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Abstract

Kleinberg [20] stated three axioms that any clustering procedure should satisfy and
showed there is no clustering procedure that simultaneously satisfies all three. One
of these, called the consistency axiom, requires that when the data is modified in a
helpful way, i.e. if points in the same cluster are made more similar and those in
different ones made less similar, the algorithm should output the same clustering. To
circumvent this impossibility result, research has focused on considering clustering
procedures that have a clustering quality measure (or a cost) and showing that a
modification of Kleinberg’s axioms that takes cost into account lead to feasible
clustering procedures. In this work, we take a different approach, based on the
observation that the consistency axiom fails to be satisfied when the “correct”
number of clusters changes. We modify this axiom by making use of cost functions
to determine the correct number of clusters, and require that consistency holds only
if the number of clusters remains unchanged. We show that single linkage satisfies
the modified axioms, and if the input is well-clusterable, some popular procedures
such as k-means also satisfy the axioms, taking a step towards explaining the
success of these objective functions for guiding the design of algorithms.

1 Introduction

In a highly influential paper, Kleinberg [20] showed that clustering is impossible in the following
sense: there exists no clustering function, i.e. a function that takes a point-set and a pairwise
dis-similarity function4 defined on them as input, and outputs a partition of the point-set, that
simultaneously fulfills three simple and “reasonable” axioms—scale invariance, richness and
consistency. Scale invariance requires that scaling all the dis-similarities by the same positive number
should not change the output partition. Richness requires that for any partition of the point-set, there
should be a way to define pairwise dis-similarities such that the clustering function will produce
said partition as output. Finally, consistency requires the following: if a clustering function outputs
a certain partition of a point-set, given a certain dis-similarity function, then applying this clustering
function to a transformed dis-similarity function that makes points within the same part more similar
and points in different parts less similar, should yield the same partition.

While seemingly very natural in the context of clustering, the last of these axioms, consistency,
is somewhat questionable as has been discussed by researchers over the years (see e.g. [30] and
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references therein). Consider a dataset with a natural clustering consisting of k parts. Kleinberg’s
consistency axiom allows a transformation of the dis-similarity function by which one cluster may be
subdivided into two subclusters, such that points in the same subcluster are very similar to each other,
but sufficiently dis-similar to points from the other sub-cluster. The transformed instance may require
a different partition: for a “good” clustering with k parts, it may be more suitable to define one cluster
for each of the two new subclusters and re-arrange the partition of the remaining points. Alternatively,
one may ask what is the “right” number of clusters in the new instance? Since the original instance
had k clusters and since one of the clusters got subdivided into two subclusters, it may be more natural
to ask for a clustering in k`1 clusters for this new instance. Unfortunately, this is not allowed by the
consistency axiom: the clustering should remain the same. This scenario can indeed be formalized as
shown in Section 4, even in the case where the original clustering into k parts is very well-clusterable.

We are not the first to notice the problem with the consistency axiom as defined by Kleinberg, see
e.g. [23, 2, 14]. This impossibility result has been contrasted by a large body of research that argues
that relaxing the axioms by restating them with respect to cost functions (clustering quality measures)
resolves the inconsistency [14]. For example, in the influential blog post [30], it is observed that
the outcome of such a transformation can change the “natural” number of clusters.

Perhaps one of the main issue with Kleinberg’s axioms is that they fail to explain why some of the
classic clustering objectives, such as the k-means objective function (see Definition 1.1), give rise to
very popular algorithms such as k-means++ and Lloyd’s algorithm that are very successful in practice5.
This suggests that the impossibility result arises from instances that are unrealistic and contrived.

A way to overcome this impossibility result is to look beyond the worst-case scenario. Motivated by
the thesis that “clustering is difficult only when it does not matter” (see e.g. [19, 13, 17]), one can hope
that classic objectives such as k-means would satisfy the axioms when the input is well-clusterable.
Unfortunately, we show that k-means fails to satisfy Kleinberg’s consistency axiom even when we
restrict attention to very well-clusterable inputs, in fact even for types of instances for which the
k-means++ algorithm has been proven to be efficient [21], and as a result one may expect k-means
to be the “right” objective function to optimize. (See Section 4 for a formal statement of this.)

1.1 Our contributions

Our work aims at bridging the gap between real-world clustering scenarios and an axiomatic
approach to understanding the theoretical foundations of clustering. We see the problem of clustering
as a two-step procedure:

1. Determine the “natural” number k of clusters in the dataset;
2. Find out the “best” clustering with k clusters.

The question of choosing the “correct” number of clusters is a very relevant one in practice because
several of the commonly used clustering algorithms take the number of clusters k as a parameter
(cf. [1, 26, 27, 18]) and would yield nonsensical clusters if k was not carefully chosen. Despite this,
theoretical work on choosing the number of clusters is quite limited compared to the vast theoretical
work analyzing various clustering algorithms. An approach employed quite often is the so-called
elbow method, which itself can be defined in different ways. A natural definition is as follows:
Consider an objective function (a measure of quality) for clustering into k parts, and define OPTk
to be the clustering that minimizes this objective function. According to the elbow method, the
“natural” number of clusters is defined as the value k‹ that maximizes the ratio OPTk´1{OPTk for
k P t2,...,n´1u, where n is the number of data points. k‹“ 1 and k‹“n are explicitly ruled out
as they would lead to trivial clusterings.

The intuition behind this approach is that the maximum gain in information is obtained, precisely
when finding k‹ groups instead of k‹´1. There is diminishing information gain when allowing
more clusters beyond k‹. This approach is widely-used in practice e.g. [27] and has led to interesting
theoretical models of real-world inputs. As an example, Ostrovsky et al. [24] define a “real-world”
input with k clusters as an instance for which the k-means objective satisfies OPTk´1{OPTką1`ε
for a sufficiently large ε. In turn such data models have been used in theoretical work to better
understand the success of algorithms such as k-means++ [21, 10].

5Note that k-means++ and Lloyd’s algorithm aim at minimizing the k-means objective; each step improves
the quality of the solution w.r.t. k-means objective.
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Taking inspiration from this approach, we return to Kleinberg’s axioms and amend
the consistency axiom to take into account the potential change in the optimal num-
ber of clusters. More precisely, we required that the consistency (i.e. the partition
of the input point-set) is preserved in the transformed instance only if the “correct”
number of clusters in the new instance is the same as that in the original instance.

combine?

Original instance Perturbed instanceIn order to meaningfully define the “correct”
number of clusters, we need to include a cost
function, from partitions to the positive reals,
as part of the input. We define the “correct”
number using the elbow method. We show that
the new set of axioms is no longer inconsistent
and some clustering algorithms, such as single-
linkage, in fact satisfy these axioms. While in
the worst-case, clustering algorithms based on the classic center-based clustering objectives such
as k-means, k-median and k-center do not satisfy the axioms, we show that for stable clustering
instances, these objective function now satisfy the axioms. We show that the notion of stable instance
captures some interesting scenarios (see full version). Thus our axioms arguably model the process
of clustering “relevant in practice” inputs, thus taking a step towards explaining the success of some
popular objective functions.

Stable clustering instances. We define well-clusterable or stable clustering instance using the
stability notion introduced by Bilu and Linial [16] in the context of center-based clustering. This
notion was later considered in the context of clustering in several other works (see e.g. [9, 13, 15, 12])
and various (provable) algorithms have been designed for solving these types of instances. We
consider the α-proximity condition introduced by Awasthi et al. [11] which requires that the optimal
clustering satisfies the following: Given a point in the ith optimal cluster, α times its distance to the
center of cluster i remains smaller than its distance to the centers of the other clusters. This notion
generalizes the notion of stability as shown by [11].

In the full version we show that this notion arises for large ranges of parameters (for which our proofs
hold) in different models such as the stochastic block model and mixture of Gaussians and for which
these clustering approaches are used in practice. Our result on stable instances require that the cluster
sizes are approximately equal; we observe that when using k-means in the context of e.g. Gaussian
mixture models, roughly balanced clusters and a separation of centers ensures that the minimizing
the k-means objective is roughly the same as finding maximum likelihood estimators for the centers.

1.2 Related Work

The authors of the prominent work Ben-David and Ackerman [14] were the first to defy Kleinberg’s
impossibility results. The authors focus on clustering quality measures (CQM), or cost functions,
that assign clusterings a value. The authors interpret Kleinberg’s axioms in terms of these quality
measures and show that the interpretation of the axioms is consistent. This is similar to our approach
but their definition of the consistency axiom differs: their notion of consistency asks for the value of
a clustering to not increase after a perturbation of the inputs that bring points in the same cluster
closer and pull points across different clusters apart.

As mentioned in the introduction, our consistency axiom requires that the optimal clustering remains
the same after the same type of perturbation, if the optimal number of clusters remains the same.
We believe that this is a stronger requirement that is of importance: when using a cost function
for evaluating a k-clustering, we hope that the minimizer of the cost function (namely the optimal
solution) is the underlying natural clustering. Hence, after a perturbation that does not increase
distances between points of the same clusters and does not decrease distances between points in
different clusters, we hope that the minimizer has remained the same if the natural number of clusters
has remained k. The axiom proposed by Ben-David and Ackerman [14] does not enforce an optimal
solution to remain optimal under the perturbation.

Ackerman [2] and Ackerman et al. [4] also contribute with a large set of axioms or properties that
are suitable for clustering objective functions. In this paper we focus on the three original axioms
introduced by Kleinberg. Thus, our approach aims at complementing their study of the axioms by
replacing their consistency axiom with a stronger one. Also our approach differs slightly in the
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following sense; we aim at defining reasonable axioms that explain why popular objective functions,
such as k-means, are good ones (we refer the reader to [5, 6, 3] for further advanteges of k-means
and similar methods.

van Laarhoven and Marchiori [28] continue this line of research on quality measures and show
that adding reasonable axioms leads to set of axioms which are not fulfilled by modularity, a fairly
popular CQM. The authors of Puzicha et al. [25] explore properties of clustering objective functions
for the setting where the number of clusters, k, is fixed. They propose a few natural axioms of
clustering objective functions, and then focus on objective functions that arise by requiring functions
to decompose into additive form.

Meilă [23] views clusterings as nodes of a lattice: there is an edge between to clustering C and C 1 if
C 1 can be obtained by splitting a cluster of C into two parts. The authors give axioms for comparing
clusterings and show inconsistency of those axioms. Ackerman et al. [5] considers clustering in the
weighted setting where every point is assigned a real valued weight. The authors analyze of the
influence of the weighted data on standard clustering algorithms. Ackerman et al. [6] analyze the
robustness of clustering algorithms to the addition of points study the robustness of popular clustering
methods. See Ackerman [2] for a thorough review on research on clustering properties. There has
also been work focused on the single-linkage clustering algorithm and its characterization using
a specific set of axioms including Kleinberg’s axioms [31]. This has later been extended to more
general families of linkage-based algorithms [3].

Organization of the paper: Section 1.2 introduces basic notions and notations. Section 2 describes
and discusses our new axioms. Section 3 shows that single-linkage satisfies all of them, even in the
worst-case scenario, while k-means and k-median satisfy the axioms when we restrict our attention
to well-clusterable instances. Section 4 shows various impossibility results: k-means does not satisfy
Kleinberg’s axioms even for well-clusterable instances. In the worst-case, none of k-means and
k-median satisfies all our refined axioms. The proofs can be found in the full version.

Preliminaries Let rns denote the set t1,...,nu. An input to a clustering procedure is prns,dq, where
we rns is the point-set and d : rnsˆrnsÑR` gives the pairwise distances between points in rns
(we assume d is always symmetric). We do not require prns,dq to be a metric space, though all of
our results continue to hold if this requirement is added.We denote by Πrns the set of all possible
partitions of the set rns; Π‹rns denotes the set of non-trivial partitions of rns, i.e. excluding the
partitions consisting of exactly one part and the partition consisting of exactly n parts. For a partition
P PΠ‹rns, we will denote by |P| the number of parts. We use OPT (OPTo, respectively) to denote
the cost of the optimal solution under the perturbed metric (original metric, respectively).

Definition 1.1 (k-Means). Let prns,dq be a metric space, and k a non-negative integer. The k-
means problem asks for a subset S of rns, of cardinality at most k, that minimizes costpSq “
ř

xPrnsmincPS dpx,cq
2.

In the k-median problem, the distances are not square while in the k-center problem, the sum is
replaced by taking the maximum. In the following, we will sometimes refer to points of rns as
clients. The clustering of X induced by S is the partition of A into subsets C“tC1,...Cku such that
Ci“txP rns | ci“ argmin cPSdpx,cqu (breaking ties arbitrarily). Similarly, given a partition of X
into k parts C“tC1,...Cku, we define the centers induced by C as the set of tcentroidpCiq |Ci PCu,
where we slightly abuse notation by defining the centroid of set of point XĂrns as the point y of X
that minimizes

ř

xPXdpy,xq
2 (a.k.a. the medoid). It is a well-known fact that costpCq is minimized

by the centers induced by C. Hence, we will refer to a solution to the k-means problem by a partition
of the points in k parts, or by a set of k centers.

2 An Axiomatic Result

Kleinberg [20] introduced an axiomatic framework for clustering. Following Kleinberg, we define
a clustering procedure to be a function f that takes a pair prns,dq of a point-set and an associated
distance function, and outputs a partition P of rns. This definition is purely combinatorial and in
what follows we will modify it slightly to view clustering as an optimization procedure. Kleinberg
[20] requires that any clustering procedure satisfy the following three axioms.

Axiom 2.1 (Scale Invariance). For any input prns,dq and any αą0, we have fpprns,dqq“fpprns,α¨
dqq, where α¨d denotes an α-scaling of the distance function d.
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Axiom 2.2 (Richness). For any P PΠrns, there exists a dP : rnsˆrnsÑR`, such that fpprns,dPqq“
P .

The third of Kleinberg’s axiom requires the notion of a P-consistent transformation. For a partition
P PΠrns, a transformation d1 of d is P-consistent, if d1px,yqďdpx,yq if x,y are in the same part in
P and d1px,yqědpx,yq if x,y are in different parts in P .
Axiom 2.3 (Consistency). If fpprns,dqq “P and if d1 is a P-consistent transformation of d, then
fpprns,d1qq“P .

It is this last axiom that is an unnecessary restriction on clustering procedures. As discussed in the
introduction, this restriction comes from the fact that the axiom enforces the number of clusters
to remain the same, even after the perturbation of the input. Indeed, the number of clusters may
have “changed” as a result of the distance transformation. In general choosing the correct number
of a clusters is a fairly non-trivial problem. In order to do so, we assume that there is cost function
associated with any partition P P Πrns. To avoid trivial cases, we will only allow a clustering
algorithm to output a non-trivial partition P PΠ‹rns. Let Γ:Π‹rnsÑR` be a cost function. For any
kPt2,...,n´1u, define OPTΓ

k :“minPPΠrns
|P|“k

ΓpPq.

For example, in the so called k-median clustering objective, k data-points are chosen to be centers
and each point is assigned to its closest center (with arbitrary tie-breaking) to arrive at a partition.
Then the cost is simply given by adding up the distance of each data-point to its closest center.

We now present our refined consistency axiom. We consider a clustering procedure as a procedure that
has as input prns,dq as well as a cost function Γ:Π‹rnsÑR`. The clustering procedure chooses the
number of parts k‹, by picking k that maximizes the ratio OPTΓ

k´1{OPTΓ
k and then outputs a partition

P consisting of k‹ parts that achieves the value OPTΓ
k‹ . We refer to such clustering procedures as

clustering procedures with cost-function Γ and denote the use k‹pprns,dq,Γq to denote the optimal
value of k‹ and fpprns,dq,Γq to denote the partition output by the clustering procedure f using the
cost function Γ.
Axiom 2.4 (Refined Consistency). If f is a clustering procedure with cost function Γ and
fpprns, dq,Γq “ P , then if d1 is P-consistent, then either k‹pprns, dq,Γq ‰ k‹pprns, d1q,Γq or
fpprns,dq,Γq“fpprns,d1q,Γq.

What the above axiom states is that if a P-consistent transformation does change data in a way that
clearly changes the natural cluster structure, then it may output a different partition as the proposed
clustering as long as the number of clusters has changed. However, if as per the objective function Γ,
the “optimal” number of clusters has not changed, then the same partition P should be returned after
a P-consistent transformation. We refer to a clustering procedure using a cost function Γ that satisfies
Axioms 2.1, 2.2 and 2.4 as admissible. Section 3 establishes that unlike in Kleinberg’s result which
asks for clustering procedures satisfying Axioms 2.1, 2.2 and 2.3, we obtain a possibility theorem.

Several cost functions commonly used in practice have the effect of encouraging increasingly finer
partitions. As a result, the number of parts, e.g. k in k-means, has to be fixed to avoid achieving
a trivial partition where each point is placed in its own clusters. On the other hand, it may be
possible to imagine cost functions that encourage fewer clusters, e.g. if there’s a cost to open a
new center as in facility location problems. Based on these, it is possible to demand a stronger
consistency axiom than the one state in Axiom 2.4. If P “ fpprns,dq,Γq and P 1 “ fpprns,d1q,Γq,
one may demand that if k‹pprns,dq,Γqă k‹pprns,d1q,Γq, then P 1 is a refinement of P; likewise, if
k‹pprns,dq,Γqąk‹pprns,d1q,Γq, one may demand that P 1 is a coarsening of P . The former should be
expected for cost functions encouraging finer partitions and the latter for cost functions encouraging
fewer parts. Single linkage does have the property that a P-consistent transformation can never
decrease k‹ and the resulting modified partition P 1 is a refinement of P ; however, we leave the formal
analysis of this claim to the long version of this extended abstract.

3 Admissible Clustering Functions

3.1 Admissibility of Single Linkage

Single linkage is most often defined procedurally, rather than as an optimization problem. It is also
commonly used as an algorithm for hierarchical clustering; however, it may equally well be viewed
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as a partition-based clustering procedure. Formally, for a given k, the optimization problem that
results in the single-linkage algorithm is the following: “Find the minimum weight spanning forest
with exactly k connected components (trees)”.

As in any clustering procedure, the parameter k is input to the algorithm. In order to choose the value
of k˚, we look at the value of k˚ which maximizes the ration OPTk{OPTk`1 for k P t1,...,n´1u.
Note that this method of choosing k˚ does not allow k˚“n nor k˚“1.
Proposition 3.1. Single linkage clustering is admissible.

Proving scale invariance and richness is trivial. In order to prove refined consistency, we show that
the optimal forest in the modified metric d1 with k˚ parts cannot use any edges that go between the
trees in the forest obtained with d. We refer the reader to the appendix for the full proof.
Remark 3.2. Actually, a stronger claim can be made where if k˚ changes, the new partition output
by single linkage on prns,d1q will be a refinement of the partition output on prns,dq.

3.2 Admissibility of k-Means

We now turn to a more formal definition of our “well-clusterable” instances.
Definition 3.3 (Center proximity [11]). We say that a metric space prns,dq satisfies the α-center
proximity condition if the centers tc1,...,cku induced by the optimal clustering tC1,...,Cku of prns,dq
with respect to the k-means cost satisfies that for all i‰j and pPCi, we have dpp,cjqěα¨dpp,ciq.

We further say that an instance is δ-balanced if for all i,j, |Ci|ďp1`δq|Cj |.
Theorem 3.4. For any αą 5.3, δ ď 1{2 and for any δ-balanced instance satisfying the α-center
proximity, the k-means objective is an admissible cost function. Moreover, there exists a constant c
such that for δď1{2 for any δ-balanced instance satisfying the α-center proximity with αěc, the
k-median objective is an admissible cost function.

Proof. For simplicity, we assume that α“6 and δď1{2, the general case is similar, the higher α the
higher δ can be. We will only show the proof for k-means; the proof for k-median is analogous. The
proof of all claims can be found in the appendix.

It is easy to see that the k-means objective function satisfies Axioms 2.1 and 2.2 (see also [2]). Hence,
we only need to show that the k-means objective satisfies Axiom 2.3. We will make use of the
following lemma mainly due to [12], and [11].
Lemma 3.5 ([12]). For any points p P Ci and q P Cj (j ‰ i) in the optimal clustering of an
α-center proximity instance, we have dpci, qq ě αpα ´ 1qdpci, pq{pα ` 1q, and dpp, qq ě pα ´
1qmaxtdpp,ciq,dpq,cjqu.

We complement this lemma by the following observation:
Claim 3.6. Given p,q1 PCi and qPCj , we have that

dpci,q
1qď

α`1

pα´1q2
dpp,qq (1)

and
dpp,q1qď

2α

pα´1q2
dpp,qq. (2)

Consider an adversarial perturbation of the instance as prescribed by Axiom 2.3, namely a C-
consistent transformation of d, where C is the optimal k-means clustering of the original instance.

Assume towards contradiction that the optimal k-means clustering for the perturbed instance Γ“
tΓ1,...,Γku, with centers γ˚“γ˚1 ,...,γ

˚
k , differs from the optimal k-means solution for the original

instance C“tC1,...,Cku.

We claim that, assuming αą2`
?

3 it must be that at least one of the clusters of C contains no center
of γ˚1 ,...,γ

˚
k . Indeed, if for each Ci there exists a γ˚j that is in Ci, then the optimal clustering remains

tC1,...,Cku and so Γ“C. This follows from Claim 3.6: after the perturbation, each point of Ci
remains closer to points of Ci than to any other point. Therefore, if there is a center γ˚i in each Cj ,
the optimal partitioning of the points remains Γ.

Thus, we assume that there is at least one cluster of C that has no center of γ˚1 ,...,γ
˚
k .

6



In the following we aim at bounding OPTk,OPTk`1,OPTk´1 which are the cost of the optimal
solutions using k,k`1,k´1 centers in the perturbed instance.

We now consider the clusters of C that contain no center in the solution induced by Γ. We also
consider the centers tγ1,...,γtuĎγ

˚ induced by Γ that are located in a cluster Ci that also contains
another center of γ˚.

Given a clustering C 1 with centers c11,c
1
2,...,c

1
k, we say a client p is served by c1i if dpp,c1iqďdpp,c

1
jq

for all jě i and dpp,c1iqădpp,c
1
jq for all jă i. For each Ci that contains at least two centers of γ˚,

let Ai denote the clients served by all the centers of γ˚ located in Ci. We show:

Claim 3.7. There exists Ci that contains at least two centers of γ˚ such that |Ai|ď
pα`1q2

pα´1q2αpα´2q |Ci|.

In the rest, we further analyze the structure of a cluster Ci satisfying Claim 3.7. Let ∆i “

maxxPAi
minγjPγ˚dpx,γjq

2.

Claim 3.8. We have that OPTk´1ďOPTk`
ˆ

´

pα`1q
pα´1q2

¯2

`
pα`1q2p2α´1q
pα´1q4αpα´2q

˙

|Ci|¨∆i.

Claim 3.9. We have that OPTk`1ďOPTk´p1´δq
ˆ

1´
´

1
α´1

¯2
˙

`

α´2
α

˘2
|Ci|∆i.

Claim 3.10. We have that OPTk{OPTk`1ąOPTk´1{OPTk.

Claim 3.10 shows that if the perturbation creates a clustering Γ different from C, then the natural
value of k has changed (namely OPTk´1{OPTk is not the maximizer over all values of k). Hence,
the axiom is satisfied.

It is easy to see that for larger δ, a larger value of α allows to derive the proof.

4 Inadmissibility

In this section we prove two theorems showing inadmissibility of ubiquitous clustering functions.

Theorem 4.1. k-means, k-median and k-center are not admissible w.r.t. our axioms.

The following theorem shows that k-means, k-median remain inadmissible w.r.t. to Kleinberg’s
axiom even if c-cluster proximity is satisfied for any constant c. This is in contrast to Theorem 3.4
showing that k-means is admissible w.r.t. to our axioms if 6-cluster proximity is satisfied. Given that
k-means of great importance in real-world settings, we believe that this is further evidence that our
axioms are more suitable.

Theorem 4.2. k-means, k-median are not admissible w.r.t. Kleinberg’s axioms even when c-cluster
proximity is satisfied for any constant c.

4.1 Proof of Theorem 4.1

dp¨,¨q u1 u2 u3 u4 uPL uPR
u1 0 γ´ε 2γ´3ε 2γ´3ε`1 1 3γ´5ε
u2 0 γ´2ε γ´2ε`1 γ´ε`1 2γ´4ε
u3 0 1 2γ´3ε`1 γ`ε pγ´2εq
u4 0 2γ´3ε`2 γ
vPL,v‰u 2 3γ´5ε`1
vPR,v‰u γ

Figure 1: Original instance and perturbed instance.
Let V be the set of points, with |V |“n. Assume
n is even, γ “ 1.5 and ε “ 1{10. Let L and R
be two sets of size pn´4q{2 each. The perturbed
instance is obtained by using the red value in brack-
ets. Missing entries are given by symmetry and
dpu,vq“0 for v“u.

To see that k-center, k-median and k-means are not admissible, we will construct a distance function
d having k“2 with a unique optimal clustering C. The instance is given by Figure 1 and we refer to
Figure 2 for an illustration. Note that the distance function fulfills the triangle inequality albeit this is
not required. The main idea behind the construction is that u2 is, in the original instance, assigned to
the cluster center u1. In the perturbed instances, after decreasing the distance between u3 and the
nodes of R, we have that u3 becomes the new center. As a consequence the node u2 is now closer
to that cluster than to the other cluster. Hence, the clustering changes. It remains to show that the
optimal number k˚ of clusters remains 2 in the perturbed instance. Recall that, by definition, we
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γ − ε γ − 2ε 1

2L R
3γ − 5ε+ 1

γγ + ε

Original instance d

u1 u2 u3 u4

1

γ

γ − ε γ − 2ε 1

2L R
3γ − 5ε+ 1

γγ − 2ε

Perturbed instance d

u1 u2 u3 u4

1

γ

Figure 2: An illustration of the instance given by Figure 1 that
shows that k-center, k-means and k-median are not admissible
w.r.t. to our axioms. The distance from u1 to u2 is γ´ε. The
distance from u1 to all of the nodes of L is 1. The distance of a
node L to all other nodes of L is 2 etc. The perturbed instances is
obtained by decreasing the distance between u3 and the nodes of
R—all other distances remain unchanged. After decreasing those
distances, the center shifts to u3 causing u2 to switch clusters and
hence different clusterings. The red circles denote the optimal
clusterings with the centers marked red.

exclude the cases k˚“1 and k˚“n. We need to check that OPT1{OPT2ąOPTk{OPTk`1 for all
kPt2,3,...,n´1u.
k-center. Note that the optimal solution for k“1—in both the original instance and the perturbed
instance—is to open a center at u2. We get that OPT1“OPT11“ 2γ´4ε. For the case that k“ 2
we get for the optimal solution in the original instance (perturbed instance, respectively) consists
of opening centers at u1 and u4 (u1 and u3, respectively). The results in a cost of OPT2 “ γ
(γ´2ε, respectively). Furthermore, note that for any kăn, OPTk,OPT1kě1. As a result, we have
OPTk{OPTk`1ďOPT2{OPTk`1ďγď1.5ăOPT1{OPT2 for kě2; the same holds for OPT1.
k-median and k-means. Consider k-median. Note that for OPT1 the cost is at least pn´4qp2γ´
4εq in the perturbed instance. Furthermore, OPT2 in the perturbed instance is OPT2 ď |L| ¨ 1`
|R| ¨ pγ´2εq`Op1q. Hence OPT1{OPT2 « 2. We can easily verify that OPTk{OPTk`1 ď 1.5ă
OPT1{OPT2 for all kě2. The argument for k-means is along the same lines.

4.2 Proof of Theorem 4.2

For simplicity we consider an instance that satisfy 6-center proximity. The construction of the original
and perturbed instance is given by Figure 3. Our construction for k-means and k-median is in fact the
same and satisfies the triangle inequality before and after perturbation. We show that reducing the
intra-cluster distance changes the optimal solution hence violating Kleinberg’s axioms.

x x

y

Original instance d Perturbed instance d′

1
2 1

y
0

u1S1

2

S2
u2

u3

2y

S3

0

u1S1

1
2

S2
u2

S′
3

0

S′′
3

u3

1

u′
3

u′
1

x · yx · yx · yx · y

dp¨,¨q u1 u2 u3 uPS1 uPS2 uPS3

u1 0 x x¨y 1 x x¨y
u2 0 x¨y x 1 x¨y
u3 0 x¨y x¨y y
vPS1,v‰u 2 x x¨y
vPS2,v‰u 2 x¨y
vPS3,v‰u 2y

Figure 3: The two figures on the l.h.s. are an example of an instance that satisfies the 6-center
proximity where k-means and k-median are not admissible w.r.t. to Kleinberg’s axioms. The distance
from u1 to all nodes in S1 (with |S1|“5) is 1, the distance for any node of S1 to all other nodes of
S1 is 2. The distance from any node of S1Ytu1u to any node of S2Ytu2u is x etc. The perturbed
instance is generated as follows. First, the intra-distance between all nodes of S1 reduces from 2
to 0. Second, the set S3Ytu3u is partitioned into equal-sized sets S13 and S23 . The intra-distance
between nodes in both set reduces to 0 and the distance between a node of S13 and S13 reduces to y.
All other distances remain unchanged. The red circles denote the optimal clusterings with the centers
marked red. The table on the r.h.s. shows the original distance metric d. Missing entries are given by
symmetry and dpu,vq“0 for v“u.

We assume xą
a

5{2 and y“2x. Note that the instance is 0-balanced and satisfies x-center proximity
and also x1-center proximity for every x1ďx, by definition. We require a few definitions. Let u11 be
the red node of S1 and let u13 be the red node of S13. The clustering C1 induced by the centers u1, u2

and u3 and simply assigning all other nodes to the closest node among u1, u2, and u3. Let C 11 be the
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clustering induced by the centers u1, u3, u13. Let C21 be the clustering induced by the centers u11, u2,
u3. Similarly, let C2 be the cluster induced by the centers u11, u3 and u13. Observe that the original
metric space satisfies the x-center proximity definition. We will show that the optimal clustering C1

in the original input and optimal clustering C2 in the perturbed input are different. Hence Kleinberg’s
axioms are not fulfilled despite x-center proximity. For a clustering C we use costopCq and costppCq
to define the cost before and after perturbation.
k-means. Consider the original instance. We have that OPTo3“costopC1q“|S1|¨1

2`|S2|¨1
2`

|S3| ¨y
2“ 10`5y2. Furthermore, costopC2q ě costopC 11q “ 5`6x2`4y2. We have that OPTo3ă

costopC2q. Consider the perturbed instance. We have costppC21 q“12`|S2|¨1
2`|S13|¨y

2“6`3y2

and costppC21 qď costppC1q. We have OPT3“ costppC2q“1`p|S2|`1q¨x2“1`6¨x2. Hence, the
optimal clusterings in the original instance (C1) and the perturbed instance (C2) differ. An analogous
reasoning yields the result for k-median.
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