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Abstract

The backpropagation of error algorithm (BP) is impossible to implement in a
real brain. The recent success of deep networks in machine learning and AI,
however, has inspired proposals for understanding how the brain might learn
across multiple layers, and hence how it might approximate BP. As of yet, none
of these proposals have been rigorously evaluated on tasks where BP-guided deep
learning has proved critical, or in architectures more structured than simple fully-
connected networks. Here we present results on scaling up biologically motivated
models of deep learning on datasets which need deep networks with appropriate
architectures to achieve good performance. We present results on the MNIST,
CIFAR-10, and ImageNet datasets, explore variants of target-propagation (TP) and
feedback alignment (FA) algorithms, and examine performance in both fully- and
locally-connected architectures. We also introduce weight-transport-free variants
of difference target propagation (DTP) modified to remove backpropagation from
the penultimate layer. Many of these algorithms perform well for MNIST, but for
CIFAR and ImageNet we find that TP and FA variants perform significantly worse
than BP, especially for networks composed of locally connected units, opening
questions about whether new architectures and algorithms are required to scale
these approaches. Our results and implementation details help establish baselines
for biologically motivated deep learning schemes going forward.

1 Introduction

The suitability of the backpropagation of error (BP) algorithm [32] for explaining learning in the
brain was questioned soon after it was popularized [11, 8]. Weaker objections included undesirable
characteristics of artificial networks in general, such as their violation of Dale’s Law, their lack of
cell-type variability, and the need for the gradient signals to be both positive and negative. More
serious objections were: (1) The need for the feedback connections carrying the gradient to have the
same weights as the corresponding feedforward connections and (2) The need for a distinct form of
information propagation (error feedback) that does not influence neural activity, and hence does not
conform to known biological feedback mechanisms underlying neural communication. Researchers
have long sought biologically plausible and empirically powerful learning algorithms that avoid these
flaws [2, 30, 31, 1, 26, 39, 14, 16, 12, 5, 23]. Recent work has demonstrated that the first objection
may not be as problematic as often supposed [22]: the feedback alignment (FA) algorithm uses
random weights in backward pathways to successfully deliver error information to earlier layers. At
the same time, FA still suffers from the second objection: it requires the delivery of signed error
vectors via a distinct pathway.
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Another family of promising approaches to biologically motivated deep learning – such as Contrastive
Hebbian Learning [24], and Generalized Recirculation [26] – use top-down feedback connections
to influence neural activity, and differences in feedfoward-driven and feedback-driven activities (or
products of activities) to locally approximate gradients [1, 31, 26, 39, 4, 36, 38]. Since these activity
propagation methods don’t require explicit propagation of gradients through the network, they go
a long way towards answering the second serious objection noted above. However, many of these
methods require long “positive” and “negative” settling phases for computing the activities whose
differences provide the learning signal. Proposals for shortening the phases [13, 6] are not entirely
satisfactory as they still fundamentally depend on a settling process, and, in general, any settling
process will likely be too slow for a brain that needs to quickly compute hidden activities in order to
act in real time.

Perhaps the most practical among this family of “activity propagation” algorithms is target propagation
(TP) and its variants [19, 20, 13, 3, 21]. TP avoids the weight transport problem by training a distinct
set of feedback connections that define the backward activity propagation. These connnections are
trained to approximately invert the computation of the feedforward connections in order to be able to
compute target activities for each layer by successively inverting the desired output target. Another
appealing property of TP is that the errors guiding weight updates are computed locally along with
backward activities.

While TP and its variants are promising as biologically-motivated algorithms, there are lingering
questions about their applicability to the brain. First, the only variant explored empirically (i.e. DTP)
still depends on explicit gradient computation via backpropagation for learning the penultimate layer’s
outgoing synaptic weights (see Algorithm Box 1 in Lee et al. [21]). Second, they have not been
rigorously tested on datasets more difficult than MNIST. And third, they have not been incorporated
into architectures more complicated than simple multi-layer perceptrons (MLPs).

On this second point, it might be argued that an algorithm’s inability to scale to difficult machine
learning datasets is a red herring when assessing whether it could help us understand learning in the
brain. Performance on isolated machine learning tasks using a model that lacks other adaptive neural
phenomena – e.g., varieties of plasticity, evolutionary priors, etc. – makes a statement about the lack
of these phenomena as much as it does about the suitability of an algorithm. Nonetheless, we argue
that there is a need for behavioural realism, in addition to physiological realism, when gathering
evidence to assess the overall biological realism of a learning algorithm. Given that human beings
are able to learn complex tasks that bear little relationship to their evolution, it would appear that
the brain possesses a powerful, general-purpose learning algorithm for shaping behavior. As such,
researchers can, and should, seek learning algorithms that are both more plausible physiologically,
and scale up to the sorts of complex tasks that humans are capable of learning. Augmenting a model
with adaptive capabilities is unlikely to unveil any truths about the brain if the model’s performance
is crippled by an insufficiently powerful learning algorithm. On the other hand, demonstrating good
performance with even a vanilla artificial neural network provides evidence that, at the very least,
the learning algorithm is not limiting. Ultimately, we need a confluence of evidence for: (1) the
sufficiency of a learning algorithm, (2) the impact of biological constraints in a network, and (3) the
necessity of other adaptive neural capabilities. This paper focuses on addressing the first two.

In this work our contribution is threefold: (1) We examine the learning and performance of
biologically-motivated algorithms on MNIST, CIFAR, and ImageNet. (2) We introduce variants of
DTP which eliminate significant lingering biologically implausible features from the algorithm. (3)
We investigate the role of weight-sharing convolutions, which are key to performance on difficult
datasets in artificial neural networks, by testing the effectiveness of locally connected architectures
trained with BP and variants of FA and TP.

Overall, our results are largely negative. That is, we find that none of the tested algorithms are capable
of effectively scaling up to training large networks on ImageNet. There are three possible interpreta-
tions from these results: (1) Existing algorithms need to be modified, added to, and/or optimized to
account for learning in the real brain, (2) research should continue into new physiologically realistic
learning algorithms that can scale-up, or (3) we need to appeal to other adaptive capacities to account
for the fact that humans are able to perform well on this task. Ultimately, our negative results are
important because they demonstrate the need for continued work to understand the power of learning
in the human brain. More broadly, we suggest that behavioural realism, as judged by performance

2



Input

"8"
Output

...

Simplified Difference Target Propagation

Target
"3"

Input

"8"
Output

...

Difference Target Propagation

Input

"8"
Output

...
Backpropagation

gradient gradient 

(a) (b) (c)

Target
"3"

Target
"3"

Figure 1: In BP and DTP, the final layer target is used to compute a loss, and the gradients from this
loss are shuttled backwards (through all layers, in BP, or just one layer, in DTP) in error propagation
steps that do not influence actual neural activity. SDTP never transports gradients using error
propagation steps, unlike DTP and BP.

on difficult tasks, should increasingly become one of the metrics used in evaluating the biological
realism of computational models and algorithms.

2 Learning in Multilayer Networks

Consider the case of a feed-forward neural network with L layers {hl}Ll=1, whose activations hl are
computed by elementwise-applying a non-linear function σl to an affine transformation of previous
layer activations hl−1:

hl = f(hl−1; θl) = σl(Wlhl−1 + bl), θl = {Wl, bl}, (1)

with input to the network denoted as h0 = x and the last layer hL used as output.

In classification problems the output layer hL parametrizes a predicted distribution over possible
labels p(y|hL), usually using the softmax function. The learning signal is then provided as a loss
L(hL) incurred by making a prediction for an input x, which in the classification case can be
cross-entropy between the ground-truth label distribution q(y|x) and the predicted one: L(hL) =
−
∑
y q(y|x) log p(y|hL). The goal of training is then to adjust the parameters Θ = {θl}Ll=1 in order

to minimize a given loss over the training set of inputs.

2.1 Backpropagation

Backpropagation [32] was popularized as a method for training neural networks by computing
gradients with respect to layer parameters using the chain rule:

dL
dhl

=

(
dhl+1

dhl

)T
dL
dhl+1

,
dL
dθl

=

(
dhl
dθl

)T
dL
dhl

,
dhl+1

dhl
= Wl+1diag(σ′l+1(Wl+1hl + bl+1)).

Thus, gradients are obtained by first propagating activations forward to the output layer via eq. 1,
and then recursively applying these backward equations. These equations imply that gradients are
propagated backwards through the network using weights symmetric to their feedforward counter-
parts. This is biologically problematic because it implies a mode of information propagation (error
propagation) that does not influence neural activity, and that depends on an implausible network
architecture (symmetric weight connectivity for feedforward and feedback directions, which is called
the weight transport problem).
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2.1.1 Feedback alignment

While we focus on TP variants in this manuscript, with the purpose of a more complete experimental
study of biologically motivated algorithms, we explore FA as another baseline. FA replaces the
transpose weight matrices in the backward pass for BP with fixed random connections. Thus,
FA shares features with both target propagation and conventional backpropagation. On the one
hand, it alleviates the weight transport problem by maintaining a separate set of connections that,
under certain conditions, lead to synchronized learning of the network. On the other hand, similar
to backpropagation, FA transports signed error information in the backward pass, which may be
problematic to implement as a plausible neural computation. We consider both the classical variant
of FA [23] with random feedback weights at each hidden layer, and the recently proposed Direct
Feedback Alignment [25] (DFA) or Broadcast Feedback Alignment [35], which connect feedback
from the output layer directly to all previous layers directly.

2.1.2 Target propagation and its variants

Unlike backpropagation, where backwards communication passes on gradients without inducing or
altering neural activity, the backward pass in target propagation [19, 20, 3, 21] takes place in the
same space as the forward-pass neural activity. The backward induced activities are those that layers
should strive to match so as to produce the target output. After feedforward propagation given some
input, the final output layer hL is trained directly to minimize the loss L, while all other layers are
trained so as to match their associated targets.

In general, good targets are those that minimize the loss computed in the output layer if they had
been realized in feedforward propagation. In networks with invertible layers one could generate such
targets by first finding a loss-optimal output activation ĥL (e.g. the correct label distribution) and
then propagating it back using inverse transformations ĥl = f−1(ĥl+1; θl+1). Since it is hard to
maintain invertibility in a network, approximate inverse transformations (or decoders) can be learned
g(hl+1;λl+1) ≈ f−1(hl+1; θl+1). Note that this learning obviates the need for symmetric weight
connectivity.

The generic form of target propagation algorithms we consider in this paper can be summarized as a
scheduled minimization of two kinds of losses for each layer.

1. Reconstruction or inverse loss Linvl (λl) = ‖hl−1 − g(f(hl−1; θl−1);λl)‖22 is used to
train the approximate inverse that is parametrized similarly to the forward computation:
g(hl;λl) = σl(Vlhl + cl), λl = {Vl, cl}, where activations hl−1 are assumed to be prop-
agated from the input. One can imagine other learning rules for the inverse, for example,
the original DTP algorithm trained inverses on noise-corrupted versions of activations with
the purpose of improved generalization. The loss is applied for every layer except the first,
since the first layer does not need to propagate target inverses backwards.

2. Forward loss Ll(θl) = ‖f(hl; θl) − ĥl+1‖22 penalizes the layer parameters for producing
activations different from their targets. Parameters of the last layer are trained to minimize
the task’s loss L directly.

Under this framework both losses are local and involve only a single layer’s parameters, and implicit
dependencies on other layer’s parameters are ignored. Variants differ in the way targets ĥl are
computed.

Target propagation “Vanilla” target propagation (TP) computes targets by propagating the higher
layers’ targets backwards through layer-wise inverses; i.e. ĥl = g(ĥl+1;λl+1). For traditional
categorization tasks the same 1-hot vector in the output will always map back to precisely the same
hidden unit activities in a given layer. Thus, this kind of naive TP may have difficulties when
different instances of the same class have different appearances, since it will attempt to make their
representations identical even in the early layers. As well, there are no guarantees about how TP will
behave when the inverses are imperfect.

Difference target propagation Both TP and DTP update the output weights and biases using
the standard delta rule, but this is biologically unproblematic because it does not require weight
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transport [26, 23]. For most other layers in the network, DTP [21] computes targets as

ĥl = g(ĥl+1;λl+1) + [hl − g(hl+1;λl+1)]. (2)

The second term is the error in the reconstruction, which provides a stabilizing linear correction for
imprecise inverse functions. However, in the original work by Lee et al. [21] the penultimate layer
target, ĥL−1, was computed using gradients from the network’s loss, rather than by target propagation.
That is, ĥL−1 = hL−1−α∂L(hL)

∂hL−1
, rather than ĥL−1 = hL−1− g(hL;λL) + g(ĥL;λL). Though not

stated explicitly, this approach was presumably taken to ensure that the penultimate layer received
reasonable and diverse targets despite the low-dimensional 1-hot targets at the output layer. When
there are a small number of 1-hot targets (e.g. 10 classes), learning a good inverse mapping from
these vectors back to the hidden activity of the penultimate hidden layer (e.g. 1000 units) might be
problematic, since the inverse mapping cannot provide information that is both useful and unique to a
particular input sample x. Using BP in the penultimate layer sidesteps this concern, but deviates from
the intent of using these algorithms to avoid gradient computation and delivery.

Simplified difference target propagation We introduce SDTP as a simple modification to DTP.
In SDTP we compute the target for the penultimate layer as ĥL−1 = hL−1− g(hL;λL) + g(ĥL;λL),
where ĥL = argminhL

L(hL), i.e. the correct label distribution. This completely removes biologically
infeasible gradient communication (and hence weight-transport) from the algorithm. However, it
is not clear whether targets for the penultimate layer will be diverse enough (given low entropy
classification targets) or precise enough (given the inevitable poor performance of the learned inverse
for this layer). The latter is particularly important if the dimensionality of the penultimate layer is
much larger than the output layer, which is the case for classification problems with a small number
of classes. Hence, this modification is a non-trivial change that requires empirical investigation. In
Section 3 we evaluate SDTP in the presence of low-entropy targets (classification problems) and also
consider the problem of learning an autoencoder (for which targets are naturally high-dimensional
and diverse) in the supplementary material.

Algorithm 1 Simplified Difference Target Propagation
Propagate activity forward:
for l = 1 to L do
hl ← fl(hl−1; θl)

end for
Compute first target: ĥL ← argminhL

L(hL)
Compute targets for lower layers:
for l = L− 1 to 1 do
ĥl ← hl − g(hl+1;λl+1) + g(ĥl+1;λl+1)

end for
Train inverse function parameters:
for l = L to 2 do

Generate corrupted activity h̃l−1 = hl−1 + ε, ε ∼ N (0, σ2)
Update parameters λl using SGD on loss Linv

l (λl)

Linv
l (λl) = ‖hl−1 − g(f(h̃l−1; θl−1);λl)‖22

end for
Train feedforward function parameters:
for l = 1 to L do

Update parameters θl using SGD on loss Ll(θl)

Ll(θl) = ‖f(hl; θl)− ĥl+1‖22 if l < L, else LL(θL) = L (task loss)
end for

Auxiliary output SDTP As outlined above, in the context of 1-hot classification, SDTP produces
only weak targets for the penultimate layer, i.e. one for each possible class label. To circumvent
this problem, we extend SDTP by introducing a composite structure for the output layer hL = [o, z],
where o is the predicted class distribution on which the loss is computed and z is an auxiliary output
vector that is meant to provide additional information about activations of the penultimate layer hL−1.
Thus, the inverse computation g(hL;λL) can be performed conditional on richer information from
the input, not just on the relatively weak information available in the predicted and actual label.
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The auxiliary output z is used to generate targets for penultimate layer as follows:

ĥL−1 = hL−1 − gL(o, z;λL) + gL(ô, z;λL), (3)

where o is the predicted class distribution, ô is the correct class distribution and z produced from
hL−1 is used in both inverse computations. Here gL(ô, z;λL) can be interpreted as a modification of
hL that preserves certain features of the original hL that can also be classified as ô. Here parameters
λL can be still learned using the usual inverse loss. But parameters of the forward computation θL−1
used to produce z are difficult to learn in a way that maximizes their effectiveness for reconstruction
without backpropagation. Thus, we studied a variant that does not require backpropagation: we
simply do not optimize the forward weights for z, so z is just a set of random features of hL−1.

Parallel and alternating training of inverses In the original implementation of DTP1, the authors
trained forward and inverse model parameters by alternating between their optimizations; in practice
they trained one loss for one full epoch of the training set before switching to training the other
loss. We considered a variant that simply optimizes both losses in parallel, which seems nominally
more plausible in the brain since both forward and feedback connections are thought to undergo
plasticity changes simultaneously — though it is possible that a kind of alternating learning schedule
for forward and backward connections could be tied to wake/sleep cycles.

2.2 Biologically-plausible network architectures

Convolution-based architectures have been critical for achieving state of the art in image recog-
nition [18]. These architectures are biologically implausible, however, because of their extensive
weight sharing. To implement convolutions in biology, many neurons would need to share the values
of their weights precisely — a requirement with no empirical support. In the absence of weight
sharing, the “locally connected” receptive field structure of convolutional neural networks is in fact
very biologically realistic and may still offer a useful prior. Under this prior, neurons in the brain
could sample from small areas of visual space, then pool together to create spatial maps of feature
detectors.

On a computer, sharing the weights of locally connected units greatly reduces the number of free
parameters and this has several beneficial effects on simulations of large neural nets. It improves
generalization and it drastically reduces both the amount of memory needed to store the parameters
and the amount of communication required between replicas of the same model running on different
subsets of the data on different processors. From a biological perspective we are interested in how
TP and FA compare with BP without using weight sharing, so both our BP results and our TP and
FA results are considerably worse than convolutional neural nets and take far longer to produce. We
assess the degree to which BP-guided learning is enhanced by convolutions, and not BP per se, by
evaluating learning methods (including BP) on networks with locally connected layers.

3 Experiments

In this section we experimentally evaluate variants of target propagation, backpropagation, and
feedback alignment [23, 25]. We focused our attention on TP variants. We found all of the variants
we explored to be quite sensitive to the choice of hyperparameters and network architecture, espe-
cially in the case of locally-connected networks. With the aim of understanding the limits of the
considered algorithms, we manually searched for architectures well suited to DTP. Then we fixed
these architectures for BP and FA variants and ran independent hyperparameter searches for each
learning method. Finally, we report best errors achieved in 500 epochs. For additional details see
Tables 3 and 4 in the Appendix.

For optimization we use Adam [15], with different hyper-parameters for forward and inverse models
in the case of target propagation. All layers are initialized using the method suggested by Glorot &
Bengio [10]. In all networks we used the hyperbolic tangent as a nonlinearity between layers as it
was previously found to work better with DTP than ReLUs [21].

1https://github.com/donghyunlee/dtp/blob/master/conti_dtp.py
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Table 1: Train and test errors (%) achieved by different learning methods for fully-connected (FC)
and locally-connected (LC) networks on MNIST and CIFAR. We highlight best and second best
results.

(a) MNIST

FC LC
METHOD TRAIN TEST TRAIN TEST

DTP, PARALLEL 0.44 2.86 0.00 1.52
DTP, ALTERNATING 0.00 1.83 0.00 1.46
SDTP, PARALLEL 1.14 3.52 0.00 1.98
SDTP, ALTERNATING 0.00 2.28 0.00 1.90
AO-SDTP, PARALLEL 0.96 2.93 0.00 1.92
AO-SDTP, ALTERNATING 0.00 1.86 0.00 1.91
FA 0.00 1.85 0.00 1.26
DFA 0.85 2.75 0.23 2.05
BP 0.00 1.48 0.00 1.17
BP CONVNET – – 0.00 1.01

(b) CIFAR

FC LC
TRAIN TEST TRAIN TEST

59.45 59.14 28.69 39.47
30.41 42.32 28.54 39.47
51.48 55.32 43.00 46.63
48.65 54.27 40.40 45.66
4.28 47.11 32.67 40.05
0.00 45.40 34.11 40.21
25.62 41.97 17.46 37.44
33.35 47.80 32.74 44.41
28.97 41.32 0.83 32.41

– – 1.39 31.87
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Figure 2: Train (dashed) and test (solid) classification errors on CIFAR.

3.1 MNIST

To compare to previously reported results we began with the MNIST dataset, consisting of 28× 28
gray-scale images of hand-drawn digits. The final performance for all algorithms is reported in
Table 1 and the learning dynamics are plotted in Figure 8 (see Appendix). Our implementation of
DTP matches the performance of the original work [21]. However, all variants of TP performed
slightly worse than BP, with a larger gap for SDTP, which does not rely on any gradient propagation.
Interestingly, alternating optimization of forward and inverse losses consistently demonstrates more
stable learning and better final performance.

3.2 CIFAR-10

CIFAR-10 is a more challenging dataset introduced by Krizhevsky [17]. It consists of 32 × 32
RGB images of 10 categories of objects in natural scenes. In contrast to MNIST, classes in CIFAR-
10 do not have a “canonical appearance” such as a “prototypical bird” or “prototypical truck” as
opposed to “prototypical 7” or “prototypical 9”. This makes them harder to classify with simple
template matching, making depth imperative for achieving good performance. The only prior study
of biologically motivated learning methods applied to this data was carried out by Lee et al. [21];
this investigation was limited to DTP with alternating updates and fully connected architectures.
Here we present a more comprehensive evaluation that includes locally-connected architectures and
experiments with an augmented training set consisting of vertical flips and random crops applied to
the original images.

Final results can be found in Table 1. Overall, the results on CIFAR-10 are similar to those obtained
on MNIST, though the gap between TP and backpropagation as well as between different variants
of TP is more prominent. Moreover, while fully-connected DTP-alternating roughly matched the

7



performance of BP, locally-connected networks presented an additional challenge for TP, yielding
only a minor improvement.

The issue of compatibility with locally-connected layers is yet to be understood. One possible
explanation is that the inverse computation might benefit from a form that is not symmetric to the
forward computation. We experimented with more expressive inverses, such as having larger receptive
fields or a fully-connected structure, but these did not lead to any significant improvements. We leave
further investigation of this question to future work.

As with MNIST, a BP trained convolutional network with shared weights performed better than
its locally-connected variant. The gap, however, is not large, suggesting that weight sharing is not
necessary for good performance as long as the learning algorithm is effective.

We hypothesize that the significant gap in performance between DTP and the gradient-free SDTP on
CIFAR-10 is due to the problems with inverting a low-entropy target in the output layer. To validate
this hypothesis, we ran AO-SDTP with 512 auxiliary output units and compare its performance with
other variants of TP. Even though the observed results do not match the performance of DTP, they
still present a large improvement over SDTP. This confirms the importance of target diversity for
learning in TP (see Appendix 5.5 for related experiments) and provides reasonable hope that future
work in this area could further improve the performance of SDTP.

Feedback alignment algorithm performed quite well on both MNIST and CIFAR, struggling only
with the LC architecture on CIFAR. In contrast, DFA appeared to be quite sensitive to the choice of
architecture and our architecture search was guided by the performance of TP methods. Thus, the
numbers achieved by DFA in our experiments should be regarded only as a rough approximation
of the attainable performance for the algorithm. In particular, DFA appears to struggle with the
relatively narrow (256 unit) layers used in the fully-connected MNIST case — see Lillicrap et al. [23]
Supplementary Information for a possible explanation. Under these conditions, DFA fails to match
BP in performance, and also tends to fall behind DTP and AO-SDTP, especially on CIFAR.

3.3 ImageNet

We assessed performance of the methods on the ImageNet dataset [33], a large-scale benchmark that
has propelled recent progress in deep learning. To the best of our knowledge, this is the first empirical
study of biologically-motivated methods and architectures conducted on a dataset of such scale and
difficulty. ImageNet has 1000 object classes appearing in a variety of natural scenes and captured in
high-resolution images (resized to 224× 224).

Final results are reported in Table 2. Unlike MNIST and CIFAR, on ImageNet all biologically
motivated algorithms performed very poorly relative to BP. A number of factors could contribute
to this result. One factor may be that deeper networks might require more careful hyperparameter
tuning; for example, different learning rates or amounts of noise injected for each layer.
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Figure 3: Top-1 (solid) and Top-5 (dotted)
test errors on ImageNet. Color legend is the
same as for figure 2.

Table 2: Test errors on ImageNet.

METHOD TOP-1 TOP-5
DTP, PARALLEL 98.34 94.56
DTP, ALTERNATING 99.36 97.28
SDTP, PARALLEL 99.28 97.15
FA 93.08 82.54
BACKPROPAGATION 71.43 49.07
BACKPROPAGATION, CONVNET 63.93 40.17

A second factor might be a general incompatibility between the mainstream design choices for
convolutional networks with TP and FA algorithms. Years of research have led to a better under-
standing of efficient architectures, weight initialization, and optimizers for convolutional networks
trained with backpropagation, and perhaps more effort is required to reach comparable results for
biologically motivated algorithms and architectures. Addressing both of these factors could help
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improve performance, so it would be premature to conclude that TP cannot perform adequately on
ImageNet. We can conclude though, that out-of-the-box application of this class of algorithms does
not provide a straightforward solution to real data on even moderately large networks.

We note that FA demonstrated an improvement over TP, yet still performed much worse than BP. It
was not practically feasible to run its sibling, DFA, on large networks such as one we used in our
ImageNet experiments. This was due to practical necessity of maintaining a large fully-connected
feedback layer of weights from the output layer to each intermediate layer. Modern convolutional
architectures tend to have very large activation dimensions, and the requirement for linear projections
back to all of the neurons in the network is practically intractable: on a GPU with 16GB of onboard
memory, we encountered out-of-memory errors when trying to initialize and train these networks
using a Tensorflow implementation. Thus, the DFA algorithm appears to require either modification
or GPUs with more memory to run with large networks.

4 Discussion

Historically, there has been significant disagreement about whether BP can tell us anything interesting
about learning in the brain [8, 11]. Indeed, from the mid 1990s to 2010, work on applying insights
from BP to help understand learning in the brain declined precipitously. Recent progress in machine
learning has prompted a revival of this debate; where other approaches have failed, deep networks
trained via BP have been key to achieving impressive performance on difficult datasets such as
ImageNet. It is once again natural to wonder whether some approximation of BP might underlie
learning in the brain [22, 5]. However, none of the algorithms proposed as approximations of BP
have been tested on the datasets that were instrumental in convincing the machine learning and
neuroscience communities to revisit these questions.

Here we studied TP and FA, and introduced a straightforward variant of the DTP algorithm that
completely removed gradient propagation and weight transport. We demonstrated that networks
trained with SDTP without any weight sharing (i.e. weight transport in the backward pass or weight
tying in convolutions) perform much worse than DTP, likely because of impoverished output targets.
We also studied an approach to rescue performance with SDTP. Overall, while some variants of TP
and FA came close to matching the performance of BP on MNIST and CIFAR, all of the biologically
motivated algorithms performed much worse than BP in the context of ImageNet. Our experiments are
far from exhaustive and we hope that researchers in the field may coordinate to study the performance
of other recently introduced biologically motivated algorithms, including e.g. [28, 27].

We note that although TP and FA algorithms go a long way towards biological plausibility, there
are still many biological constraints that we did not address here. For example, we’ve set aside the
question of spiking neurons entirely to focus on asking whether variants of TP can scale up to solve
difficult problems at all. The question of spiking networks is an important one [35, 12, 7, 34], but it
should nevertheless be possible to gain algorithmic insight to the brain without tackling all of the
elements of biological complexity simultaneously. Similarly, we also ignore Dale’s law in all of our
experiments [29]. In general, we’ve aimed at the simplest models that allow us to address questions
around (1) weight sharing, and (2) the form and function of feedback communication. However, it is
worth noting that our work here ignores one other significant issue with respect to the plausibility
of feedback communication: BP, FA, all of the TP variants, and indeed most known activation
propagation algorithms (for an exception see Sacramento et al. [34]), still require distinct forward
and backward (or “positive” and “negative”) phases. The way in which forward and backward
pathways in the brain interact is not well characterized, but we’re not aware of existing evidence that
straightforwardly supports distinct phases.

Nevertheless, algorithms that aim to illuminate learning in cortex should be able to perform well
on difficult domains without relying on any form of weight sharing. Thus, our results offer a new
benchmark for future work looking to evaluate the effectiveness of biologically plausible algorithms
in more powerful architectures and on more difficult datasets.
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