivity structure to
generate a state embedding using a graph convolutional network [Goyal and Ferrara, 2017]. An RL
agent learnt over the state embeddings transfers well across problems. One of the most important
challenges for our model are the actions, which are also expressed in a symbolic language. The same
ground action name in two problem instances may actually mean different actions, since the state
variables over which the action is applied may have different interpretations. As a second innovation,
we train an action decoder that learns the mapping from instance-independent state-action embedding
to an instance-specific ground action. Third, we make use of the given transition function by training
an instance-independent model of domain transition in the embedding space. This gets transferred
well and enables a fast learning of action decoder for every new instance. Finally, as a fourth
innovation, we also implement an adversarially optimized instance classifier, whose job is to predict
which instance a given embedding is coming from. It helps TORPIDO to learn instance-independent
embeddings more effectively.

We perform experiments across three standard RDDL domains from IPPC, the International Proba-
bilistic Planning Competition [Grzes et al., 2014]. We compare the learning curves of TORPIDO
with A3C, a state of the art deep RL engine [Mnih et al., 2016], and Attend-Adapt-Transfer (A2T),
a state of the art deep RL transfer algorithm [Rajendran et al., 2017]. We find that TORPIDO has
a much superior learning performance, i.e, obtains a much higher reward for the same number of
learning steps. Its strength is in near-zero shot learning – it can quickly train an action decoder for a
new instance and obtains a much higher reward than baselines without running any RL or making
any simulator calls. To summarize,

1. We present the first domain-independent transfer algorithm for symbolic MDP domains
expressed in RDDL language.

2. Our novel architecture TORPIDO uses the graph structure and transition function present in
RDDL to induce instance-independent RL, state encoder and other components. These can
be easily transferred to a test instance and only an action decoder is learned from scratch.

3. TORPIDO has significantly superior learning curves compared to existing transfer algo-
rithms and training from scratch. Its particular strength is its near-zero shot transfer – transfer
of policies without running any RL.

We release the code of TORPIDO for future research.1

2 Background and Related Work

2.1 Reinforcement Learning

In its standard setting, an RL agent acts for long periods of time in an uncertain environment and
wishes to maximize its long-term return. Its dynamics is modeled via a Markov Decision Process
(MDP), which takes as input a state space S, an action space A, unknown transition dynamics Pr,
and an unknown reward function R [Puterman, 1994]. The agent in state st at time t takes an action
at to get a reward rt and make a transition to st+1 via its MDP dynamics. The h-step return Rt:t+h is
defined as the discounted sum of rewards,

∑h
i=1 γ

i−1rt+i. The value function Vπ(s) is the expected
(infinite step) discounted return from state s if all actions are selected according to policy π(a|s).
The action value function Qπ(s, a) is the expected discounted return after taking action a in state s
and then selecting actions according to π(a|s) thereafter.

Deep RL algorithms approximate policy [Williams, 1992] or value function [Mnih et al., 2015] or
both [Mnih et al., 2016] via a neural network. Our work builds upon the Asynchronous Advantage
Actor-Critic (A3C) algorithm [Mnih et al., 2016], which constructs approximations for both the

1Available at https://github.com/dair-iitd/torpido
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policy (using the ‘actor’ network) and the value function (using the ‘critic’ network). The param-
eters of the critic network are adjusted to maximize the expected reward by using the gradient of
the ‘advantage’ function, which measures the improvement of the action over the expected state
value A(s, a) = Q(s, a) − V (s). Hence the update to the critic network is the expectation of
∂
∂θ logπ(a|s)(Qπ(s, a; θ)− V (s; θ)). The actor network maximizes the H-step lookahead reward by
minimizing the expectation of mean squared loss, (Rt:t+H + γHV (st+H+1; θ−)− V (st; θ))

2. Here,
the optimization is with respect to θ, the cumulative parameters in both actor and critic networks, and
θ− are their previous values. Furthermore, many instances of the agent interact in parallel with many
instances of the environment, which both accelerates and stabilizes learning in A3C.

Transfer Learning in Deep RL: Neural models are highly amenable for transfer learning, because
they can learn generalized representations. Initial approaches to transfer learning in deep RL involved
transferring the value function or policies from the source to the target task. More recent methods
have developed these ideas further, for example, by using expert policies from multiple tasks and
combining them with source task features to learn an actor-mimic policy [Parisotto et al., 2015],
or by using a teacher network to propose a curriculum over tasks for effective multi-task learning
[Matiisen et al., 2017]. A preliminary approach has also used a symbolic front-end for deep RL
[Garnelo et al., 2016]. We compare our transfer algorithm against a recent algorithm that uses an
attention mechanism to allow selective transfer and avoid negative transfer [Rajendran et al., 2017].

Recently, there have also been attempts at performing a zero-shot transfer, i.e., without seeing the
new domain. An example is DARLA [Higgins et al., 2017], which leverages the recent work on
domain adaptation to learn a domain-independent representation of the state, and learns a policy over
this state representation, hence making the learned policy robust to domain shifts. Our work attempts
a near-zero shot learning by learning a good policy with limited learning, and without any RL.

2.2 Probabilistic Planning

Planning problems are special cases of RL problems in which the transition function and reward
function are known [Mausam and Kolobov, 2012]. In this work, we consider planning problems
that model finite-horizon discounted reward MDPs with a known initial state [Kolobov et al., 2012].
Thus, our problems take as input 〈S,A, Pr,R,H, s0, γ〉, where H is the horizon for the problem.
Probabilistic planners can use the model to perform a full Bellman backup, i.e., expectation over all
next outcomes from an action (e.g., in Value Iteration [Bellman, 1957]), whereas RL agents can only
backup from a single sampled next state (e.g., in Q Learning [Sutton and Barto, 1998]).

Factored MDPs provide a more compact way to represent MDP problems. They decompose a
state s into a set of n binary state variables (x1, x2, . . . , xn); the transition function specifies the
change in each state variable, and the reward function also uses a factored representation. Solving a
finite-horizon factored MDP is EXPTIME-complete, because it can represent an MDP exponential
states in polynomial size [Littman, 1997].

RDDL Reprentation: RDDL describes a factored MDP via objects, predicates and functions. It is a
first-order representation, i.e., it can be initiated with a different set of objects to construct MDPs from
the same domain. A domain has parameterized non-fluents to represent the part of the state space that
does not change. A planning state needs those state variables that can change via actions or natural
dynamics. They are represented as parameterized fluents. The transition function for the system is
specified via (stochastic) functions over next state variables conditioned on current state variables
and actions. The reward function is also defined in the factored form using the state variables.

We illustrate the RDDL language via the SysAdmin domain [Guestrin et al., 2001], which consists
of a set of K computers connected in a network. Each computer in the network can be shut down
with a probability dependent on the ratio of its ‘on’ neighbours to total number of neighbours. Any
‘off’ computer can randomly switch on with a reboot probability. The agent can take the action
of rebooting a single computer, or no action at all in each time step. Note that no-op is also a
valid action as this domain would evolve even if the agent does not take any action. The reward
at each timestep is the number of ‘on’ computers at that timestep. The natural structure of the
problem, and the factored nature of the transition and reward function make this problem perfectly
suited to be represented in RDDL as follows. Objects: c1, ...cK , the K computers; Non fluents:
connected(cj , ci), whose value is 1 if cj is a neighbor of ci; State fluents: on(ci), which is 1 if the ith

computer is on; Action fluents: reboot(ci), which denotes that the agent rebooted the ith computer;
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Reward function: Σi[on(ci)]; Transition function: If reboot(ci), then on′(ci) = 1, Else if on(ci) then
on′(ci) = Bernoulli(a+b×(1+Σj1[connected(cj , ci)∧on(cj)])/(1+Σj1[connected(cj , ci)])),
Else on′(ci) = Bernoulli(d). Here all primed fluents denote the value at the next time step, and a,
b, and d are constants modeling the dynamics of the domain.

Deep Learning for Planning: Value Iteration Networks formalize the idea of running the Value
Iteration algorithm within the neural model [Tamar et al., 2017], however, they operate on the state
space, instead of factored space. There have been three recent works on the use of neural architectures
for domain-independent factored MDP planning. One work learns deep reactive policies by using a
network that mimics the local dependency structure in the RDDL representation of the problem [Fern
et al., 2018]. We are also interested in problems specified in RDDL, but are more focused on transfer
across problem instances. There also has been an early attempt on transfer in planning problems,
for two specific classical (deterministic) domains of TSP and Sokoban [Groshev et al., 2018]. In
contrast, we propose a transfer mechanism that can be used for domain-independent RDDL planning.
Finally, Action-Schema Nets use layers of propositions and actions for solving and transferring
between goal-oriented PPDDL planning problems [Toyer et al., 2018]. RDDL allows concurrent
conditional effects, which when converted to PPDDL can lead to exponential blowup in the action
space. Therefore, ASNets are not scalable to RDDL domains considered in this paper.

2.3 Graph Convolutional Networks

Graph Convolutional Networks (GCN) generalize convolutional networks to arbitrarily structured
graphs [Goyal and Ferrara, 2017]. A GCN layer take as input a feature representation for every node
in the graph (M ×DI feature matrix, where M is the number of nodes in the graph, and DI is the
input feature dimension), and a representation for the graph structure (an M ×M adjacency matrix
A), and produces an output feature representation for every node (in the form of an M ×DO matrix,
where DO is the output feature dimension). A layer of GCN can be written as F (l+1) = g(F (l), A).
where F (l) and F (l+1) are the feature representations for lth and (l + 1)th layers.

We use this propagation rule (from [Kipf and Welling, 2017]) in our work: g(F (l), A)) =

σ(D̂−12ÂD̂−12F (l)W (l)), where Â = A + I , I being the identity matrix, and D̂ is the diago-
nal node degree matrix of Â. Intuitively, this propagation rule implies that the feature at a particular
node of the (l+ 1)th layer is the weighted sum of the features of the node and all its neighbours at the
lth layer. Furthermore, these weights are shared at all nodes of the graph, similar to how the weights
of a CNN kernel are shared at all locations of the image. Hence, at each layer, the GCN expands its
receptive field at each node by 1. A deep GCN network, i.e., a network consisting of stacked GCN
layers, can therefore have a large enough receptive field and construct good feature representations
for each node of a graph.

3 Problem formulation

The transfer learning problem is formulated as follows. We wish to learn the policy of the target prob-
lem instance PT , where in addition to PT , we are given N source problem instances P1, P2, ..., PN .
For this paper, we make the assumption that the state, action spaces and rewards of all problems is
the same, even though their initial state, and non-fluents could be different. For example, computers
in SysAdmin may be arranged in different topologies (based on different values of non-fluents
connected). Any transfer learning solution will operate in two phases: (1) Learning phase: Learn
policies π1, π2, ..., πN over each source problem instance, and possibly also learn general representa-
tions that will help in transfer. (2) Transfer phase: Learn the policy πT for PT using all output of
the learning phase.

An ideal zero-shot transfer approach will be one where the target instance environment will not even
be used during the transfer phase. Two indicators of good transfer are a high pre-train (zero-shot
transfer) score, and a more sample-efficient learning compared to a policy learnt from scratch on PT .

4 Transfer Learning framework

Our approach hinges on the claim that there exists a ‘good’ embedding space for all states, as well as
a ‘good’ embedding space of all state-action pairs, which is shared by all equi-sized instances of a
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given domain. A ‘good’ state embedding space is a space in which similar states are close together
and dissimilar states are far apart (similarly for state-action pair embeddings).

Our neural architecture is shown in Figure 1. Broadly, our architecture has five components: a state
encoder (SE), an action decoder (SAD), an RL module (RL), a transition module (Tr), and an instance
classifier (IC). In the training phase, TORPIDO learns instance-independent modules for SE, RL, Tr
and IC, but an instance-specific SADI (for PI ). Its transfer phase operates in two steps. First, using
the general SE and Tr models, it learns weights for SADT , the target action decoder. We call this
near-zero shot learning, because this can compute a policy πT for PT without running any RL. Once,
this SADT is effectively trained, we transfer all other components and retrain them via RL to improve
the policy further for the target instance.

State Encoder: We leverage the structure of RDDL domains to represent the instance in the form
of a graph (state variables as nodes, edges between nodes if the respective objects are connected
via the non-fluents in the domain). The state encoder takes the adjacency matrix for the instance
graph and the current state as input, and transforms the state to its embedding. We use the Graph
Convolution Network (GCN) to perform this encoding. The GCN constructs multiple features for
each node at each layer. Hence, the output of the deep GCN consists of multi-dimensional features at
each node, which represent embeddings for the corresponding state variables. These embeddings are
concatenated to produce the final state embedding, which is the output of the state encoder module.

RL Module: This deep RL agent takes in a state embedding as input and outputs a policy in the
form of a state-action embedding. This embedding is an abstract representation of a soft action, i.e., a
distribution over actions in the embedding space (which will be further decoded by action encoder).
We think of this embedding as representing the pair of state and soft action, instead of just a soft
action. This is because the same action may have different effects depending on the state, and hence
a standalone action embedding would not make sense. This can be seen as a neural representation
for the notion of state-action pair symmetries in RL domains [Anand et al., 2015, 2016]. We use the
A3C algorithm to learn our RL agent, because it has been shown to be robust and stable [Mnih et al.,
2016], though other RL variants can easily replace this module. A3C uses a simulator, which can be
easily created by sampling from the known transition function in the RDDL representation.

We note that only the policy network of the A3C agent is shared between instances and operates in the
embedding space. The value network is different for each instance and operates in the original state
space. We did not try to learn a transferable value function as we were ultimately only concerned
with the policy, and not the value in the target domain. Hence, in our case, the sole purpose of the
value function is to assist the policy function in learning a good policy.

Action decoder: The action decoder aims to learn a transformation from the state-action embedding
to a soft action (probability distribution over actions). However, such a transformation would not be
well-defined, as a state-action embedding could correspond to more than one (symmetric) state-action
pairs, and hence more than one corresponding actions. E.g., consider a navigation problem over a
square grid [Ravindran, 2004], with the goal at top-right corner. Its immediate neighbors (the state to
the left say s1, and state below, say s2) will be symmetric as they both can reach the goal in one step.
We expect them to have the same state-action pair embedding with their respective optimal actions.
However, the optimal actions are "right" for s1 and "up" for s2.

To resolve this ambiguity, we need to input the state as well into the action decoder. The decoder
outputs a probability distribution over actions π(s). TORPIDO implements the action decoder using
a fully connected network with a softmax to output a distribution over actions. It is important to
realize that we need a separate action decoder for each instance, as the required transformation is
different for different instances. For example, if the navigation problem is changed so that the goal is
now in the lower left corner, all other embeddings may transfer, but the final action output will be
different ("down" and "left" for states symmetric to s1 and s2). Action decoder is the only component,
which cannot be directly transferred from source problems to the target problem.

Transition Transfer Module: To speed up the transfer to the target domain, we additionally learn
a transition module in the learning phase. This module takes in as input the current and next state
embeddings (s, s′), and outputs a soft-action embedding (interpreted as a distribution over actions),
with the semantics that the output distribution p(a) = Pr(s,a,s′)∑

a′ Pr(s,a′,s′)
. I.e., the output embedding

maintains which action is more likely to be responsible for the transition from s to s′. The gold data
for training this module can be easily computed via the RDDL representation. Note that the transition
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Figure 1: Model architecture for TORPIDO. The architecture is divided into three phases: training phase,
transfer phase (learning SADT ) and transfer phase (full transfer). The figure shows training of ith problem –
this is replicated N times with shared SE, Tr, RL and IC modules. The same color boxes have same weights
during each step. Across different steps the same color boxes signify that they have been initialized from previous
step. The red color outline signifies that those weights are being trained in that step.

and RL module share both the state and state-action embedding spaces. This novel module allows us
to quickly learn an action decoder, thus allowing a near-zero shot transfer to take place.

Instance classifier: TORPIDO’s aim is to learn state-action embeddings independent of the instance
(since they are shared between all instances). To explicitly enforce this condition, we use an idea from
domain adaptation [Ganin et al., 2017]. Essentially, as an auxiliary task, we try to learn a classifier to
predict the problem instance, given a state-action embedding. This is done in an adversarial manner,
so that the model learns to produce such state-action embeddings, that even the best possible classifier
is unable to predict the instance from which they were generated. In the ideal case, at equilibrium,
the model learns to produce state-action embeddings which are instance invariant, as even the best
instance classifier would predict an equal probability over all source instances.

4.1 TORPIDO’s Training & Transfer Phases

Learning Phase: During the learning phase, we learn a policy over each of the N problem instances
in a multi-task manner by sharing the state encoder and RL module, and by using separate decoders
for each instance. We also learn the transition function to predict the distribution of actions given
consecutive states. The instance invariance is implemented using a gradient reversal layer, as in [Ganin
et al., 2017]. I.e., the gradients for the instance classification loss are back-propagated in the standard
manner through the instance classifier layer, but with their sign reversed in all the layers preceding the
state-action embedding (hence enforcing the adversarial objective function of the game described).
The loss function for training is a weighted sum of the policy gradient loss of A3C, a cross-entropy
loss for prediction of the actions given consecutive states (from the transition module), and the
instance misclassification loss, i.e., the cross entropy loss from the instance module with sign reversed.
The instance classification module is trained to minimize the cross-entropy loss between the predicted
instance distribution and ground-truth instance. Mathematically, E(θE , θD1, ..., θDN , θIC , θT ) =

N∑
i=1

Lp(θE , θDi)− λ
N∑
i=1

Lc(θE , θIC) + λtr

N∑
i=1

Ltr(θE , θDi, θtr) (1)

where N is the number of training instances, Lp is the loss function of the policy network of
the A3C agent, Lc is the cross-entropy loss for the instance classifier and Ltr is cross-entropy
loss for transition module. Here θE represent the combined parameters of the encoder and RL
module, θDi, i = 1...N represents the parameters of the decoder module of the ith agent, θIC
represents the parameters of the instance classifier module and θtr represents parameters of tran-

6



Table 1: Comparison of TORPIDO against other baselines, stopped at 4 different iteration numbers.

Train iter 0 0.1M 0.5M ∞
Algo A3C A2T TP A3C A2T TP A3C A2T TP A3C A2T TP
Sys#1 0.00 0.08 0.23 0.01 0.09 0.26 0.11 0.19 0.39 0.31 0.38 1.0
Sys#5 0.00 0.02 0.26 0.03 0.11 0.30 0.08 0.17 0.64 0.30 0.40 1.0
Sys#10 0.02 0.06 0.26 0.04 0.09 0.33 0.08 0.13 0.49 0.32 0.33 1.0
Game#1 0.00 0.19 0.34 0.04 0.22 0.49 0.43 0.60 0.98 0.54 0.61 1.0
Game#5 0.00 0.03 0.41 0.11 0.11 0.55 0.24 0.17 0.77 0.40 0.44 1.0
Game#10 0.07 0.05 0.34 0.03 0.08 0.49 0.08 0.14 0.88 0.20 0.20 1.0
Navi#1 0.00 0.04 0.72 0.01 0.04 0.72 0.10 0.19 0.9 0.22 0.25 1.0
Navi#2 0.00 0.01 0.68 0.05 0.06 0.73 0.26 0.45 1.0 0.55 0.56 1.0
Navi#3 0.00 0.01 0.50 0.03 0.03 0.60 0.21 0.42 0.71 0.40 0.40 1.0

Figure 2: Learning curves on 1st problem of the three domains: (a) SysAdmin, (b) Game of Life, (c)
Navigation. In all cases TORPIDO outperforms other baselines by wide margins.

sition module. We are seeking parameters θ∗E , θ∗Di, and θ∗IC that deliver a saddle point of the
functional such that (θ∗E , θ

∗
D1, ..., θ

∗
DN ) = argmin{θE ,θD1,...,θDN}E(θE , θD1, ..., θDN , θIC) and

θ∗IC = argmax {θIC}E(θE , θD1, ..., θDN , θIC).

Transfer Phase: During this phase, the state encoder requires simply inputting the adjacency matrix
of the target instance and it directly outputs state embeddings for this problem using SE. Since our
RL agent operates in the embedding space, it is exactly the same for the target instance, and, hence,
is directly transferred. However, an action decoder needs to be relearnt. For this, we make use of the
fact that the transition function also operates only in the embedding space, so can also be directly
transferred. For the target instance, we try to predict the distribution over actions given consecutive
states in the new instance. The weights for the state encoder and transition module remain fixed,
while the weights for the decoder for the new instance are learned. This decoder can then be directly
used to transform the state-action embeddings predicted by the RL module into a distribution over
actions, or a policy for the new instance. Hence, we are able to achieve a near zero-shot transfer, i.e.,
without doing any RL in the new environment and by simply retraining action encoder via transition
transfer. After the weights of each module have been initialized as above, TORPIDO follows the
same training procedure as in A3C. This generates the learning curve, post the zero-shot transfer.

In summary, this architecture leverages the extra information in RDDL domains in two ways: (i) it
uses the input structure to represent the state as a graph, and uses a GCN to learn a state embedding
(ii) it uses the transition function (available in the RDDL file) to learn the decoder for the new domain.

5 Experiments

We wish to answer three experimental questions. (1) Does TORPIDO help in transfer to new problem
instances? (2) What is the comparison between TORPIDO and other state of the art transfer learning
frameworks? (3) What is the importance of each component in TORPIDO?

Domains: We make all comparisons on three different RDDL domains used in IPPC, International
Planning Competition 2014 [Grzes et al., 2014] – SysAdmin, Game of Life and Navigation. We have
already described the SysAdmin domain [Guestrin et al., 2001] in background section. The Game
of Life represents a grid-world cellular automata, where each cell is dead or alive. Each alive cell
continues to live in next step as long as there is no over- or under-population (measured by number

7



Table 2: Incremental value of each component of TORPIDO at the start of the training (zero-shot).

A3C+GCN A3C+GCN + SAD A3C+GCN + SAD + IC
Sys#1 0.01 0.25 0.23
Sys#5 0.01 0.23 0.26
Sys#10 0.01 0.22 0.26
Game#1 0.03 0.31 0.34
Game#5 0.02 0.26 0.41
Game#10 0.01 0.24 0.34
Navi#1 0.05 0.70 0.72
Navi#2 0.03 0.59 0.68
Navi#3 0.01 0.27 0.50

Figure 3: Incremental value of various components of TORPIDO. Results on 2nd problem of the
three domains: (a) SysAdmin, (b) Game of Life, (c) Navigation. In all cases state-action decoder is
critical for good performance. The instance classifier has marginal benefits.

of adjacent live cells). Additionally, the agent can make any one cell alive in each step. Finally, the
Navigation domain requires a robot to move in a grid from one location to the other using four actions
– up, down, left and right. There is a river in the middle and the robot can drown with a non-zero
probability in each location. If it drowns, it restarts from the start state in the next episode and current
episode is over.

All three of these domains have some spatial structure, but that is implicit in the symbolic description
(exposed via non-fluents in RDDL). This makes them ideal choices for a first study of its kind. For
each domain we perform experiments on three different instances. A higher numbered problem
roughly corresponds to a problem with much larger state space. For example, SysAdmin1 has 10
computers and SysAdmin10 has 50 computers (effective state space sizes 210 and 250 respectively).

Experimental Settings and Comparison Algorithms: In the spirit of domain-independent plan-
ning, all hyperparameters are kept constant for all problems in all domains. Our parameters are as
follows. A3C’s value network as well as policy network use two GCN layers (3, 7 feature maps) and
two fully connected layers. The action decoder implements two fully connected layers. All layers use
the exponential linear unit (ELU) activations [Clevert et al., 2015]. All networks are trained using
RMSProp with a learning rate of 5e−5. For TORPIDO, we set N = 4, i.e., the training phase uses
four source problems. Random problems are generated for training using the generators available
for each domain. All weights of GCN of policy network, and the RL module of policy network are
shared.

We implement two baseline algorithms for comparison. First, we implement a base non-transfer
algorithm, A3C. This is chosen since TORPIDO uses A3C as its RL agent. Thus, this comparison
will directly show the value of transfer. We also implement a state of the art RL transfer solution
called A2T – Attend, Adapt and Transfer [Rajendran et al., 2017], which retrains while using attention
over the learned source policies for selective transfer. It also uses the same four problems as source
as in TORPIDO. This comparison will expose the specific value of our transfer mechanism, which
uses the RDDL representation, compared to a representation-agnostic transfer mechanism.

Evaluation Metrics: First, we output learning curves. For that we stop training after a set number
of training iterations (say i) and estimate the return from the current policy Vπ(i) by simulating it till
the horizon specified in the RDDL file. The reported values are an average of 100 such simulations.
Moreover, we also report the metric α(i), where α(i) = (Vπ(i)− Vinf )/(Vsup − Vinf ). Here Vinf
and Vsup respectively represent the lowest and the highest values obtained on this instance (by any
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algorithm at any time in training). Since α is a ratio, it acts as an indicator of the training ’stage’ of
the model, and hence helps to understand the transfer process as it progresses in time, irrespective of
the starting (random) reward and the final reward for the model. Moreover, α(0) acts as a measure of
(near) zero-shot transfer.

5.1 TORPIDO’s Transfer Ability

We first measure the ability of the model to transfer knowledge across problem instances. We compare
against all baselines. Figure 2 compares the learning curves of TORPIDO with the two baselines on
one problem each of the three domains (error bars are 95% confidence intervals over ten runs). The
results on the other problems are quite similar. The x-axis is RL training time on the target instance,
which for TORPIDO also includes the time for training of action decoder. First, we find that A3C
is not very competitive with even A2T in its learning. This suggests that transfer is quite valuable
for these problems. We also find that A2T itself has substantially worse performance compared
to TORPIDO. We attribute this to the various components in TORPIDO that exploit the domain
knowledge expressed in RDDL representation.

In Table 1 we show the comparisons between these algorithms at four different training points. We
report the α values, as described above. We find that TORPIDO is vastly ahead of all algorithms at
all times, underscoring the immense value our architecture offers.

5.2 Ablation Study

In order to understand the incremental contribution of each of our components we compare three
different versions of TORPIDO. The first version is A3C+GCN. This version only performs state
encoding but does not perform any action decoding. Our next version is A3C+GCN+SAD, which
incorporates the action decoding (and also transition transfer module to aid action decoding). Finally,
our full system adds an IC to previous name – it includes the instance classification component.

Figure 3 shows the learning curves for the three problems. We observe that use of GCN helps the
algorithm converge to a high final score. Comparing this to vanilla A3C and A2T in Figure 2, we
learn that the use of GCN is critical in exposing the structure of the domain to the RL agent, helping
it in learning a final good policy. However, the zero-shot nature of the transfer is very weak, because
the action names may be different in the source and target. Use of action-decoder and transition
transfer speeds up the near zero-shot transfer immensely. This can be observed from Table 2, which
compares these algorithms before starting the RL training. We see a huge jump in α for the model
with action decoder compared to the one without it. Finally, Table 2 suggests that the improvement of
instance classification in the beginning is significant. However, very soon the incremental benefit is
reduced; final TORPIDO performs only marginally better than the A3C+GCN+SAD version.

6 Conclusions

We present the first domain-independent transfer algorithm for transferring deep RL policies from
source probabilistic planning problems (expressed in RDDL language) to a target problem from
the same domain.2 Our algorithm TORPIDO combines a base RL agent (A3C) with several novel
components that use the RDDL model: state encoder, action decoder, transition transfer module
and instance classifier. Only action decoder needs to be re-learnt for a new problem; all the other
components can be directly transferred. This allows TORPIDO to perform an effective transfer
even before the RL starts, by quickly retraining the action decoder using the given RDDL model
(near zero-shot learning). Experiments show that TORPIDO is vastly superior in its learning curves
compared to retraining from scratch as well as a state-of-the-art RL transfer method. In the future,
we wish to extend this to transfer across problem sizes, and later transfer across domains.
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