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Abstract

Communication could potentially be an effective way for multi-agent cooperation.
However, information sharing among all agents or in predefined communication
architectures that existing methods adopt can be problematic. When there is a
large number of agents, agents cannot differentiate valuable information that helps
cooperative decision making from globally shared information. Therefore, commu-
nication barely helps, and could even impair the learning of multi-agent cooperation.
Predefined communication architectures, on the other hand, restrict communication
among agents and thus restrain potential cooperation. To tackle these difficulties,
in this paper, we propose an attentional communication model that learns when
communication is needed and how to integrate shared information for cooperative
decision making. Our model leads to efficient and effective communication for
large-scale multi-agent cooperation. Empirically, we show the strength of our
model in a variety of cooperative scenarios, where agents are able to develop more
coordinated and sophisticated strategies than existing methods.

1 Introduction

Biologically, communication is closely related to and probably originated from cooperation. For
example, vervet monkeys can make different vocalizations to warn other members of the group
about different predators [3]. Similarly, communication can be crucially important in multi-agent
reinforcement learning (MARL) for cooperation, especially for the scenarios where a large number
of agents work in a collaborative way, such as autonomous vehicles planning [1], smart grid control
[20], and multi-robot control [15].

Deep reinforcement learning (RL) has achieved remarkable success in a series of challenging
problems, such as game playing [17, 22, 9] and robotics [13, 12, 6]. MARL can be simply seen
as independent RL, where each learner treats the other agents as part of its environment. However,
the strategies of other agents are uncertain and changing as training progresses, so the environment
becomes unstable from the perspective of any individual agent and thus it is hard for agents to
collaborate. Moreover, policies learned using independent RL can easily overfit to the other agents’
policies [10].

We argue one of the keys to solve this problem is communication, which could enhance strategy
coordination. There are several approaches for learning communication in MARL including DIAL [4]
, CommNet [23], BiCNet [19], and Master-Slave [8]. However, information sharing among all agents
or in predefined communication architectures these methods adopt can be problematic. When there
is a large number of agents, agents cannot differentiate valuable information that helps cooperative
decision making from globally shared information, and hence communication barely helps and could
even jeopardize the learning of cooperation. Moreover, in real-world applications, it is costly that all
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agents communicate with each other, since receiving a large amount of information requires high
bandwidth and incurs long delay and high computational complexity. Predefined communication
architectures, e.g., Master-Slave [8], might help, but they restrict communication among specific
agents and thus restrain potential cooperation.

To tackle these difficulties, we propose an attentional communication model, called ATOC, to
enable agents to learn effective and efficient communication under partially observable distributed
environment for large-scale MARL. Inspired by recurrent models of visual attention, we design an
attention unit that receives encoded local observation and action intention of an agent and determines
whether the agent should communicate with other agents to cooperate in its observable field. If so, the
agent, called initiator, selects collaborators to form a communication group for coordinated strategies.
The communication group dynamically changes and retains only when necessary. We exploit a bi-
directional LSTM unit as the communication channel to connect each agent within a communication
group. The LSTM unit takes as input internal states (i.e., encoding of local observation and action
intention) and returns thoughts that guide agents for coordinated strategies. Unlike CommNet and
BiCNet that perform arithmetic mean and weighted mean of internal states, respectively, our LSTM
unit selectively outputs important information for cooperative decision making, which makes it
possible for agents to learn coordinated strategies in dynamic communication environments.

We implement ATOC as an extension of actor-critic model, which is trained end-to-end by backprop-
agation. Since all agents share the parameters of the policy network, Q-network, attention unit, and
communication channel, ATOC is suitable for large-scale multi-agent environments. We empirically
show the success of ATOC in three scenarios, which correspond to the cooperation of agents for
local reward, a shared global reward, and reward in competition, respectively. It is demonstrated
ATOC agents are able to develop more coordinated and sophisticated strategies compared to existing
methods. To the best of our knowledge, this is the first time that attentional communication is
successfully applied to MARL.

2 Related Work

Recently, several models which are end-to-end trainable by backpropagation have been proven
effective to learn communication in MARL. DIAL [4] is the first to propose learnable communication
via backpropagation with deep Q-networks. At each timestep, an agent generates its message as
the input of other agents for the next timestep. Gradients flow from one agent to another through
the communication channel, bringing rich feedback to train an effective channel. However, the
communication of DIAL is rather simple, just selecting predefined messages. Further, communication
in terms of sequences of discrete symbols are investigated in [7] and [18].

CommNet [23] is a large feed-forward neural network that maps inputs of all agents to their actions,
where each agent occupies a subset of units and additionally has access to a broadcasting communi-
cation channel to share information. At a single communication step, each agent sends its hidden
state as the communication message to the channel. The averaged message from other agents is the
input of next layer. However, it is only a large single network for all agents, so it cannot easily scale
and would perform poorly in the environment with a large number of agents. It is worth mentioning
that CommNet has been extended for abstractive summarization [2] in natural language processing.

BiCNet [19] is based on actor-critic model for continuous action, using recurrent networks to connect
each individual agent’s policy and value networks. BiCNet is able to handle real-time strategy games
such as StarCraft micromanagement tasks. Master-Slave [8] is also a communication architecture for
real-time strategy games, where the action of each slave agent is composed of contributions from both
the slave agent and master agent. However, both works assume that agents know the global states of
the environment, which is not realistic in practice. Moreover, predefined communication architectures
restrict communication and hence restrain potential cooperation among agents. Therefore, they
cannot adapt to the change of scenarios.

MADDPG [14] is an extension of actor-critic model for mixed cooperative-competitive environments.
COMA [5] is proposed to solve multi-agent credit assignment in cooperative settings. MADDPG
and COMA both use a centralized critic that takes as input the observations and actions of all agents.
However, MADDPG and COMA have to train an independent policy network for each agent, where
each agent would learn a policy specializing specific tasks [11], and the policy network easily overfits
to the number of agents. Therefore, MADDPG and COMA are infeasible in large-scale MARL.

2



Mean Field [24] takes as input the observation and mean action of neighboring agents to make the
decision. However, the mean action eliminates the difference among neighboring agents in terms of
action and observation and thus incurs the loss of important information that could help cooperative
decision making.

3 Background

Deep Q-Networks (DQN). Combining reinforcement learning with a class of deep neural net-
works, DQN [17] has performed at a level that is comparable to a professional game player.
At each timestep t, the agent observes the state st 2 S, chooses an action at 2 A according
to the policy ⇡, gets a reward rt, and transitions to next state st+1. The objective is to max-
imize the total expected discounted reward Ri =

PT
t=0 �

trt, where � 2 [0, 1] is a discount
factor. DQN learns the action-value function Q⇡(s, a) = Es [Rt|st = s, at = a], which can be
recursively rewritten as Q⇡(s, a) = Es0 [r (s, a) + �Ea0⇠⇡ [Q⇡(s0, a0)]], by minimizing the loss:
L (✓) = Es,a,r,s0 [y0 �Q (s, a; ✓)], where y0 = r + �maxa0 Q (s0, a0; ✓). The agent selects the
action that maximizes the Q value with a probability of 1� ✏ or acts randomly with a probability of ✏.

Deterministic Policy Gradient (DPG). Different from value-based algorithms like DQN, the main
idea of policy gradient methods is to directly adjust the parameters ✓ of the policy to maximize
the objective J (✓) = Es⇠p⇡,a⇠⇡✓ [R] along the direction of policy gradient r✓J (✓), which can
be written as r✓J (✓) = Es⇠p⇡,a⇠⇡✓ [r✓ log ⇡✓ (a|s)Q⇡ (s, a)]. This can be further extended to
deterministic policies [21] µ✓: S 7! A, and r✓J (✓) = Es⇠D

⇥
r✓µ✓ (a|s)raQµ (s, a) |a=µ✓(s)

⇤
.

To ensure raQµ (s, a) exists, the action space must be continuous.

Deep Deterministic Policy Gradient (DDPG). DDPG [13] is an actor-critic algorithm based on
DPG. It respectively uses deep neural networks parameterized by ✓µand ✓Q to approximate the
deterministic policy a = µ (s|✓µ) and action-value function Q

�
s, a|✓Q

�
. The policy network infers

actions according to states, corresponding to the actor; the Q-network approximates the value function
of state-action pair and provides the gradient, corresponding to the critic.

Recurrent Attention Model (RAM). In the process of perceiving the image, instead of processing
the whole perception field, humans focus attention on some important parts to obtain information
when and where it is needed and then move from one part to another. RAM [16] uses a RNN to model
the attention mechanism. At each timestep, an agent obtains and processes a partial observation via a
bandwidth-limited sensor. The glimpse feature extracted from the past observations is stored at an
internal state which is encoded into the hidden layer of the RNN. By decoding the internal state, the
agent decides the location of the sensor and the action interacting with the environment.

4 Methods

ATOC is instantiated as an extension of actor-critic model, but it can also be realized using value-based
methods. ATOC consists of a policy network, a Q-network, an attention unit, and a communication
channel, as illustrated in Figure 1.

We consider the partially observable distributed environment for MARL, where each agent i receives
a local observation oit correlated with the state st at time t. The policy network takes the local
observation as input and extracts a hidden layer as thought, which encodes both local observation
and action intention, represented as hi

t = µI
�
oit; ✓

µ
�
. Every T timesteps, the attention unit takes

hi
t as input and determines whether communication is needed for cooperation in its observable

field. If needed, the agent, called initiator, selects other agents, called collaborators, in its field
to form a communication group and the group stays the same in T timesteps. Communication is
fully determined (when and how long to communicate) by the attention unit when T is equal to
1. T can also be tuned for the consistency of cooperation. The communication channel connects
each agent of the communication group, takes as input the thought of each agent and outputs the
integrated thought that guides agents to generate coordinated actions. The integrated thought h̃i

t is
merged with hi

t and fed into the rest of the policy network. Then, the policy network outputs the
action ait = µII(hi

t, h̃
i
t; ✓

µ). By sharing encoding of local observation and action intention within a
dynamically formed group, individual agents could build up relatively more global perception of the
environment, infer the intent of other agents, and cooperate on decision making.
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4.1 Attention model

When the coach directs a team, instead of managing a whole scene, she focuses attention selectively
on the key position and gives some directional but not specific instructions to the players near
the location. Inspired from this, we introduce the attention mechanism to learning multi-agent
communication. Different from the coach, our attention unit never senses the environment in full,
but only uses encoding of observable field and action intention of an agent and decides whether
communication is helpful in terms of cooperation. The attention unit can be instantiated by RNN
or MLP. The first part of the actor network that produces the thought corresponds to the glimpse
network and the thought hi

t can be considered as the glimpse feature vector. The attention unit takes
the thought representation as input and produces the probability of the observable field of the agent
becomes an attention focus (i.e., the probability of communication).

Observation

Thought

ActorNet (II)

Action

CriticNet

Communication Channel

Attention 
Unit 

 

. . . . .

.......... 

integrated thought 

Gradient

 
collaboratorin

iti
at
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Figure 1: ATOC architecture.

Unlike existing work on learning communication in
MARL, e.g., CommNet and BiCNet, where all agents
communicate with each other all the time, our attention
unit enables dynamic communication among agents only
when necessary. This is much more practical, because
in real-world applications communication is restricted by
bandwidth and/or range and incurs additional cost, and
thus it may not be possible or cost too much to maintain
full connectivity among all the agents. On the other hand,
dynamic communication can keep the agent from receiv-
ing useless information compared to full connectivity. As
will be discussed in next section, useless information may
negatively impact cooperative decision making among
agents. Overall, the attention unit leads to more effective
and efficient communication.

4.2 Communication

When an initiator selects its collaborators, it only considers
the agents in its observable field and ignores those who
cannot be perceived. This setting complies with the facts:
(i) one of the purposes of communication is to share the
partial observation, and adjacent agents could understand
each other easily; (ii) cooperative decision making can be
more easily accomplished among adjacent agents; (iii) all agents share one policy network, which
means adjacent agents may have similar behaviors, however communication can increase the diversity
of their strategies. There are three types of agents in the observable field of the initiator: other
initiators; agents who have been selected by other initiators; agents who have not been selected.
We assume a fixed communication bandwidth, which means each initiator can select at most m
collaborators. The initiator first chooses collaborators from agents who have not been selected, then
from agents selected by other initiators, finally from other initiators, all based on proximity.

When an agent is selected by multiple initiators, it will participate the communication of each group.
Assuming agent k is selected by two initiators p and q sequentially. Agent k first participates in the
communication of p’s group. The communication channel integrates their thoughts: {h̃p

t , · · · , h̃k0

t } =
g(hp

t , · · · , hk
t ). Then agent k communicates with q’s group: {h̃q

t , · · · , h̃k00

t } = g(hq
t , · · · , h̃k0

t ). The
agent shared by multiple groups bridges the information gap and strategy division among individual
groups. It can disseminate the thought within a group to other groups, which can eventually lead
to coordinated strategies among the groups. This is especially critical for the case where all agents
collaborate on a single task. In addition, to deal with the issue of role assignment and heterogeneous
agent types, we can fix the position of agents who participate in communication.

The bi-directional LSTM unit acts as the communication channel. It plays the role of integrating
internal states of agents within a group and guiding the agents towards coordinated decision making.
Unlike CommNet and BiCNet that integrate shared information of agents by arithmetic mean and
weighted mean, respectively, our LSTM unit can selectively output information that promotes
cooperation and forget information that impedes cooperation through gates.
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Figure 2: Illustration of experimental scenarios: cooperative navigation (left), cooperative pushball (mid),
predator-prey (right).

4.3 Training

The training of ATOC is an extension of DDPG. More concretely, consider a game with N agents,
and the critic, actor, communication channel, and attention unit of ATOC is parameterized by ✓Q,
✓µ, ✓g, and ✓p, respectively. Note that we drop time t in the following notations for simplicity. The
experience replay buffer R contains the tuples (O,A,R,O0, C) recording the experiences of all
agents, where O = (o1, . . . , oN ), A = (a1, . . . , aN ), R = (r1, . . . , rN ), O0 = (o01, . . . , o

0
N ), and

C is a N ⇥ N matrix that records the communication groups. We select experiences where the
action is determined by an agent independently (i.e., without communication) and experiences with
communication, respectively, to update the action-value function Qµ as:

L(✓Q) = Eo,a,r,o0

h
(Qµ (o, a)� y)2

i
, y = r + �Qµ0

(o0, a0) |a0=µ0(o0).

The policy gradient can be written as:

r✓µJ (✓µ) = Eo,a⇠R
⇥
r✓µµ (a|o)raQ

µ (o, a) |a=µ(o)

⇤
.

By the chain rule, the gradient of integrated thought can be further derived as:

r✓gJ (✓g) = Eo,a⇠R

h
r✓gg(h̃|H)rh̃µ(a|h̃)raQ

µ (o, a) |a=µ(o)

i
.

The gradients are backpropagated to the policy network and communication channel to update the
parameters. Then, we softly update target networks as ✓0 = ⌧✓ + (1� ⌧) ✓0.

The attention unit is trained as a binary classifier for communication. For each initiator i and its
group Gi, we calculate the difference of mean Q values between coordinated actions and independent
actions (denoted as ā)

�Qi =
1

|Gi|
(
X

j2Gi

Q
�
oj , aj |✓Q

�
�

X

j2Gi

Q
�
oj , āj |✓Q

�
)

and store (�Qi, hi) into a queue D, where �Q weights the performance enhancement produced by
communication. When an episode ends, we perform min-max normalization on �Q in D and get
�Q̂ 2 [0, 1]. �Q̂ can be used as the tag of the binary classifier and we use log loss to update ✓p as:

L(✓p) = ��Q̂i log(p
�
hi|✓p

�
)� (1��Q̂i) log

�
1� p

�
hi|✓p

��
.

5 Experiments

Experiments are performed based the multi-agent particle environment [14, 18], which is a two-
dimensional world with continuous space and discrete time, consisting agents and landmarks. We
made a few modifications to the environment so as to adopt a large number of agents. Each agent
has only local observation, acts independently and cooperatively, and collects its own reward or
a shared global reward. We perform experiments in three scenarios, as illustrated in Figure 2, to
investigate the cooperation of agents for local reward, shared global reward and reward in competition,
respectively. We compare ATOC with CommNet, BiCNet and DDPG. CommNet and BiCNet are the
full communication model, and DDPG is exactly ATOC without communication. MADDPG has to
train an independent policy network for each agent, which makes it infeasible in large-scale MARL.

5.1 Hyperparameters

In all the experiments, we use Adam optimizer with a learning rate of 0.001. The discount factor of
reward � is 0.96. For the soft update of target networks, we use ⌧ = 0.001. The neural networks use
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ReLU and batch normalization for some hidden layers. The actor network has four hidden layers,
the second layer is the thought (128 units), and the output layer is the tanh activation function. The
critic network has two hidden layers with 512 and 256 units respectively. We use two-layer MLP to
implement the attention unit but it is also can be realized by RNN. For communication, T is 15. We
initialize all of the parameters by the method of random normal. The capacity of the replay buffer is
105 and every time we take a minibatch of 2560. We noted that the large minibatch can accelerate the
convergence process, especially for the case of sparse reward. We accumulate experiences in the first
thirty episodes before training. As DDPG, we use an Ornstein-Uhlenbeck process with ✓ = 0.15 and
� = 0.2 for the exploration noise process.

5.2 Cooperative Navigation

In this scenario, N agents cooperatively reach L landmarks, while avoiding collisions. Each agent is
rewarded based on the proximity to the nearest landmark, while it is penalized when colliding with
other agents. Ideally, each agent predicts actions of nearby agents based on its own observation and
received information from other agents, and determines its own action towards occupying a landmark
without colliding with other agents.

episode

m
ea

n 
re
w
ar
d

ATOC 
CommNet 
BiCNet 
DDPG

Figure 3: Reward of ATOC against baselines
during training on cooperative navigation.

We trained ATOC and the baselines with the settings of
N = 50 and L = 50, where each agent can observe three
nearest agents and four landmarks with relative positions
and velocities. At each timestep, the reward of an agent is
�d, where d denotes the distance between the agent and
its nearest landmark, or �d� 1 if a collision occurs. Fig-
ure 3 shows the learning curves of 3000 episodes in terms
of mean reward, averaged over all agents and timesteps.
We can see that ATOC converges to higher mean reward
than the baselines. We evaluate ATOC and the baselines
by running 30 test games and measure average mean re-
ward, number of collisions, and percentage of occupied
landmarks.

As shown in Table 1, ATOC largely outperforms all the baselines. In the experiment, CommNet,
BiCNet and DDPG all fail to learn the strategy that ATOC obtains. That is an agent is first trying
to occupy the nearest landmark. If the landmark is more likely to be occupied by other agent,
the agent will turn to another vacant landmark rather than keeping probing and approaching the
nearest landmark. The strategy of DDPG is more aggressive, i.e., multiple agents usually approach
a landmark simultaneously, which could lead to collisions. Both CommNet and BiCNet agents are
more conservative, i.e., they are more willing to avoid collisions rather than seizing a landmark, which
eventually leads to a small number of occupied landmarks. Moreover, both CommNet and BiCNet
agents are more likely to surround a landmark and observe the actions of other agents. Nevertheless,
gathered agents are prone to collisions.

As ATOC without communication is exactly DDPG and ATOC outperforms DDPG, we can see
communication indeed helps. However, CommNet and BiCNet also have communication, why is
their performance much worse? CommNet performs arithmetic mean on the information of the
hidden layers. This operation implicitly treats information from different agents equally. However,
information from various agents has different value for an agent to make decisions. For example, the
information from a nearby agent who intends to seize the same landmark is much more useful than
the information from an agent far away. In the scenario with a large number of agents, there is a lot
of useless information, which can be seen as noise that interferes the decision of agents. BiCNet uses

Table 1: Cooperative Navigation

ATOC ATOC w/o Comm. DDPG CommNet BiCNet

N = 50, L = 50
mean reward �0.04 �0.22 �0.14 �0.60 �0.52
# collisions 13 47 32 59 51

% occupied landmarks 92% 40% 22% 12% 16%

N = 100, L = 100
mean reward �0.05 �0.23 �0.65 �0.73
# collisions 28 53 68 91

% occupied landmarks 89% 25% 17% 9%
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Figure 4: Visualizations of communications among ATOC agents on cooperative navigation. The rightmost
figure illustrates actions taken by a group of agents with and without communication.

a RNN as the communication channel, which can be seen as the weighted mean. However, as the
number of agents increases, RNN also fails to capture the importance of information from different
agents. Unlike CommNet and BiCNet, ATOC exploits the attention unit to dynamically perform
communication, and most information is from nearby agents and thus helpful for decision making.

It is essential for agents to share a policy network as they do in the experiments. The primary reason
is that most real-world applications are open systems, i.e., agents come and go. If each agent is
trained with an independent policy network, the network is apt to overfit to the number of agents in
the environment and thus hard to generalize, not to mention the efforts needed to train numerous
independent policy networks, like MADDPG, in large-scale multi-agent environments. However,
agents that share a policy network may be homogeneous in terms of strategy, e.g., DDPG agents
are all aggressive to seize the landmarks while CommNet and BiCNet agents are all conservative.
Nevertheless, unlike these baselines, ATOC agents behave differently: when a landmark is more
likely be occupied by an agent, nearby agents will turn to other landmarks. The primary reason
behind this is the communication scheme of ATOC. An agent can share its local observation and
intent to nearby agents, i.e., the dynamically formed communication group. Although the size of
communication group is small, the shared information may be further encoded and forwarded among
groups by the agent who belongs to multiple groups. Thus, each agent can obtain more and diverse
information. Based on the received information, agents may infer the actions of other agents and
behave accordingly. Overall, ATOC agents show cooperative strategies to occupy the landmarks.

To investigate the scalability of ATOC and the baselines, we directly use the trained models under
the setting of N = 50 and L = 50 to the scenario of N = 100 and L = 100. With the increase of
agent density, the number of collisions of all the methods increases. However, as shown in Table 1,
ATOC is still much better than the baselines in terms of all the metrics, which proves the scalability
of ATOC. Interestingly, the percentage of occupied landmarks increases for DDPG and CommNet.
As discussed before, the learned strategy of CommNet is conservative in the original setting, and thus
it might lead to more occupied landmarks when agents are dense and decisions are more conflicting.
The percentage of occupied landmarks of DDPG increases slightly, the number of collisions increase
though. The largely degraded performance of BiCNet in terms of all the metrics shows its bad
scalability.

initiator �o��a�orator �o���ni�ation��at��an��ar�

Figure 5: Heatmap of attention corresponding to
communication among ATOC agents in cooper-
ative navigation.

We visualize the communications among ATOC agents
to trace the effect of the attention unit. As illustrated
in Figure 4 (the left three figures), attentional commu-
nications occur at the regions where agents are dense
and situations are complex. As the game progresses,
the agents occupy more landmarks and communication
is less needed. We select a communication group and
observe their behaviors with/without communications.
We find that agents without communications are more
likely to target the same landmarks, which may lead
to collisions, while agents with communications can
spread to different landmarks, as depicted in Figure 4
(the rightmost figure).

To investigate the correlation between communication and attention, we further visualize the com-
munication among ATOC agent at certain timestep and its corresponding heatmap of attention in
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Figure 6: Reward of ATOC against
baselines during training on cooper-
ative pushball.
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Figure 7: Learning curves of ATOC (left) and CommNet (right) during
learning on predator-prey.

Figure 5. The regions where communications occur are the attention focuses as illustrated in Figure 5.
Only at the regions where agents are dense and landmarks are not occupied, communication is needed
for cooperative decision making. Our attention unit learns exactly what we expect, i.e., carrying out
communication only when needed. Further, we turn off the communications of ATOC agents (without
retraining) and the performance drops as shown in Table 1. Therefore, we argue that communication
during execution is also essential for better cooperation.

5.3 Cooperative Pushball

In this scenario, N agents who share a global reward cooperatively push a heavy ball to a designated
location. The ball is 200 times heavier and 144 times bigger than an agent. Agents push the ball
by collisions, not by forces, and control the moving direction by hitting the ball at different angles.
However, agents are not given the prior knowledge of how to control the direction, which is learned
during training. The inertial mass of the ball makes it difficult for agents to change its state of motion,
and round surfaces of the ball and agents make the task more complicated. Therefore, the task is very
challenging. In the experiment, there are 50 agents, each agent can observe the relative locations of
the ball and at most 10 agents within a predefined distance, and the designated location is the center
of the playground. The reward of agents at each timestep is �d, where d denotes the distance from
the ball to the center of the playground.

Figure 6 shows the learning curve in terms of normalized mean reward for ATOC and the baselines.
ATOC converges to a much higher reward than all the baselines. CommNet and BiCNet have
comparable reward, which is higher than DDPG. We evaluate ATOC and the baselines by running 30
test games. The normalized mean reward is illustrated in Table 2.

ATOC agents learn sophisticated strategies: agents push the ball by hitting the center of the ball; they
change the moving direction by striking the side of the ball; when the ball is approaching the target
location, some agents will turn to the opposite of moving direction of the ball and collide with the
ball to reduce its speed so as to keep the ball from passing the target location; at the end agents split
into two parts with equal size and strike the ball from two opposite directions, and eventually the ball
will be stabilized at the target location. The control of moving direction and reducing speed embodies
the division of work and cooperation among agents, which is accomplished by communication. By
visualizing the communication structures and behaviors of agents, we find that agents in the same
communication group behave homogeneously, e.g., a group of agents push the ball, a group of agents
control the direction, and a group of agents reduce the speed when the ball approaches the target
location.

DDPG agents all behave similarly and show no division of work. That is almost all agents push the
ball from the same direction, which can lead to the deviated direction or quickly passing the target
location. Until the ball is pushed far from the target location, DDPG agents realize they are pushing
at the wrong direction and switch to the opposite together. Therefore, the ball is pushed back and
force and hardly stabilized at the target location. Communication indeed helps, which explains why
CommNet and BiCNet are better than DDPG. ATOC is better than CommNet and BiCNet, which is

Table 2: Cooperative Pushball

ATOC ATOC w/o Comm. DDPG CommNet BiCNet

normalized mean reward 0.95 0.86 0.50 0.71 0.77
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reflected in the experiments by ATOC’s much smaller amplitude of oscillation. The primary reason
has been explained in previous section.

To investigate the effect of communication in ATOC, we turn off the communication of ATOC agents
(without retraining), and the result is shown in Table 2. The performance of ATOC drops, but it
is still better than all the baselines. The reason behind this is that communication stabilizes the
environment during training. Moreover, in ATOC, cooperative policy gradients can backpropagate to
update individual policy networks, which enables agents to infer the actions of other agents without
communication and thus behaves cooperatively.

5.4 Predator-Prey

In this variant of the classic predator-prey game, 60 slower predators chase 20 faster preys around
an environment with 5 landmarks impeding the way. Each time a predator collides with an prey,
the predator is rewarded with +10 while the prey is penalized with �10. Each agent observes the
relative positions and velocities of five nearest predators and three nearest preys, and the positions
of two nearest landmarks. To restrain preys in the playground instead of runaway, a prey is also
given a reward based on its coordinates (x, y) at each timestep. The reward is �f(x)� f(y), where
f(a) = 0 if a  0.9, f(a) = 10⇥ (a� 0.9) if 0.9 < a < 1, otherwise f(a) = e2a�2.
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Figure 8: Cross-comparison between ATOC and baselines in
terms of predator score on predator-prey.

In this scenario, predators collaborate to
surround and seize preys, while preys co-
operate to perform temptation and eva-
sion. In the experiment, we focus on
the cooperation of predators/preys rather
than the competition between them. For
each method, predator and prey agents
are trained together. Figure 7 shows the
learning curves of predators and preys for
ATOC and CommNet. As the learning
curves of DDPG and BiCNet are not sta-
ble in this scenario, we only show the
learning curves of ATOC and CommNet. From Figure 7, we can see that ATOC converges much
faster than CommNet, where ATOC is stabilized after 1000 episodes, but CommNet is stabilized after
2500 episodes. As the setting of the scenario appears to be more favorable for predators than preys,
which is also indicated in Figure 7, both ATOC and CommNet predators are converged more quickly
than preys.

To evaluate the performance, we perform cross-comparison between ATOC and the baselines. That is
we play the game using ATOC predators against preys of the baselines and vice versa. The results are
shown in terms of the 0-1 normalized mean predator score of 30 test runs for each game, as illustrated
in Figure 8. The first bar cluster shows the games between predators and preys of the same method,
from which we can see that the game setting is indeed more favorable for predators than preys since
predators have positive scores for all the methods. The second bar cluster shows the scores of the
games where ATOC predators are against DDPG, CommNet, and BiCNet preys. We can see that
ATOC predators have higher scores than the predators of all the baselines and hence are stronger
than other predators. The third bar cluster shows the games where DDPG, CommNet, and BiCNet
predators are against ATOC preys. The predator scores are all low, comparable to the scores in the
first cluster. Therefore, we argue that ATOC leads to better cooperation than the baselines even in
competitive environments and the learned policy of ATOC predators and preys can generalize to the
opponents with different policies.

6 Conclusions

We have proposed an attentional communication model in large-scale multi-agent environments,
where agents learn an attention unit that dynamically determines whether communication is needed
for cooperation and also a bi-directional LSTM unit as a communication channel to interpret encoded
information from other agents. Unlike existing methods for communication, ATOC can effectively and
efficiently exploits communication to make cooperative decisions. Empirically, ATOC outperforms
existing methods in a variety of cooperative multi-agent environments.
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