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Abstract

Regression with group-sparsity penalty plays a central role in high-dimensional
prediction problems. However, most existing methods require the group structure
to be known a priori. In practice, this may be a too strong assumption, potentially
hampering the effectiveness of the regularization method. To circumvent this issue,
we present a method to estimate the group structure by means of a continuous
bilevel optimization problem where the data is split into training and validation sets.
Our approach relies on an approximation scheme where the lower level problem is
replaced by a smooth dual forward-backward algorithm with Bregman distances.
We provide guarantees regarding the convergence of the approximate procedure to
the exact problem and demonstrate the well behaviour of the proposed method on
synthetic experiments. Finally, a preliminary application to genes expression data
is tackled with the purpose of unveiling functional groups.

1 Introduction

With recent technological advances, high-dimensional datasets have become massively widespread in
numerous applications ranging from social sciences to computational biology [20l 25, [1]. In addition,
in many statistical problems, the number of unknown parameters can be significantly larger than the
number of data samples, thus leading to underdetermined and computationally intractable problems.
Nonetheless, many classes of datasets exhibit a sparse representation when expressed as a linear
combination of suitable dictionary elements. This has led, over the past decades, to the development
of sparsity inducing norms and regularizers to unveil structure in the data. However, beyond the
sparsity patterns of the data, there might also be a more complex structure, which is widely referred
to as structured sparsity [16} 22} 23| [29]]. In this line of research, a lot of work has been devoted to
encode a priori structure of the data in (possibly overlapping) groups or hierarchical trees [31} 15 [17].

In the present paper, we restrict our study to the popular Group Lasso problem [30]. Given a vector
of outputs y € R™ and a design matrix X € RV*” the Group Lasso problem amounts in finding
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for some regularization parameter A > 0 and a non-overlapping group structure, i.e., an unordered
partition of the features in L groups {Gi,...,G} such that UX |G, = {1,..., P} and (VI #
),G; N Gy = (. The specific form of the regularizer permits to enforce sparsity at the group-level,
thus often leading to a better interpretability of the features than standard Lasso.

However, in many applications, we might have hundreds or thousands of features whose group-
structure {Gy, .. ., G } may be unknown, or only partially known. In addition, the number of groups
L itself might not be known. Nonetheless, the prior knowledge of the group structure is crucial
in order to achieve a lower prediction error [19]]. Note that this problem can be seen as purely
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combinatorial since it amounts in searching the best partition amongst (LY /L!) possible unordered
partitions.

In this paper we address the problem of learning the Group Lasso structure, within the setting of
multi-task learning, through a bilevel optimization approach. We establish some basic mathematical
properties of this methodology and demonstrate that it works well in practice.

Related works. We are only aware of few approaches devoted to infer the Group Lasso structure.
A probabilistic modeling approach has been investigated in [[14]] to learn the relevance of pairs of
features only. More recently, [27] considered a broad family of heavy-tailed priors for the group
variables along with a variational inference scheme to learn the parameters of these priors. However,
this approach becomes prohibitive when dealing with a large number of features. In addition, the
setting is different: it analyzes the latent Group Lasso and it assumes that the learning tasks have a
similar structure, meaning that the relevance of a given group is largely shared across the tasks.

Contributions and outline. The principal contribution of this paper is the formulation of the problem
of learning the Group Lasso structure as a continuous bilevel optimization problem. In Section 2}
we present, in a formal way, our bilevel approach. A new algorithmic solution based on an upper
stochastic gradient descent and a lower dual forward-backward scheme with Bregman distances
is devised in Section [3] The performance of the proposed approach are quantitatively assessed on
synthetic data in Section[d] and shown to favorably compare against standard approaches. In addition,
an application to real data in the context of gene expression analysis is provided with the goal of
discovering functional groups. Finally, conclusions and perspectives are drawn in Section 5]

Notations. Let X’ be an Euclidian space. I'g(X) denotes the space of functions 2: X — |—o0, +00]
closed, proper and convex. We also denote by argmin h the set of minimizers of h or the minimizer
of h when it is unique.

2 Proposed Bilevel Problem for Learning the Groups

In this section, we describe a bilevel framework for estimating the Group Lasso structure based on a
multi-task learning problem, without any further a priori information.

2.1 Original Problem

We encapsulate the group structure by means of an hyperparameter § = [0 ...0] € {0, 1}7%F,
defining at most L groups, such that (Vp € {1,..., P},Vl € {1,...,L}), 0, = 1 if the p-th feature
belongs to the [-th group, and 0 otherwise. Note that when no prior information on the number of
groups is given, one should consider the extreme setting where there might be at most L = P groups.
In order to properly select 6, we propose to consider the following bilevel problem.

Problem 2.1 (Mixed Integer-Continuous Bilevel Problem.). Given some vectors of outputs y; € R

and design matrices X; € RVN*F fort € {1,...,T}, as well as a regularization parameter \ > 0,
find
L
6 € argmin C(w(9)) s.t Z@l =1p, 2)
0e{0,1}P* L —
where C(w(0)) = (1/T) ZZ;I Ci(w(0)), Ci: RY — R is a smooth function and w(f) =
(w1(0),...,%0r(0)) is a minimizer of T separated Group Lasso problems sharing a common group
structure, i.e., it solves
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where © denotes the Hadamard product.

The constraint in the right-hand side of Problem (2)) ensures that every feature belongs to a single group.

A natural choice for C} is to consider the validation error Cy(w(0)) = %||y§“’” - Xt(val)wt(ﬁ) 1

evaluated on a set {y(**), X (2D} For such choice, the selection of ¢ is motivated by the need of
generalizing well to unseen data. In practice, it is often a good surrogate to the estimation error when
the true features are unknown.



We note that directly solving Problem [2.1]is a challenge, since it is a mixed integer-continuous bilevel
problem. To overcome this difficulty, we consider in the next section a relaxation of the problem in
the continuous setting.

2.2 Relaxed Problem

‘We propose to consider a continuous relaxed version of Problem where 6 € [0,1]7*~ and the

penalty term 5 Zthl [|w,|3 is added to (3), for some € > 0, in order to ensure strong convexity of
the lower level objective function and hence the uniqueness of its minimizer. The resulting problem
lies within the framework of continuous bilevel optimization [10] which has recently been gaining a
renewed interest in image processing [[18] 5] as well as in neural networks and machine learning (see
e.g. [4, 121,241 [12]). Our relaxation of Problem@]is formulated as follows.

Problem 2.2 (Exact Bilevel Problem). Let C be as in Problem and let ¥, : [0,1] — R be
increasing continuous functions such that 1(0) = £(0) = 0 and ¥ (1) = £(1) = 1. Given some
vectors of outputs y; € RY and design matrices X; € RN*F fort € {1,..., T}, as well as some
regularization parameters A > 0 and € > 0, solve

W(e) = argminwERPXT E(W, G)a

U(o) = C(w (), @

minimize U(0) with {
e

where
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and v and & are applied component-wise to the vectors 0;’s.

Remark 2.1. The functions ¢ and & permit to cover different continuous relaxations of Problem
and the conditions ¥(0) = £(0) = 0 and ¢(1) = &(1) = 1 are compatibility conditions with
Problem 2.1 Among the different choices of ¢) and { we point out ¢ = £ = Id, which corresponds
to a convex relaxation in which © is the unit simplex.

The following result establishes the existence of solution of Problem[2.2] The proof is given in the
supplementary material (Section[A.T).

Proposition 2.1 (Existence of Solutions). Suppose that © is a compact nonempty subset of Ri xL
and that C and 1) are continuous functions. Then 6 — W(0) is continuous and hence Problem
admits solutions.

2.3 Approximate Problem

Usually, we don’t have a closed form expression for w(#) but we rather have an iterative procedure
converging to w(6) that we arbitrarily stop after @ iterations. Therefore, we actually solve an
approximate problem of the following form.

Problem 2.3 (Approximate Bilevel Problem). Let C and © be as in Problem 2.2] Given two
mappings A and B, as well as a maximum number of inner iterations Q € N, solve
u(9)(0) is chosen arbitrarily
forq=0,1,...,Q —1
migin@lize UD D), where | ulet)(9) = A(u'9(0),0) (6)
€
w(@(9) = Bu@)(9),9),
UR () = C(w(Q)(h)).
Remark 2.2. Problem [2.3encompasses many situations encountered in practice. For example, when
B = Id, it reduces to the usual case where w(4t1) () = A(w(?(#), #). In addition, this formulation

also covers dual algorithms: in this case .A corresponds to the dual variable update, and B denotes the
primal-dual relationship (see, e.g., [3]]).



The following theorem gives the conditions under which the approximate problem converges to the
exact one as the number of inner iterations ) grows.
Theorem 2.1 (Convergence of the Approximate Problem). In addition to the assumptions of Prob-

lem suppose that the iterates {w'@) (0)}gen converge to W(0) uniformly on © as Q — +oc.
Then the approximate Problem[2.3|converges to the exact Problem[2.2]in the following sense

inf &(9) (0 inf 24(0) and in (@) (0 inl/(6 7
inf ( )Q_>—+>00 912@1/{( ) an aregergmu ( )Q_>—+>oo aregenaurlU( )s (7

where the latter convergence is meant as set convergence, i.e., for every sequence (é(Q))QGN such
that Q) € argminU(?), we have dist(0(?), argminUf) — 0 as Q — 400, which is equivalent to
max{dist(0, argminf) | € argminU( @} — 0as Q — +oc.

Theorem [2.1|justifies the minimization of /(%) (for sufficiently large Q) instead of /.

3 Algorithmic Solution

The lower level problem in (@)-(), can be, in principle, addressed by several available solvers.
However, since this problem is nonsmooth, these solvers are usually nonsmooth as well, that is .A
and B in (6) are nonsmooth. This causes 2/(?) to be nonsmooth, besides being nonconvex. In that
case, minimizing /(%) is a challenge. Indeed, even just determining a (hyper)subgradient of 2/(?) in
a stable fashion by recursively computing a subgradient of u(?) (9) might be hopeless. Therefore, we
embrace the idea proposed in [24]] to devise a smooth algorithm by relying on Bregman proximity
operators and we make two advances. First, we propose a new algorithm based on a dual forward-
backward scheme with Bregman distances where .4 and B are smooth. Second, by relying on [2]], we
prove the uniform convergence of such algorithm to the solution of the lower level problem, so to
meet the requirements of Theorem This approach finally gives a smooth function 2/(?) whose
gradient can be recursively computed by applying the standard chain rule [13]].

3.1 Principle

Since the proposed bilevel problem is a nonconvex problem with possibly many minima, finding the
global optimum is out of reach. However, local minima can still be of high quality, meaning that no
improvements in the objective can be obtained by small perturbations and that the corresponding
objective value is close to the infimum. Let us remark that, since in the parametrization of the groups
the ordering is not relevant, the upper level objective function is invariant under permutations of
(61,...,01), so there are L! equivalent solutions.

In order to solve the bilevel problem, we rely on the following projected gradient descent algorithm
(Vk €{0,..., K —1}), %D =Pg (s — v/ @ (™)), (8)

where Pg denotes the projection onto O (see [8]] for an efficient projection method when © is the
unit simplex) and v > 0 is a given step-size. Overall, this procedure requires to compute the )-th
iterate w(@) (6(¥)) as well as the hypergradient VI/(@) (§(F)).

Since both the lower and upper level problems are separable with respect to the tasks, the hypergradient
is the sum of 7" terms. In Section[3.4] we design a stochastic variant of (§) taking advantage of this
structure.

3.2 Solving the Lower Level Problem

In this section, we address the lower level problem in {@)-(3)). Since it is is separable with respect to
the tasks, without loss of generality we can deal with a single task omitting the index ¢.

Problem 3.1. Given some vectors of outputs y € RN, a design matrix X € RN*F regularization
parameters A > 0 and € > 0, as well as some group structure 6 € O, find
L
. . 1 €
@(0) = argmin { L(w,0) := ly = Xwll} + Slwl3+ A [w@) 0wl },  ©)
weRP 2 2 -1
fw) g(Asw)



where f € To(RP) is smooth and e-strongly convex, g € To(RP*L) is nonsmooth and Ay is the
linear operator defined as Ag : w € RY — (¢(01) © w, ..., ¥(0) © w) € REXE,

Let us note that in order to solve Problem [3.1] we cannot use the standard forward-backward algo-
rithm [6} [7] since the proximity operator of g o Ay cannot be computed in closed form. Moreover, we
also ask for a smooth algorithm, meaning one for which A and B in @ are smooth. Therefore, we
tackle the dual of Problem3.11

Problem 3.2. Find a solution 4.(0) of
minimize f*(— Ay u) + ¢g*(u), (10)

uG]RPXL

where f* and g* denote the Fenchel conjugates of f and g respectively, and where A;— is the transpose
of the operator Ay, that is, A, : u € RE*L Zlel »(0) ®uy € R,

Note that the dual Problem|3.2]admits a solution, since strong duality holds and the primal Problem[3.]
has solutions [3]. Moreover it is a smooth constrained convex optimization problem. Indeed,
since f is closed and e-strongly convex, it follows that f* is everywhere differentiable with ¢~ !-
Lipschitz continuous gradient and hence V[f*o(—A, )] = —AyV f*o(—A] ) is || Ag ||~ *-Lipschitz
continuous. Besides, we have Vf* = (Vf)™! = (XTX + eldp)~!(- + X Ty). On the other
hand, g* is the indicator function of the product of L balls Ba()\) x ...Ba2(A) = Ba(AN)E, ie.,

g (u) = Zle 18,(0) (wr), where B () is the closed ball of R” centered at zero and of radius .

We propose to solve Problem [3.1]by applying a forward-backward algorithm with Bregman distances
to the dual Problem [2, 28] and using the primal-dual link w = V f *(fA;—u). This algorithm
calls for a Bregman proximity operator of g* which can be made smooth with an appropriate choice
of the Bregman distance. In the following, we provide the related details.
Definition 3.1 (Bregman Proximity Operator [28]). Let X be an Euclidean space, h € I'g(X) and let
® € T'y(X) be a Legendre function. Then, the Bregman proximity operator (in Van Nguyen sense) of
h with respect to @ is

proxy (v) = argmin h(u) + ®(u) — (u, v). (11)

ueX

The dual forward-backward algorithm with Bregman distances (FBB) for Problem [3.1]is as follows.
Given some step-size v > 0 and u(?) (), then

forg=0,1,...,Q —1
| ul T (0) = prox?,. (VO(ulD(0)) +vAgV f*(—Ag ul?(6))) (12)
w@(0) = V f*(-A] u(?)(0)).

The updating rules in (I2) define the mappings A and B in Problem [2.3] We note that in this case,
since V f* is an affine mapping, B is smooth. Whereas the smoothness of .4 depends on the choice of

the Legendre function ®. We consider ®(u) = ZzL:1 ¢(u;) with dom ¢ = Bz (A), so that, for every
le{l,...,L},

T (0) = proxt,, (Ve () +10(0) © T (~ A7 ()

YBa(N)
= argmin s, ) (1) + () — (u Vo(u® (0)) +4(6) © V*(~Ag u'?(6)))
u€RP
= argmin ¢(u) — (u, Vol (9)) + () © Vf*(—Ag u'(8)))
u€RP
= Vo™ (Vo(ul” (0)) + v (1) © VF*(~Ag ul?(8))). (13)

Therefore, in order to make A smooth, we need to choose the Legendre function ¢ so that ¢* is twice
differentiable. Here, we propose to resort to the following function.

Definition 3.2 (Separable Hellinger-like Function [2]). The separable Hellinger-like function is
defined as ®(u) = 1, ¢(u;) where for every u; € R,

$(w) = {«/A2||ul||§, if w € Ba(A), (14)

400, otherwise.



Algorithm 1 Dual forward-backward with Bregman distances: FBB-GLasso(y, X, A, 6)
Require: Data y, design matrix X, regularization parameter A and group-structure 6
Set the number of iterations () € N and the step-size v < e\ ™1 || Ay || 2
Set L to the number of groups in ¢
Initialize () (6) = 0pyx 1,
forg=0to@Q —1do
w®(0) = (XTX +eldp) ™ (X Ty = S0, (0) © " (0))
for! =1to L do

(a+1) gy _ _ ui?(0)
vy ") = W +(6;) © wD(6)
q+1 A (g+1)
©)= 1+||v§””<e>u%vl ©)
end for
end for

w@(0) = (XTX +eldp) 1 (X Ty — S5, v(6) © \9(6))
output w(@

For such choice, we have that for every v € RY, V¢*(v) = Av/+/1 + |[v]|3. The corresponding
forward-backward scheme with Bregman distance is glven in Algorithm [I] where, for the sake of

readability, we introduced the primal iterates w(? (#) and the auxiliary variables vl(q) (#), denoting
the argument of V¢* in (T3). The following theorem addresses the convergence of Algorithm|[I] The
corresponding proof is given in the supplementary material (Section [A.2).

Theorem 3.1 (Convergence of the Dual FBB Scheme). The sequence {w(?)(0)}gen generated by
Algorithmconverges to the solution w(6) of Problem for any step-size 0 < v < eA" || Ag|| 72
In addition if y = eA™1|| Ag|| =2 /2, then

2/\6

(VQEN) S @)~ 0 (O)If < P[40l Da(a(6),u®), (s)

where Dg is the Bregman distance associated to ®, i.e.,
(Vu € dom @, Vv € intdom @), Dg(u,v) =®(u) — P(v) — (VO(v),u—v).  (16)

Remark 3.1. Since ran(y) C [0, 1], [[Ag]|?> < L. If 9? < &, then || Ag|| < 1; equality is obtained
when ¢)? = ¢£. Therefore, since Dg (-, u(?)) is continuous on dom & = B(\)¥, 2D (0(6), u®)
in (T3) can be uniformly bounded from above on ©.

Theorem 3.1/ and Remarkestablish that {w(@)(0)}gen converges to @(6) uniformly on © as
@ — +oco with a sublinear rate. This result applies to every task of the lower level objective in
Problem 2.2 and hence it also applies to the collection of tasks {w(?) (0)}gew and W(6). Therefore,
the requirements of Theorem [2.T]are met and the solutions of Problems [2.3]converge to the solutions
of Problem[2.2]as @ — +o0.

3.3 Computing the Hypergradient

In this section, we discuss the computation of the (hyper)gradient of 2/(?). It follows from (6) that,
for every 0 € ©,

T
Z SO VO (wiP(9)) € RPE, (17)

R(PXL)xP RP

where VC, (w!? (0)) = X7 (x ™ w{? () — ). In equation the derivative (w{?))(6)
can be computed by recursively differentiating the formulas in (I2)). This is the so-called forward
mode for the computation of the hypergradient. However in our setting, this requires storing the
derivatives (u(?)’(#) which have size (P x L) x (P x L). Here, since we are interested in the

product [(ng)) (0)]TVCi(w (Q)( 0)) we implement the reverse mode differentiation [13] (see also



[L1]) which gives a more efficient procedure that only requires storing matrices of size P x L. The
details are given in Algorithm 2]in the supplementary material (Section[B.T). Finally, as suggested
in [13, Chapter 15] and more recently in [24], we implement a variant of Algorithm 2]in which all
the derivatives of the mapping A are evaluated at the last iterate u(?) (instead of varying during
the iterations), This reduces the execution time and memory requirements. In our experiments, we
observe that the hypergradient is left unchanged by this operation as long as () is large enough.

3.4 Solving the Approximate Bilevel Problem

Since the hypergradient in has the form of a sum of 7" terms, each one depending on a single task,
we implement a stochastic solver, by estimating the hypergradient VI/(?) on a single task chosen at
random. Here, we resort to the proxSAGA algorithm [26]], which is a nonconvex proximal variant of
SAGA [9]]. The details are given in the supplementary material (Section|B.2)). In the following we
provide the related convergence theorem.

Theorem 3.2 (Convergence of the Proposed Bilevel Scheme). Let /3 be the Lipschitz constant of
VU and v < 1/(56T). Let {§*) X | be generated according to Algorithm in the supplemen-
tary material (Section . Then, for k uniformly sampled from {1,. .., K}, the following holds:

- 50872 U@ () — (@) (p%)

(k)yy2
E[ll6,(0M)I?) < 25— - , (1)
where 0* is a minimizer of U'?) and G, is the gradient mapping
1
Gr(0) = (9 — Po (6 — Wu@)(e)) . (19)

We note that computing the Lipschitz constant 3 is out of reach. Thus, we choose v small enough
such that the algorithm converges.

Finally, we suggest the initialization (°) = Pg (L1 py 1, +n) where n ~ N (0pyxr,0.1L 1 1py 1)
in order to be as uninformative as possible regarding the group structure while still breaking the
symmetry by adding a small perturbation.

4 Numerical Experiments

In this section, we first devise synthetic experiments to illustrate and assess the performance of the
proposed method. Then, we tackle a real-data experiment in the context of gene expression analysis.
A MATLAB® toolbox is available upon request to the authors.

4.1 Synthetic Experiments

Experimental setting. We consider the setting where N = 50, P = 100, and the group structure
6* is made of L* = 10 groups equally distributed over the features such that (Vp € {1,..., P}, VI €
{1,...,L}), 05, = 1ifp € G = {1+ (1 — 1)(P/L*),...,I(P/L*)} and O otherwise. In
addition, if not stated otherwise, we fix T = 500 tasks and every regressor wy is set to have non-zero
coefficients equal to 1 in at most 2 groups chosen at random. Both the training, validation and test
sets are synthesized as follow. For every task t € {1,...,T}, the design matrix X; € RV*F is
first drawn from a standard normal distribution N'(Oxx p, 1 yx p) and then normalized column-wise.

Finally we define the vector of outputs y; = X;w} + n where n ~ AN (On,0.31y).

We consider the convex relaxation pointed in Remark set (Q =500,e =10"3,7=0.1,K =
2000) and denote the proposed solution as #'GL. We also consider its threshold counterpart §BiGLThr
where each feature is assigned to its most dominant group. These two solutions are compared
with Lasso and oracle Group Lasso, computed respectively for #2%° = Idp and 6<% = 6*. In
addition to the validation error, performance are quantified in terms of test and estimation error,

T st S T * .
(1/20) S ™™ — XY 2 and (1/27) S, [lw; — |13 respectively.
Ilustration of the method. First, we illustrate the well-behaviour of the algorithmic solution, for

various values of A, when L* is known. We consider the previously mentioned setting and display in
Fig[5](in the supplementary material) the corresponding oracle w* (top left) exhibiting 10 groups.
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Figure 1: The minimization of ¢/(?) is displayed in the left plot for various A. Comparison of
estimation errors (middle) show that the proposed BiGL and BiGLThr estimates yield performance

close to the oracle GL. In addition, #B'GFThr satisfactorily agrees with the oracle 6* (right).
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Figure 2: Left and middle plots illustrate the impact of ¢ and 7" on the validation and the estimation
error respectively. The right-hand figure shows that an adequate estimation of the groups can be
obtained even when the number of groups is set to 20 instead of 10.

Figure|[T] (left) shows, for several values of A, how the upper level objective decreases as the number
of outer iterations k£ grows. Even though convergence is not yet fully reached, the corresponding
solutions still yield performance close to oracle Group Lasso as shown by the validation, test and
estimation error (see Figure[|and supplementary material). More importantly, Figure T] (right) shows
that for the A minimizing the validation error, denoted A, the corresponding estimated groups
GBIGLThr gatisfactorily agree with the oracle 6%, thus confirming that minimizing the validation error
is an adequate way to learn the groups.

Impact of the number of inner iterations (). Now that a proof of concept has been provided,
we propose to investigate the impact of () on the validation error. To do so, we repeat the same
experiment for A = A, and different values of ). Once the estimates HBIGL gpd @BIGLThr 4p0
obtained, the validation error (where the W(+)’s are computed a posteriori for 10* iterations) for each
of the four methods is plotted as a function of ) in Fig[2] (left). The results show that increasing Q
sufficiently permits reaching performance close to GL. In addition, we stress that, for @) > 500, the
performance of BiGL and BiGLThr become indistinguishable, thus showing that the algorithm does
tend to assign a single group to each feature.

Impact of the number of tasks 7. Here we investigate how the estimation errors varies as the
number of task T increases, see in Fig[2](middle). While the performance of Lasso and GL do not
significantly depend on 7', we observe that the performance of BiGL and BiGLThr get close to those
of GL as T grows. Similar conclusions can be drawn regarding the test error. Hence, this confirms
that learning the groups is intrinsically a multi-task problem that benefits from having a large number
of tasks.

Impact of the number of groups L. While in the previous experiments the number of groups was
known a priori (L* = 10), here we relax this assumption and let the algorithm find at most L = 20
groups. We repeat the experiment and show the results in Fig. 2] (right). Note that 9 out of the 10
extra groups are not displayed since they were found empty, while the remaining group contains very
few features. Overall, the oracle 6* is still satisfactorily estimated.

Impact of groups sizes. We repeat the same experiment except that 6* is now made of 5 groups of 5
features and 5 groups of 15 features. The proposed method still satisfactorily estimates groups of
different size, as Figure@ shows, in case L* is known as well as if L* is overestimated (L = 20).
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Figure 3: Illustration of the estimated group-structure when the oracle groups have different sizes. Left:
initialization with the correct number of groups L = 10. Right: initialization with an overestimation
L = 20 of the number of groups.
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Figure 4: Application to the prediction of gene ontology classes from regulatory motifs. Our approach
is able to reach a lower prediction error than Lasso by partitioning the features into 30 groups.

4.2 Application to Real Data

Understanding the complexity of gene expression networks and the mechanisms involved in its
regulation constitutes an extremely difficult task [25]]. In this section, we lead a preliminary experiment
on gene expression data collected from https://www.ensembl.org/ using BioMart. The data
consists of N = 60 genes each one characterized by P = 50 features, corresponding to the regulatory
motifs in promoters. These samples may belong to at most 108 gene ontology classes. Each class
corresponds to a very specific molecular function of the transcripts. The data set is split into training,
validation and test sets of 20 genes each. We perform a multi-task classification (1" = 108) where
each task consists of a one versus all classification problem. Our bilevel algorithm is initialized with
L = 50 possible groups. Validation and test errors are displayed in Fig. @ as functions of A. The
results show a significant decrease in prediction error when using the proposed method compared with
Lasso. In addition, §B1GLThr guggests that there exist 30 relevant groups among the features. This
preliminary experiment is encouraging and paves the way to set extended and more comprehensive
experiments in gene data analysis.

5 Conclusion

This contribution studied the problem of learning the groups by solving a continuous bilevel problem.
We replaced the exact Group Lasso optimization problem by a smooth dual forward-backward
algorithm with Bregman distances. This method is in the line of what has been proposed in [24].
We also provided theoretical justifications of this approximation method which, to the best of our
knowledge, is new. When compared to standard sparse regression methods, the proposed procedure
achieved equivalent performance to the oracle Group Lasso where the true groups are known.
Moreover, when the numbers of tasks and inner iterations are sufficiently large, a satisfactory estimate
of the groups can be obtained even if the number of groups are unknown. One of the advantages of the
proposed approach is that it can be easily adapted to different convex losses with Lipschitz-continuous
gradient. Future works notably include the extension to overlapping groups [[15] and could also aim
at learning the groups in group-sparse classification problems.


https://www.ensembl.org/
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