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Abstract

In the k-nearest neighborhood model (k-NN), we are given a set of points P, and
we shall answer queries ¢ by returning the k nearest neighbors of ¢ in P according
to some metric. This concept is crucial in many areas of data analysis and data
processing, e.g., computer vision, document retrieval and machine learning. Many
k-NN algorithms have been published and implemented, but often the relation
between parameters and accuracy of the computed k-NN is not explicit. We study
property testing of £-NN graphs in theory and evaluate it empirically: given a point
set P C R and a directed graph G = (P, E), is G a k-NN graph, i.e., every point
p € P has outgoing edges to its k nearest neighbors, or is it e-far from being a
k-NN graph? Here, e-far means that one has to change more than an e-fraction of
the edges in order to make G a k-NN graph. We develop a randomized algorithm
with one-sided error that decides this question, i.e., a property tester for the k-
NN property, with complexity O(,/nk?/e?) measured in terms of the number

of vertices and edges it inspects, and we prove a lower bound of Q(y/n/ek).
We evaluate our tester empirically on the k-NN models computed by various
algorithms and show that it can be used to detect £-NN models with bad accuracy
in significantly less time than the building time of the k-NN model.

1 Introduction

The k-nearest neighborhood (k-NN) of a point g with respect to some set of points P is one of the
most fundamental concepts used in data analysis tasks such as classification, regression and machine
learning. In the past decades, many algorithms have been proposed in theory as well as in practice
to efficiently answer k-NN queries [e.g., 1} [7H10} 118 201 23} 26} 127, 30, 36]. For example, one can
construct a k-NN graph of a point set P, i.e., a directed graph G = (P, E) of size n = | P| such that F/
contains an edge (p, ¢) for every k-nearest neighbor g of p for every p € P, in time O(nlogn + kn)
for constant dimension ¢ [8]]. Due to restrictions on computational resources, approximations and
heuristics are often used instead (see, e.g., [9,110] and the discussion therein for details). Given the
output graph G’ of such a randomized approximation algorithm or heuristic, one might want to check
whether G’ resembles a k-NN graph before using it, e.g., in a data processing pipeline. However, the
time required for exact verification might cancel out the advantages gained by using an approximation
algorithm or a heuristic. On the other hand, testing whether G’ is at least close to a k-NN graph will
suffice for many purposes. Property testing is a framework for the theoretical analysis of decision and
verification problems that are relaxed in favor of sublinear complexity. One motivation of property
testing is to fathom the theoretical foundations of efficiently assessing approximation and heuristic
algorithms’ outputs.
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Property testing [32]], and in particular property testing of graphs [21], has been studied quite
extensively since its founding. A one-sided error e-tester for a property P of graphs with average
degree bounded by d has to accept every graph G € P and it has to reject every graph H that is
e-far from P with probability at least 2/3 (i.e., if graphs that are e-far are relevant, it has precision 1
and recall 2/3). A graph H of size n is e-far from some property P if more than edn edges have to
be added or removed to transform it into a graph that is in P. A two-sided error e-tester may also
err with probability less than 1/3 if the graph has the property. The computational complexity of
a property tester is the number of adjacency list entries it reads, denoted its queries. Many works
in graph property testing focus on testing plain graphs that contain only the pure combinatorial
information. However, most graphs that model real data contain some additional information that
may, for example, indicate the type of an atom, the bandwidth of a data link or spatial information of
an object that is represented by a vertex or an edge, respectively. In this work, we consider geometric
graphs with bounded average degree. In particular, the graphs are embedded into R?, i.e., every
vertex has a coordinate = € R?. The coordinate of a vertex may be obtained by a query.

Main Results Our first result is a property tester with one-sided error for the property that a given
geometric graph GG with bounded average degree is a k-nearest neighborhood graph of its underlying
point set (i.e., it has precision 1 and recall 2/3 when taking e-far graphs as relevant).

Theorem 1. Given an input graph G = (V, E) of size n = |V| with bounded average degree d,
there exists a one-sided error e-tester that tests whether G is a k-nearest neighbourhood graph. It
has query complexity c - \/n k*v);5 /€2, where 15 is the §-dimensional kissing number and ¢ > 0 is a
universal constant.

We emphasize that it is not necessary to compute the ground truth (i.e., the k-NN of P) in order to
run the property tester. Furthermore, the tester can be easily adapted for graphs G = (P U Q, F)
such that P N @ = §) and we only require that for every ¢ € @, E contains an edge (g, p) for every
k-nearest neighbor p of ¢ in P. This is more natural when we think of P as a training set and () as
a test set or query domain. To complement this result, we prove a lower bound that holds even for
two-sided error testers.

Theorem 2. Testing whether a given input graph G = (V, E) of size n = |V| is a k-nearest
neighbourhood graph with one-sided or two-sided error requires max(/n/(8ek), kis/6) queries.

Finally, we provide an experimental evaluation of our property tester on approximate nearest neighbor
(ANN) indices computed by various ANN algorithms. Our results indicate that the tester requires
significantly less time than the ANN algorithm to build the ANN index, most times just a 1/10-fraction.
Therefore, it can often detect badly chosen parameters of the ANN algorithm at almost no additional
cost and before the ANN index is fed into the remaining data processing pipeline.

Related Work We give an overview of sublinear algorithms for geometric graphs, which is the topic
of research that is most relevant to our work. As mentioned above, the research on k-NN algorithms
is very broad and diverse. See, e.g., [[15133] for surveys. Testing whether a geometric graph that is
embedded into the plane is a Euclidean minimum spanning tree has been studied by Ben-Zwi et al. [3]
and Czumaj and Sohler [TT]]. In [3]], the authors show that any non-adaptive tester has to make 2(/n)
queries, and that any adaptive tester has query complexity Q(n'/?). In [11]], a one-sided eror tester
with query complexity O(\/ n/€) is given. In a fashion similar to property testing, Czumaj et al. [14]
estimate the weight of Euclidean Minimum Spanning Trees in O (/72 - poly (€)) time, and Czumaj and

Sohler [[12] approximate the weight of Metric Minimum Spanning Trees in O(n - poly(¢)) time for
constant dimension, respectively. Hellweg et al. [22] develop a tester for Euclidean (1 + §)-spanners.
Property testers for many other geometric problems can, for example, be found in [13}29].

2 Preliminaries

Letd, d, e,k > 0,d > k be fixed parameters. In this paper, we consider property testing on directed
geometric graphs with bounded average degree d. A graph G = (V, E') with an associated function
coord : V — R is a geometric graph, where each vertex v is assigned a coordinate coord(v). Given
v € V, we denote its degree by d(v) and the set of adjacent vertices N(v) := {u | (v,u) € E}. The
Euclidean distance between two points z, y is denoted by dist(x, y). For the sake of simplicity, we



write dist(u, v) := dist(coord(u), coord(v)) for two vertices u, v € V. When there is no ambiguity,
we also refer to coord(v) by simply writing v. We denote the size of the graph G = (V, E') at hand
by n =|V].

Definition 1 (k-nearest neighborhood graph). A geometric graph G = (V, E) is a k-nearest neigh-
bourhood (k-NN) graph if for every v € V, the k points uy, . .., ux € V thatlie nearest to v according
to dist(-, -) are neighbors of v in G, i.e., (v,u;) € E for all i € [k] (breaking ties arbitrarily).

Let G = (V, E) be a geometric graph. We say that a graph G is e-far from a geometric graph
property P if at least edn edges of G have to be modified in order to convert it into a graph that satisfies
the property P. We assume that the graph G is represented by a function fg : V x [n] = V U {x},
where f(v, i) denotes the i*" neighbor of v if v has at least 7 neighbors (otherwise, fg(v,7) = %),
a degree function dg : V' — N that outputs the degree of a vertex and a coordinate function
coordg : V' — R? that outputs the coordinates of a vertex.

Definition 2 (e-tester). A one-sided (error) e-tester for a property P with query complexity ¢ is a
randomized algorithm that makes ¢ queries to fg, dg and coordg for a graph GG. The algorithm
accepts if G has the property P. If G is e-far from P, then it rejects with probability at least 2/3.

The motivation to consider query complexity is that the cost of accessing the graph, e.g., through an
ANN index, is costly but cannot be influenced. Therefore, one should minimize access to the graph.
Definition 3 (witness). Let #nearer(v,w) := {u € V | u # v A dist(v,u) < dist(v, w)}|
denote the number of vertices u that lie nearer to v than w. Further let knn(v) :={u € V | u #
v A #nearer(v,u) < k — 1} denote the set of v’s k-nearest neighbors. Let wit(v) :={u €V | u &
N(v) Au € knn(v)} define the subset of knn(v) that is not adjacent to v. If wit(v) # @ or d(v) < k,
we call v incomplete, and we call elements of wit(v) the witnesses of v.

If G is e-far from being a k-nearest neighborhood graph, an e-fraction of its vertices are incomplete.
The proof follows from common arguments in property testing (see the full version [[16]).

Lemma 4. If G is e-far from being a k-nearest neighborhood graph, at least edn/(2k) vertices are
incomplete.

The main challenge for the property tester will be to find matching witnesses for a fixed set of
incomplete vertices. The following result from coding theory for Euclidean codes bounds the
maximum number of points ¢; that can have the same fixed point p as nearest neighbor.

Lemma 5. [35] Given a point set P C R and p € P, the maximum number of points q; € P
that can have p as nearest neighbour is bounded by the §-dimensional kissing number 15, where
20-20755(1+0(1)) < 45 [34] and 15 < 20-4010+0(V)) [54] (asymptotic notation with respect to ).

3 Upper Bound

The idea of the tester is as follows (see[Algorithm I). Two samples are drawn uniformly at random:
S’, which shall contain many incomplete vertices if G is e-far from being a k-nearest neighborhood
graph and T, which shall contain at least one witness of an incomplete vertex in S’. For every
v € 57, the algorithm should query its degree, its coordinate as well as every adjacent vertex and their
coordinates and calculate the distance to them. If d(k) < k or if one of the vertices in T" is a witness
of v, the algorithm found an incomplete vertex, and hence rejects. Otherwise, it accepts.

However, we have to deal with the case that some vertices in S’ have non-constant degree, say,
Q(1/e€), such that querying all their adjacent vertices would require too many queries. To this end,
we prove that one can prune these vertices to obtain a subset S C S’ of low degree vertices that still
contains many incomplete vertices with sufficient probability.

Proof of [Theorem 1| We prove that is an e-tester as claimed by Since
Algorithm 1|does never reject a k-nearest neighbourhood graph, assume without loss of generality

that G = (V, E) is e-far from being a k-nearest neighborhood graph. [Algorithm 1| only queries the
(0]

neighbors of S, and therefore its query complexity is at most |.S|- 100k /e = nk?/e?). It remains
to prove the correctness.

In the following, let L := {v € V' | d(v) < 100k/e} denote the set of all vertices in G that have low
degree, let I denote the set of incomplete vertices in L, and let Ig C S denote the set of incomplete



Algorithm 1: Tester for k-nearest neighborhood

Data: G = (V,E),d, k, ¢
Result: accept or reject

S’ + sample M vertices from V' u.a.r. without replacement;
T + sample In(10) - k - ¢ - 4/ vertices from V u.a.r. with replacement;
S {ves|dw) <100k/e};
forve S,ueTdo

if (w#£vAu€knn(v) Aug N(v))Vd(v) <k then

| reject;

end
end
accept;

vertices in S. By an averaging argument, |V\L| < edn/(100k). It follows from [Lemma 4] that L
contains at least edn/(4k) incomplete vertices, and therefore we focus on finding incomplete vertices
that have low degree. Given u € T, let Wg(u) be a random variable that is 1 if u is a witness of an
incomplete vertex v € Ig and 0 otherwise.

The proof of follows from the following three claims. First, note that .S is a uniform
sample without replacement from L whose size |S| is random. However, |S| is sufficiently large with
constant probability. This claim follows from Markov’s inequality (see full version [[16])).

Claim 6. With probability at least 9/10, |S| > 20+/n/e.

In the subsequent sections, we prove the following two claims. Given that S is sufficiently large, it
will contain at least y/n incomplete vertices with constant probability.

Claim 7. [f |S| > 20v/n/e, it holds with probability at least 9/10 that |Is| > +/n.

Finally, we show that if S contains at least \/n incomplete vertices, then 7" will contain at least one
witness of such an incomplete vertex with constant probability.

Claim 8 (Lemma 11). If|Is| > \/n, with probability at least 9/10, Pr[}_, . Ws(w) > 0].

The correctness follows by a union bound over these three bad events.
Analysis of the Sample S: Proof of

Proof. Since S was sampled without replacement, the random variable |Is| follows the hyper-
geometric distribution. Let X be a random variable that denotes the number of draws that are

needed to obtain /n incomplete vertices in S, which therefore follows the negative hyperge-
ometric distribution. By , we have E[X] < (ed‘{’)/(% By the definition of |Ig|
and X, we have Pr[|Ig| < /n] < Pr[X > |S|]. We apply Markov’s inequality to obtain
PriX > |5]] < \SK%% It follows that |S| € Q(y/n) ensures |Ig| > /n with sufficient
probability. O

Analysis of the Sample T: Proof of We prove the following lower bound on the number
of witnesses in GG, which will imply a bound on |T'| by k-reducing it to the case k = 1.

Proposition 9. Given a point set P C R%, p € P and k € N, the maximum number of points q; € P
that can have p as k-nearest neighbor is bounded by k - 1.

We note that this bound is tight, as shown in

Definition 10 (k-reducing). Let p € P be an arbitrary point. Fix QQ := {q € P | #nearer(q,p) <
k — 1}. Repeat the following steps until Vg € Q : 3¢’ € Q \ {¢} : dist(q,¢") < dist(q, p).

(%) Pick a point ¢ € @ that lies furthest from w and let @, := {¢' € Q | ¢ # ¢’ A dist(q,¢) <
dist(g, p)}.



#) SetQ:=Q\ Q.
Proof of [Proposition 9 'We apply to p and prove that the size of @Q at the beginning of

the process is at most k - 15, which proves the claim.

At first we show that every vertex that is picked by (x) stays in @Q: Let ¢, g2 be arbitrary points that
are picked by (x) in the process of k-reducing, with g; being picked in an earlier iteration than g.
The latter implies dist(g2,p) < dist(g1,p). Assume that g1 € @, at the time g is selected, and
therefore ¢; is removed from Q. Since ¢; is deleted by (#), it holds that dist(¢q1,p) < dist(g2,p),
which is a contradiction as ¢; has been selected before ¢.

We continue to bound the maximum number of vertices that share their k-nearest neighbor: Because p
is the nearest point for the remaining ¢ € @, we apply[Lemma 3|and conclude that at most ¢)5 vertices
are remaining in @ after k-reducing. Since every iteration of step (#) removed at most k — 1 points
from @, the cardinality of @ at the beginning of the process was at most )5+ (k—1) 15 = k-¢s5. O

Since at most k - s vertices can share a witness by [Proposition 9} there are at least ILIj}L distinct

witnesses of vertices in S. We employ this bound to calculate the size of the sample 7" such that it
contains at least one witness of an incomplete vertex in .S with constant probability.

Lemma 11. If|S| > % and |T| > In(10) - k - ¥5 - \/n, then Pr [3°, cr Ws(w) = 0] < 4.

Proof. Since every vertex is sampled uniformly at random with replacement, the event that one vertex

is a witness is a Bernoulli trial with probability Pr,,cy [Wgs(w) = 1] > ,Lljj(l; L= k‘i‘zn Therefore
Pryev[Ws(w) =0] < (1 - k‘ffaln) We have
7] >n(10) k- s - V7
= |Is| - |T| >1n(10) - k- ¥5 - n )
s\ _1
= (11— —- <— 2
( k-ds-n) 10 @
1
s P W, =0|<— 3
{PUCRE ©

By(Claim 7| [Eq. (1)|holds for | S| as chosen in|Algorithm 1} In[Eq. (2)|we use the fact that 1 —x < e~
and in|Eq. (3)|we use that all events W (u) = 0 for u € T are independent Bernoulli trials. O

Finally, we observe that the factor k that is introduced in is tight.

Lemma 12. For every § > 3,k > 2, there exists a point set P C R® such that there is a set of ki);
points q; € P that have the same k-nearest neighbor.

Proof. Takeaset P = PU (0,...,0) of §-dimensional points, where P consists of 15 points from
RR? that have (0, ...,0) € R? as their nearest neighbor. Create a new point set P’ from P by splitting
each point p € PN P into k points p1, ..., pg. Breaking ties arbitrarily, the 1 to £ — 1 nearest
neighbors of p; are U;.;{p;} (with distance 0), but (0, ...,0) is the k-nearest neighbor for all p;,
i € [k]. Thus, |[P/|+1 =k -|P|+1 = kt5 + 1 and all points in P’ except the origin have (0, ..., 0)
as their k-nearest neighbor. O

4 Lower Bound

We prove the first lower bound by constructing two (distributions of) graphs that are composed of
multiple copies of the same building block. All graphs in one distribution are k-nearest neighborhood
graphs, and all graphs in the other distribution are e-far from the property. It suffices to show that
no deterministic algorithm that makes o(y/n) queries can distinguish these two distributions with
sufficiently high probability. Our building block is defined as follows.



Definition 13 (line gadget). Let x € R. A line gadget is a geometric, complete, directed graph
L, = (V, E) of size k + 1. The vertices vy, ..., vg+1 € V have coordinates x,z+1,...,x+k € R.

Note that a line gadget is a k-nearest neighborhood graph itself. In the following, let &’ := k + 1. The
graphs in the first distribution D; are composed of n/k’ line gadgets with sufficiently large pair-wise
distances that maintain the k-nearest neighborhood property. The construction of the distribution of
e-far graphs D is a bit more complicated. Basically, we want to move [en/k'] line gadgets to the
exact position of [en/k’] other line gadgets such that in the resulting graph, [en/k’| pairs of line
gadgets share the same coordinates. However, we have to make sure that the algorithm is oblivious of
this relocation with sufficiently high probability. We provide a sketch of the proof here, the whole
proof is contained in the full version [16].

Lemma 14. Testing whether a graph is a k-nearest neighborhood graph with two-sided error requires

\/n/(8ek’) queries.

Proof sketch. 1t is sufficient to show that for any deterministic algorithm that makes o(1/n) queries,
the distributions of knowledge graphs that are obtained from distributions D; and D-, respectively,
have small statistical distance.

Without loss of generality, one can assume that every query of the algorithm to a graph from D;
reveals a line gadget that is not in the knowledge graph yet. Then, the probability that some line
gadget is revealed by the i-th query is uniform over all undiscovered line gadgets. Now, consider a
graph from Ds. Call all line gadgets that share their coordinates with another line gadget to be blue,
and call all other line gadgets to be red. One can show that if a query does not reveal a blue line
gadget such that a previous query revealed a blue line gadget with the same coordinates, then the
revealed line gadget is distributed uniformly among all other undiscovered (red or blue) line gadgets.

The probability that two (blue) line gadgets with the same coordinates are revealed by the first
b = \/n/(8¢k’) queries is upper bounded by the probability that for any pair of queries (i,5) € [b]2,
query ¢ hits one of the &’ vertices in one of the [en/k’] moved line gadgets times the probability that
query j hits its (blue) counterpart. One can show that this probability is at most -, ; <[t [ ] ’% . % <
b? %/ < 1/4. Therefore, the total variation distance between the knowledge graph distributions is at
most 1/4. [

In property testing, it is common to fix problem specific parameters such as the dimension and
analyze the asymptotic behavior with respect to n and e. However, it may be interesting that the
computational complexity of a tester for k-nearest neighborhood graphs is at least linear in ¢s. A
sketch of the proof is provided in the full version [16]].

Lemma 15. Testing whether a graph of size n is a k-nearest neighborhood graph with two-sided
error requires at least k15 /6 queries.

S Experiments

As discussed above, property testing aims at distinguishing perfect objects and objects that have many
flaws at very small cost. Given the output of an approximate nearest neighbor (ANN) algorithm, a
natural use case for a property tester is to decide whether the nearest neighbor index computed by the
ANN algorithm is accurate or resolves many queries incorrectly.

Although [Algorithm 1]already gives values for the sizes of |S| and |T’|, one would probably want
to minimize the running time of the tester beyond worst-case analysis in practice. When used as a
tool to assess an ANN index before actually putting it to work, it is also important that the tester
actually reduces the total computation time compared to observing poor results at the end of the data
processing pipeline (e.g., bad classification results) and starting over. Therefore, we seek to answer
the following questions:

Q1 Parameterization. What quality of ANN indices can be tested by different choices of |.S’|, |T|?

Q2 Performance. How does the testing time compare to the time required by the ANN algorithm?



Setup We implemented our property tester in C++ and integrated it into the Python framework ANN-
Benchmarks [2,14]. The key-idea of ANN-Benchmarks is to compare the quality of the indices built
by ANN implementations, with respect to their running times and query-answer times. To evaluate
our property tester, we chose three algorithms with the best performance observed in [2]]: KGraph [1]]
and Answ and SW-graph from the Non-Metric Space Library [7,28]. All of the ANN algorithms
are implemented in C / C++ and build upon nearest neighbor / proximity graphs. We computed the
ground truth, i.e., a k-NN graph of the input data, for the Euclidean datasets MNIST (size 60 000,
dimension 960, [25])), Fashion-MNIST (size 60 000, dimension 960, [31]]) and SIFT (size 1000 000,
dimension 128, [19]) to evaluate the answers of the tester.

We ran our benchmarks on identical machines with 60 GB of free RAM guaranteed and an Intel Xeon
E5-2640 v4 CPU running at 2.40 GHz (capable of running 20 concurrent threads) and measured CPU
time. To minimize interference between different processes, a single instance of an ANN algorithm
was run exclusively on one machine at a time.

The C++ source code of the property tester that was used for the experiments is available here [[17].
The modified version of ANN-Benchmarks is available here [6].

Parameterization of the Property Tester We analyze how different choices for |S’| and
T| in affect which quality of ANN indices the tester is likely to reject. All ANN
algorithms were run ten times for each choice of parameters built into ann-benchmarks (as listed
in [5]) and every dataset. Then the tester was run once for each output and for every choice from
{0.001,0.01,0.1} x {0.05,0.5,5} for (c1,¢2) in |S’| = ¢1 - 8ky/n and |T| = ¢a - ky/nlog(10), with
oracle access to the resulting ANN index. We chose to evaluate the tester for £k = 10 because indices
that are very close to 10-NN graphs — which is the hard case for the property tester to detect — can be
computed by the ANN algorithms in reasonable time, and we support this decision by an additional
experiment for £ = 50. The ground truth, i.e., a k-NN graph of each dataset, and the e-distance (see
of each ANN index to a k-NN graph was computed offline.

We evaluate the recall of the property tester by distance of a tested ANN index to ground truth, where
graphs that are no k-NN graphs are relevant (note that the tester always provides a witness when
it rejects, so its precision is 1). Since the quality of an ANN index varies depending on the ANN
algorithm’s parameters and internal randomness, we group the computed ANN indices into buckets
according to their distance to ground truth and depict the resulting recall on these classes in[Fig. T| for
all datasets combined and for each dataset individually. As the oracle access that is provided to the
property tester is oblivious of the underlying ANN algorithm, the figures show the combined results
for all algorithms.

We observe that for distances and parameters that result in a reasonable overall recall, say, at least
greater than 0.75, the property tester behaves comparable on all datasets. Since the property tester is
guaranteed to have precision 1, even parameterizations with low recall on a small distance can be
amplified by running the tester multiple times, possibly for different values of ¢y, co. In summary,
after choosing a target distance that the property tester should detect, the tested parameters seem
suitable for data with dimensions up to roughly 800. For higher dimensions, it is likely advisable
to apply dimensionality reduction techniques first before computing and using nearest neighbors in
Euclidean space.

To get an indication of how the tester behaves for larger k£, we conducted an additional experiment
where we ran the tester on KGraph indices with £ = 50. As one might expect, less indices are close
to being a 50-NN graph than a 10-NN graph for the same sets of KGraph parameters (although the
distance is normalized by k& and therefore it allows more errors), but the results indicate that it is also
easier for the property tester to spot errors. This suggests that, at least for KGraph, errors are spread
quite uniformly in the index rather than they are concentrated on some vertices.

[Q2; Performance Consider the following scenario: an algorithm that processes data employs
an ANN index. The quality of the algorithm’s result (e.g., the classification rate) depends on the
quality of the ANN index. However, the best parameters for the ANN algorithm are not known, and
conclusions about the quality of the ANN index can only be drawn by looking at the algorithm’s
final result, which may be a long costly way to go. Does it pay out to run the property tester on the
ANN index and recompute the index using different parameters if the tester rejects? We address
this question by measuring the tester’s performance. However, whether to use the tester or not



Figure 1: Recall of the property tester by e-distance of the ANN index to a 10-NN graph
for different choices of the testers’ parameters cj,ce. Distances are grouped into classes
(0, 10‘4], (1074, 1073], ..., all of size at least 150 (lateral axis shows upper bound of the respective
bucket). For example, the property tester rejected more than 95% of the ANN indices that are between
0.005-far and 0.01-far from being a 10-NN graph for ¢c; = 0.01, ¢y = 5.

all ANN algorithms, all datasets

1.00 -

parameters
B o001, 005
0.75 - oo, 05
M ooot.s
= B oot 005
8 0.50 -
8" oot 05
0.01,5
0.25 - o005
[Tot0s
J Wois
0.00- — -
Ll Ll
1e-04 0.001 0. 005 0. 01 0. 02 0. 05
bucketed distance
all ANN algorithms, MNIST all ANN algorithms, Fashion-MNIST all ANN algorithms, SIFT
1.00- 1.00-
0.75 - 0.75 =
B 0s0- T 0s0- T s
4 @ 4
0.25- 0.25- J
0.00 - IJ' J | | 0.00 - ._] I J I J
16:040.0010.005 0.01 0.02 0.05 0.1 02 1 16:040.0010.005 0.01 0.02 0.05 0.1 02 1 0.001 0.005 001 002 005 01 02 1
bucketed distance bucketed distance bucketed distance

depends heavily on the cost incurred otherwise. Therefore, we compare the property tester against
the minimum cost that every algorithm that uses an ANN index must invest before it can employ it or
even just draw conclusions about its quality: the build time of the index. shows the time
required by the property tester normalized (divided) by the time required to build the ANN index for
each ANN algorithm and each dataset. There are two plots: one for all graphs that are between 0.005
and 0.01-close to a 10-NN graph, and one for all graphs that are between 0.01 and 0.02-close to a
10-NN graph.

In general, the running time of the property tester is always smaller than the build time for hnsw and
SW-graph and at most five times the build time for KGraph. Mostly, it is even smaller than 1/10 of the
build time, and therefore running the property tester comes at almost no additional cost. For the runs
of the tester on KGraph indices with & = 50, the testing time is also upper bounded by five times
the build time and the tester time vs. build time ratio is 0.1 for £ = 10 (restricted to MNIST and
Fashion-MNIST) and k& = 50.

6 Conclusion

We have studied the task of efficiently identifying NN models with low accuracy by exploring
possibilities within the theoretical framework of sublinear algorithms and evaluated our approach
by moving to experiments. In particular, we have proved that there is a one-sided error property
tester with complexity O(y/nk?/e?), i.e., a sublinear (randomized) algorithm that decides whether
an input graph G is a k-NN graph or requires many edge modifications to become a k-NN graph (i.e.,



Figure 2: Recall of the property tester by e-distance of the ANN index to a k-NN graph for different
choices of the tester’s parameters and k = {10, 50}. As in|Fig. 1] distances are grouped into classes.
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Figure 3: Performance of the property tester in terms of property tester CPU time over ANN index
building CPU time for all computed ANN indices that are (0.005, 0.01]-far and (0.01, 0.02]-far from
being a 10-NN graph, respectively. SW-graph computed only one graph that is 0.01-close on SIFT.
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precision 1 and recall 2/3 when taking e-far graphs as relevant). We also proved that even a two-sided

error property tester requires complexity Q(

n/(ek)). Our experiments of the property tester on

ANN indices computed by various algorithms indicate that testing comes at almost no additional cost,
i.e., the testing time is significantly smaller than the building time of the ANN index that is tested.

From the perspective of applications, it would be desirable to analyze the tester for a more context
sensitive notion of edit distance. For example, an edge to the (k + 1)-nearest neighbor of a point
instead of an edge to its k-nearest neighbor might be a defect that is much less severe than an edge
to the k2-nearest neighbor. It would be interesting to investigate what results can be obtained under
established oracle access models, which are oblivious of the graph’s structure, and whether other

useful models can be devised.
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