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Abstract

Neural networks are known to model statistical interactions, but they entangle the
interactions at intermediate hidden layers for shared representation learning. We
propose a framework, Neural Interaction Transparency (NIT), that disentangles the
shared learning across different interactions to obtain their intrinsic lower-order
and interpretable structure. This is done through a novel regularizer that directly
penalizes interaction order. We show that disentangling interactions reduces a
feedforward neural network to a generalized additive model with interactions,
which can lead to transparent models that perform comparably to the state-of-the-
art models. NIT is also flexible and efficient; it can learn generalized additive
models with maximum K-order interactions by training only O(1) models.

1 Introduction

Feedforward neural networks are typically viewed as powerful predictive models possessing the
ability to universally approximate any function [13]. Because neural networks are increasingly used
in critical domains, including healthcare and finance [2, 22, 9, 5, 30], there is a strong desire to
understand how they make predictions. One of the key issues preventing neural networks from being
visualizable and understandable is that they assume the variable relationships in data are extremely
high-dimensional and complex [23]. Specifically, each hidden neuron takes as input all nodes from
the previous layer and creates a high-order interaction between these nodes.

A fundamental challenge facing the interpretability of neural networks is the entangling of feature
interactions within the networks. An interaction is entangled in a neural network if any hidden unit
learns an interaction out of separate true feature interactions. For example, suppose that a feedforward
neural network is trained on data consisting of two multiplicative pairwise interactions, x1x2 and
x3x4. The neural network entangles the interactions if any hidden unit learns an interaction between
all four variables {1, 2, 3, 4}. Figure 1 shows how this interaction entangling is generally true.
Although a relatively small percentage of hidden units in the first hidden layer entangle the pairwise
interactions, as soon as the second hidden layer, nearly all hidden units entangle the interactions when
at least one of them is present. Previous works have studied how to disentangle factors of variation
in neural networks [4, 18, 14], but none of them have addressed the entangling of interactions. It
remains an open problem of how to learn an interpretable neural network by disentangling feature
interactions.

In this work, we propose the Neural Interaction Transparency (NIT) framework to learn interpretable
feedforward neural networks. NIT learns to separate feature interactions within the neural network by
novel use of regularization. The framework corresponds to reducing a feedforward neural network into
a generalized additive model with interactions [20, 2], which can lead to an accurate and transparent
model [30, 29]. By disentangling interactions, we are able to learn this exact model faster, and it is
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Figure 1: A demonstration of interaction entangling in a feedforward neural network. When trained
on a simple dataset generated by x1x2 + x3x4 under common forms of regularization, the neural
network tends to keep the interactions separated in the first hidden layer but entangles them in the
second layer. In contrast, NIT (black and cyan) is able to fully disentangle the interactions. The
meaning of entangling is detailed in §3.

visualizable. Our framework is flexible to disentangle interactions up to a user-specified maximum
order. Our contributions are as follows: 1) we demonstrate that feedforward neural networks entangle
interactions under sparsity regularization, 2) we develop a novel architecture and regularization
framework, NIT, for disentangling the interactions to be order K at maximum, and 3) we construct a
generalized additive model with interactions by training only O(1) models.

2 Related Works and Notations

In this section, we briefly discuss related literature on interpretability and disentanglement in neural
networks, and generalized additive models.

Interpretability: Various methods [7, 11, 23, 27, 3, 31, 29] exist to interpret feedforward neural
networks; however, none so far has attempted to learn or uncover a generalized additive model with
interactions as a subset of a feedforward network with fully-connected layers. The closest work to
our proposed framework is recent research on detecting statistical interactions from the weights of
a feedforward network [31]. Because this research only extracted interactions created at the first
hidden layer, it is unknown how interactions propagate through the intermediate hidden layers of the
network. Other approaches to interpreting feedforward neural networks include extracting per-sample
feature importance via inputs gradients [11] and global feature importance via network weights [7].
Interpretations can also be obtained by fitting simpler interpretable models [27, 3, 29] to neural
network predictions, models of which include decision trees [3] and GA2Ms [29]. Lastly, feedforward
neural networks have been used to learn generalized additive models before [25, 31], however their
construction either did not learn interactions [25] or were computationally expensive [31].

Disentanglement: The topic of disentanglement in neural networks comes in varied forms, but
it is often studied to extract an interpretable representation from neural networks. For example,
research on disentangling factors of variation has focused on modifying the training of deep networks
to identify interpretable latent codes [4, 18, 14, 12] and developing ways to interpret intrinsically
disentangled representations after training [26, 1]. While our work studies a different objective to
achieve disentanglement, it explores the same two approaches to reach our objective.

Generalized Additive Models (GAMs): GAMs are typically viewed as powerful interpretable
models in machine learning and statistics [10]. The standard form of this model only constructs
univariate functions of features, namely g(E[y]) =

∑
fi(xi), where g is a link function and fi can

be any arbitrary nonlinear function. This model can easily be visualized because each fi can be
independently plotted by varying each function’s input and observing the response on the output.
Previous research [20] identified that GAMs in their standard form are limited in their expressive
power by not learning interactions between features inherent in data. As a result, a class of models,
GA2M, was introduced in [20] to include pairwise interaction complexity into the GAM, in the form
of g(E[y]) =

∑
fi(xi)+

∑
fij(xi, xj). The addition of pairwise interactions was of special interest

because they are still visualizable, but now in the form of heatmaps [2].

Unlike previous works which investigated disentanglement in neural networks for interpretability,
our work studies disentangling interactions in neural networks to uncover GAMs.
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2.1 Notations

Vectors are represented by boldface lowercase letters, such as x,w; matrices are represented by
boldface capital letters, such as W. The i-th entry of a vector w is denoted by wi, and element (i, j)
of a matrix W is denoted by Wij .

Let p be the number of features and N be the number of samples in a dataset. An interaction, I , is a
subset of all input features: I ⊆ {1, 2, . . . , p}, where the interaction order |I| is always greater than
or equal to 2. A univariate variable, u, is a single feature that does not interact with other variables.

For a vector x ∈ Rp, let xI ∈ R|I| be the vector restricted to the dimensions specified by I, and
similarly let xu be the scalar restricted to the dimension specified by u.

We let a feedforward neural network and model learned by our proposed method (denoted by NIT)
have the same notations. Consider a feedforward neural network f(·) with L hidden layers and

the parameters: L + 1 weight matrices W(ℓ) ∈ Rpℓ×pℓ−1 and L + 1 bias vectors b(ℓ) ∈ Rpℓ ,
ℓ = 1, 2, . . . , L+1. Let pℓ be the number of hidden units in the ℓ-th layer. We treat the input features
as the 0-th layer and p0 = p as the number of input features, and we treat the output as the (L+ 1)-th
layer with pL+1 = 1. The activation function used, ϕ (·), is ReLU nonlinearity. Then the hidden

units h(ℓ) of the neural network and the output y with input x ∈ Rp can be expressed as:

h(0) = x, y = w(L+1)h(L) + b(L+1), h(ℓ) = ϕ
(

W(ℓ)h(ℓ−1) + b(ℓ)
)

, ∀ℓ = 1, 2, . . . , L.

Please note that an “interaction” in this paper is a statistical interaction that describes a non-additive
influence [28] between features on a single outcome or prediction variable.

3 Interaction Entangling in Neural Networks

We define a neural network entangling interactions in the following way:

Definition 1 (Entangled Interactions). Let S be the set of all true feature interactions {Ii}
|S|
i=1 in

a dataset, and let h be any hidden unit in a feedforward neural network. Let h capture a feature

interaction Î if and only if there exists nonzero weighted paths between h and each interacting

feature and between h and the output y. If h captures Î such that for any two different interactions

Ii, Ij ∈ S the following is true Ii ( Î and Ij ( Î , then the hidden unit entangles interactions, and
correspondingly the neural network entangles interactions.

For example, suppose we have a dataset D that contains N samples and 4 features. Each label is
generated by the function y = x1x2 + x3x4 where each feature xi, i = 1, . . . , 4 is i.i.d. with uniform
distribution between −1 and 1. As a result, D contains two pairwise interactions: {1, 2}, {3, 4}.
Consider a neural network f(·), which is trained on the dataset D to predict the label. If any hidden
unit learns the interaction {1, 2, 3, 4}, then it has entangled interactions.

We desire a feedforward neural network that does not entangle interactions at any hidden layer so that
each interaction is separated in additive form. Specifically, we aim to learn a function in the form:

f̃(x) =

R∑

i=1

ri(xI) +
S∑

i=1

si(xu), (1)

where {Ii}
R
i=1 is a set of interactions, {ui}

S
i=1 is a set of univariate variables, and r(·) and s(·) can

be any arbitrary functions of respective inputs. For example, we would like our previous f(·) to
be decomposed into an addition of two functions, e.g. r1({1, 2}) + r2({3, 4}), where both r1, r2
perform multiplication. A model that learns the additive function in Eq. 1 is a generalized additive
model with interactions.

A recent work [31] has shown that the weights to the first hidden layer are exceptional at detecting
interactions in data using common weight regularization techniques like L1 or L2. Even when
assuming that each hidden unit in the first layer modeled one interaction, interaction detection
was still very accurate. These results lead to the question of whether neural networks automatically
separate out interactions at all hidden layers as like Figure 2b when common regularization techniques
are applied.

To test this hypothesis, we train 10 trials of ReLU-based feedforward networks of size 4-100-100-100-
100-1 on dataset D with N = 3e4 at equal train/validation/test splits and different regularizations,
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Figure 2: An illustrative comparison between two simple feedforward networks trained on data
with interactions {1, 2} and {3, 4}. (a) A standard feedforward neural network, and (b) a desirable
network architecture that separates the two interactions. All hidden neurons have ReLU activation,
and y is a linear neuron which can precede a sigmoid link function if classification is desired.

which were tuned on the validation set. We then calculate the percentage of hidden units entangling
interactions in the first and second hidden layers at different lower thresholds on the magnitudes of all
weights (i.e. weight magnitudes below the threshold are zeroed) (see Figure 1). We note that when
calculating percentages, if a hidden unit does not learn any of the true interactions, even a superset
of one, then that hidden unit is ignored. Consistent with [31], the first hidden layer with L1 or L2

regularization is capable of keeping the interactions separated, but at the second hidden layer, nearly
all hidden units entangle the interactions at every threshold when at least one of the interactions
is modeled. Therefore, the regularization does very little to prevent the pairwise interactions from
entangling within the neural network.

Our understanding that feedforward networks entangle interactions even in the simple setting with
two multiplicative interactions motivates the need to disentangle them.

4 Disentangling Interactions for Interpretability

In this section, we explain our architecture and regularization framework, NIT, to disentangle
interactions in a feedforward neural network.

4.1 Architecture Choice

In order to disentangle interactions, we first propose a feedforward network modification that has a
dense input weight matrix followed by multiple network blocks, as depicted in Figure 3. Our choice of
a dense input weight matrix follows the recent research that a sparse regularized input weight matrix
tends to automatically separate out different true feature interactions to different first layer hidden
units [31]. Separate block networks at upper layers are used to force the representation learning of
separate interactions to be disentangled of each other. The remaining challenge is to ensure that each
block only learns one interaction or univariate variable to generate the desired GAM structure (Eq.
1) 1. Note that in this model, the number of blocks, B, must be pre-specified. Two approaches to
selecting B are either choosing it to be large and letting sparse regularization cancel unused blocks,
or setting B to be small in case a small number of blocks is desired for human interpretation.

In the experiments section (§5.5), we additionally discuss our results on an approach that does
not require any pre-specification of network blocks. Instead, this approach attempts to separate
interactions through every layer during training rather than rely on the forced separation of blocks.

4.2 Disentangling Regularization

As mentioned in the previous section (§4.1), each network block must learn one interaction or

univariate variable. Formally, each input hidden unit h ∈ {hi}
p1/B
i=1 to block b ∈ {bi}

B
i=1 must learn

the same interaction I ∈ {Ii}
R
i=1 or univariate variable u ∈ {ui}

S
i=1 where R+S ≤ B. We propose

to learn such a model by way of regularization that explicitly defines maximum allowable interaction

1It is possible that multiple blocks learn the same interaction or univariate variable, and some blocks can
learn a subset of what other blocks learn. In such cases, the duplicate or redundant blocks can be combined. We
leave the prevention of this type of learning for future work.
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Figure 3: A version of our NIT model architecture. Here, NIT consists of B mutli-layer network
blocks above a common input dense layer. Appropriate regularization on the dense layer forces each
block to model a single interaction or univariate variable. This model can equivalently be seen as a
standard feedforward neural network with block diagonal weight matrices at intermediate layers.

orders. Fixing the maximum order to be 2 has been the standard in the construction of GAMs with
pairwise interactions [20].

The existence of interactions or univariate variables being modeled by first layer hidden units is
determined by the nonzero weights entering those units [31]. Therefore, we would like to penalize the
number of nonzero elements in rows of the input weight matrix, as a group belonging to a block. The
number of nonzero elements can be obtained by using L0 regularization, however, it is known that
L0 is non-differentiable and cannot be used in gradient-based regularization [21]. Recently, Louizos,
et al. [21] developed a differentiable surrogate to the L0 norm by smoothing the expected L0 and
using approximately binary gates g ∈ Rn to determine which parameters θ ∈ Rn to set to zero. The

parameters θ of a hypothesis ĥ are then re-parameterized as separate parameters θ̃ and φ, such that
for a dataset of N samples {(x1, y1), . . . , (xN , yN )}, Empirical Risk Minimization becomes:

R(θ̃,φ) =
1

N

(
N∑

i=1

L
(

ĥ(xi; θ̃ ⊙ g(φ), yi

)
)

+ λ
n∑

j=1

gj(φj), (2)

which follows the ideal reparameterization of θ into θ̃ and g as:

θj = θ̃jgj , gj ∈ {0, 1}, θ̃j 6= 0, ‖θ‖0 =

n∑

j=1

gj (3)

We note that Eq. 2 is not in its final form for clarity and in fact uses distributions for the gates
to enable differentiability and exact zeros in parameters; we refer interested readers to [21]. We
propose a disentangled group regularizer denoted by LK, to disentangle feature interactions in the
NIT framework. LK is designed to be a group version of the smoothed L0 regularization. Let
G,Φ ∈ RB×p be matrix versions of the vectors g and φ from Eq. 2. Let T : RB×p → Rp1×p

assign the same gate to all first layer hidden units in a block corresponding to a single feature, for all

such groups of hidden units in every block. Just as θ̃j 6= 0 in Eq. 3, W̃
(1)
ij 6= 0, ∀i = 1, . . . , p1 and

∀j = 1, . . . , p. Then, the cost function for our NIT model f(·) has the form:

RNIT =
1

N

(
N∑

i=1

L
(

f(xi;W̃
(1)

⊙T (G(Φ)), {W(ℓ)}L+1
ℓ=2 , {b

(ℓ)}L+1
ℓ=1 , yi

)
)

+ LK, (4)

where LK is our proposed disentangling regularizer. Since G is ≈ 1 when a feature is ac-
tive in a block and ≈ 0 otherwise, the estimated interaction order of a block is defined as

k̂i =
∑p

j=1 Gij(Φij) ∀i = 1, 2, . . . , B. Let B̃ =
∑B

i=1 ✶(k̂i 6= 0). Then, we can conveniently

learn generalized additive models with desirable properties by including two terms in our regularizer:

LK = max
{(

max
i

k̂i

)

−K, 0
}

︸ ︷︷ ︸

limits the maximum interaction order to be K

+ λ
1

B̃

B∑

i=1

k̂i

︸ ︷︷ ︸

encourages smaller interaction

orders and block sparsity

(5)
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Table 1: A comparison of the number of models needed to construct various forms of GAMs.
GAKM all interactions refers to constructing a GAM for every interaction of order ≤ K respectively.
MLPcutoff is an additive model of Multilayer Perceptrons, and η is the top number of interactions
based on a learned cutoff.

Framework GAM GAKM GA2M MLPcutoff NIT
original [10] all interactions [20] [31] (proposed)

# models O(p) O(pK) O(p2) O(η) O(1)

The first term is responsible for penalizing the maximum interaction order during training to be a
pre-specified positive integer K. A threshold at K is enforced by a rectifier [8], which is used for
its differentiability and sharp on/off switching behavior at K. The second term both penalizes the
average non-zero interaction order over all blocks and sparsifies unused blocks.

4.3 Advantages of our NIT Framework

Constructing generalized additive models by disentangling interactions has important advantages,
the main of which is that our NIT framework can learn the GAM in O(1) models, whereas previous
methods either needed to learn a model for each interaction, or in the case of traditional univariate
GAMs [10], learn a model for each feature (Table 1). Our approach can construct the GAM quickly
because it leverages gradient based optimization to determine interaction separations.

In addition to efficiency, our approach is the first to investigate setting hard maximum thresholds on
interaction order, for any order K. This is a straightforward result of our regularizer formulation.

Previous methods [20, 2] have focused on advocating tree-based GAMs to interpret and visualize
what the model learns, and there exist few works which have explored neural network based GAMs
with interactions for interpretability. While the tree-based GAMs can provide interpretability, their
visualization can appear jagged since decision trees divide their feature space into axis-parallel rectan-
gles which may not be user-friendly [20]. This kind of jagged visualization is not a problem for neural
network-based GAMs, which as a result can produce smoother and more intuitive visualizations.

5 Experiments

5.1 Experimental Setup

We validate the efficacy of our method first on synthetic data and then on four real-world datasets.

Our experiment on synthetic data is the baseline disentangling experiment discussed in §3. We use real-
world datasets to evaluate the predictive performance of NIT (under restriction of maximum interaction
order K) as compared to standard and relevant machine learning models: Linear/Logistic Regression
(LR), GAM [19], GA2M [20], Random Forests (RF), and the Multilayer Perceptron (MLP). We
consider standard LR and GAM as the models that do not learn interactions, and GA2M learns up to
pairwise interactions, and RF and MLP are fully-complexity models [20] that can learn all interactions.

Table 2: Real-world datasets

Dataset N p %Pos

Cal Housing 20640 8 -
Bike Sharing 17379 15 -

MIMIC-III 20922 40 14.02%
CIFAR-10 binary 12000 3072 50.0%

After the performance evaluation, we visualize and ex-
amine interactions learned by our NIT from a medical
dataset. The real-world datasets (Table 2) include two
regression datasets previously studied in statistical inter-
action research: Cal Housing [24] and Bike Sharing [6],
and two binary classification datasets MIMIC-III [15]
and CIFAR-10 binary. CIFAR-10 binary is a binary clas-
sification dataset (derived from CIFAR-10 [17]) with
two randomly selected classes, which are “cat” and
“deer” in our experiments. We study binary classifica-
tion as opposed to multi-class classification to minimize learned interaction orders and accord with
previous research on GAMs [20]. Root-mean squared error (RMSE) and Area under ROC (AUC) are
used as the evaluation metrics for the regression and classification tasks.

In all of our NIT models, we set B = 20 and use an equal number of hidden units per network block
for any given hidden layer. The hyperparameter λ in our disentangling regularizer (Eq. 5) was found
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Table 3: Predictive performance of NIT. RMSE is calculated from standard scaled outcome variables.
*GA2M took several days to train and did not converge. Lower RMSE and higher AUC means better
model performance.

Model Cal Housing Bike Sharing MIMIC-III CIFAR-10 binary

K RMSE K RMSE K AUC K AUC

LR 0.60± 0.016 0.78± 0.021 0.70± 0.013 0.676± 0.0072
GAM 0.506± 0.0078 0.55± 0.016 0.75± 0.015 0.829± 0.0014
GA2M 0.435± 0.0077 0.307± 0.0080 0.73± 0.012 *

NIT 2 0.448± 0.0080 2 0.31± 0.013 2 0.76± 0.011 10 0.849± 0.0049
3 0.437± 0.0077 3 0.26± 0.015 4 0.76± 0.013 15 0.858± 0.0020
4 0.43± 0.013 4 0.240± 0.0097 6 0.77± 0.011 20 0.860± 0.0034

RF 0.435± 0.0095 0.243± 0.0053 0.685± 0.0087 0.793± 0.0034
MLP 0.445± 0.0081 0.22± 0.012 0.771± 0.0096 0.860± 0.0046

by running a grid search for validation performance on each fold of a 5-fold cross-validation 2. In our
experiments, we don’t assume K, so we report the performances of NIT when varying K. Learning
rate was fixed at 5e−2 while the disentangling regularization was applied. For the hyperparameters
of baselines and those not specific to NIT, tuning was done on the validation set. For all experiments
with neural nets, we use the ADAM optimizer [16] and early stopping on validation sets.

5.2 Training the NIT Framework

Model training in NIT was conducted in two phases. The first was a disentangling phase where each
block learned one interaction or univariate variable. The second phase kept LK = 0 and G fixed,
so that G acted as a mask that deactivated multiple features in each block. The second phase of
training starts when the maximum interaction order across all blocks 3 was ≤ K. and the maximum
interaction order of the disentangling phase stabilizes. We also reinitialized parameters between
training phases in case optimization was stuck at local minima.

5.3 Disentangling Experiment

We revisit the same function x1x2 + x3x4 that the MLP failed at disentangling (§3) and evaluate
NIT instead. We train 10 trials of NIT with a 4-100-100-100-100-1 architecture like before (§3)
and a grid search over K. In Figure 1 we show that NIT disentangles the x1x2 and x3x4 pairwise
interactions at all possible lower weight thresholds while maintaining a performance (RMSE =
1.3e− 3) similar to that of MLP. Note that the architecture choice of NIT (Figure 3) automatically
disentangles interactions in the entire model when the first two hidden layers are disentangled.

5.4 Real-World Dataset Experiments

On real-world datasets (Table 2), we evaluate the predictive performance of NIT at different levels of
K, as shown in Table 3. For the Cal Housing, Bike Sharing, and MIMIC-III datasets, we choose K
to be 2 first and increase it until NIT’s predictive performance is similar to that of RF or MLP. For
CIFAR-10 binary, we set K = 10, 15, 20 to demonstrate the capability of NIT to learn high-order
interactions. The exact statistics of learned interaction orders for all datasets are shown in appendix
A in the supplementary materials. For all the datasets, the predictive performance of NIT is either
comparable to MLP at low K, or comparable to GA2M at K = 2 and RF/MLP at higher values of
K, as expected.

In Figure 4, we provide all visualizations of what NIT learns at K = 2 on one fold of the MIMIC-III
dataset. MIMIC-III is currently the largest public health records dataset [15], and our prediction
task is classifying whether a patient will be re-admitted into an intensive care unit within 30 days.
Since K = 2, all learned interactions are plotted as heatmaps as shown, and the remaining univariate
variables are shown in the left six plots. We notice interesting patterns, for example when a patient’s

2For all real-world datasets except CIFAR-10 binary, 5-fold cross-validation was used, where model training
was done on 3 folds, validation on the 4th fold and testing on the 5th. For the CIFAR dataset, the standard test set
was only used for testing, and an inner 5-fold cross-validation was done on an 80%-20% train-validation split.

3With this criteria, K 6= p, but the criteria can be changed to allow K = p.
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Figure 4: Visualizations that provide a global [27] and transparent [30] interpretation of NIT trained
on the MIMIC-III dataset at K = 2. Outcome scores are interpreted as contribution to 30-day hospital
readmission in the same way described by [2]. The output bias of NIT is 0.21.

minimum temperature rises to ≈ 40◦C, the chance for readmission drops sharply. Another interesting
pattern is in an interaction plot showing as sofa score (which estimates mortality risk) increases, the
chance for readmission decreases. We checked that these potentially un-intuitive patterns are indeed
consistent with those in the actual dataset by examining the frequency of readmission labels relative
to temperature or sofa score. This insight may warrant further investigation by medical experts.

5.5 Disentangling Interactions Through All Layers

In addition to disentangling at the first weight matrix, we discuss results on modifying NIT to
disentangle interactions through all layers’ weight matrices. By doing this, we no longer require
B network blocks nor group L0. Instead, L0 is applied to each individual weight as done normally

in [21]. We now define layer-wise gate matrices G(1),G(2), . . . ,G(L) of gates for each weight in

the corresponding matrices W(1),W(2), . . . ,W(L). The estimated interaction order k̂i from Eq. 5 is

now for each neuron i in the last hidden layer and k̂i =
∑p

j=1 [σ(G
(L)G(L−1) . . .G(1))]ij , where

normalized matrix multiplications between G(ℓ)’s are taken. Here, σ is a sigmoid-type function,

σ(G′) = G
′

c+|G′| , which approximates a function that sends all elements of G′ greater than or equal

to 1 to be 1, otherwise 0 (c is a hyperparameter satisfying 0 < c ≪ 1). Theoretical justification for

the formulation of k̂i is provided in Appendix E.

Disentangling interactions through all layers can perform well in regression tasks. When we let this
approach discover the max interaction order by setting K = 0 for LK in Eq. 5 and c = 1e− 2, NIT
is able to reach 0.43 RMSE at max order 3 for Cal Housing, and 0.26 RMSE at max order 6 for Bike
Sharing without re-initializing models. Now without network blocks, NIT architectures are smaller
than before (Appendix D), i.e. 8-200-200-1 for Cal Housing and 15-300-200-100-1 for Bike Sharing.

5.6 Limitations

Although NIT can learn a GAM with interactions in O(1) models, the disentangling phase in our
training optimization can take longer with increasing p or B. In addition, if K is not pre-specified, a
search for an optimal K for peak predictive performance can be a slow process when testing each K.
Finally, since optimization is non-convex, there is no guarantee that correct interactions are learned.

6 Conclusion

We have investigated an interpretation of a feedforward neural network based on its entangling of
interactions, and we proposed our framework, NIT, for disentangling the interactions to learn a
more interpretable neural network. To disentangle interactions, we developed a way of maintaining
separations in the network and applying a direct penalty on interaction orders. NIT corresponds to
reducing a feedforward neural network to a generalized additive model (GAM) with interactions,
allowing it to learn the GAM in O(1) models. In experiments, we have demonstrated the effectiveness
of NIT at obtaining high predictive performance at different K and the value of NIT for visualization.
For future work, we would like to study ways of making NIT perform at state-of-the-art levels for
interaction detection in addition to obtaining high predictive performance under K-order constraints.
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