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Abstract

In many real-world reinforcement learning (RL) problems, besides optimizing the
main objective function, an agent must concurrently avoid violating a number of
constraints. In particular, besides optimizing performance, it is crucial to guar-
antee the safery of an agent during training as well as deployment (e.g., a robot
should avoid taking actions - exploratory or not - which irrevocably harm its hard-
ware). To incorporate safety in RL, we derive algorithms under the framework
of constrained Markov decision processes (CMDPs), an extension of the standard
Markov decision processes (MDPs) augmented with constraints on expected cu-
mulative costs. Our approach hinges on a novel Lyapunov method. We define
and present a method for constructing Lyapunov functions, which provide an ef-
fective way to guarantee the global safety of a behavior policy during training
via a set of local linear constraints. Leveraging these theoretical underpinnings,
we show how to use the Lyapunov approach to systematically transform dynamic
programming (DP) and RL algorithms into their safe counterparts. To illustrate
their effectiveness, we evaluate these algorithms in several CMDP planning and
decision-making tasks on a safety benchmark domain. Our results show that our
proposed method significantly outperforms existing baselines in balancing con-
straint satisfaction and performance.

1 Introduction

Reinforcement learning (RL) has shown exceptional successes in a variety of domains such as video
games [25] and recommender systems [40], where the main goal is to optimize a single return.
However, in many real-world problems, besides optimizing the main objective (the return), there
can exist several conflicting constraints that make RL challenging. In particular, besides optimizing
performance it is crucial to guarantee the safety of an agent in deployment [5, 32, 33], as well as
during training [2]. For example, a robot should avoid taking actions which irrevocably harm its
hardware; a recommender system must avoid presenting harmful or offending items to users.

Sequential decision-making in non-deterministic environments has been extensively studied in the
literature under the framework of Markov decision processes (MDPs). To incorporate safety into the
RL process, we are particularly interested in deriving algorithms under the context of constrained
Markov decision processes (CMDPs), which is an extension of MDPs with expected cumulative
constraint costs. The additional constraint component of CMDPs increases flexibility in modeling
problems with trajectory-based constraints, when compared with other approaches that customize
immediate costs in MDPs to handle constraints [34]. As shown in numerous applications from robot
motion planning [30, 26, 11], resource allocation [24, 18], and financial engineering [1, 41], it is
more natural to define safety over the whole trajectory, instead of over particular state and action
pairs. Under this framework, we denote an agent’s behavior policy to be safe if it satisfies the
cumulative cost constraints of the CMDP.
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Despite the capabilities of CMDPs, they have not been very popular in RL. One main reason is that,
although optimal policies of finite CMDPs are Markov and stationary, and with known models the
CMDP can be solved using linear programming (LP) [3], it is unclear how to extend this algorithm
to handle cases when the model is unknown, or when the state and action spaces are large or contin-
uous. A well-known approach to solve CMDPs is the Lagrangian method [4, 15], which augments
the standard expected reward objective with a penalty on constraint violation. With a fixed Lagrange
multiplier, one can use standard dynamic programming (DP) or RL algorithms to solve for an opti-
mal policy. With a learnable Lagrange multiplier, one must solve the resulting saddle point problem.
However, several studies [21] showed that iteratively solving the saddle point is apt to run into nu-
merical stability issues. More importantly, the Lagrangian policy is only safe asymptotically and
makes little guarantee with regards to safety of the behavior policy during each training iteration.

Motivated by these observations, several recent works have derived surrogate algorithms for solving
CMDPs, which transform the original constraint to a more conservative one that yields an easier
problem to solve. A straight-forward approach is to replace the cumulative constraint cost with
a conservative stepwise surrogate constraint [9] that only depends on the current state-action pair.
Since this surrogate constraint can be easily embedded into the admissible control set, this formu-
lation can be modeled by an MDP that has a restricted set of admissible actions. Another surrogate
algorithm was proposed by [14] in which the algorithm first computes a uniform super-martingale
constraint value function surrogate w.r.t. all policies, and then finds a CMDP feasible policy by op-
timizing the surrogate problem using the lexicographical ordering method [39]. These methods are
advantageous in the sense that (i) there are RL algorithms available to handle the surrogate problems
(for example see [12] for the step-wise surrogate and [27] for the super-martingale surrogate), (ii)
the policy returned by this method is safe, even during training. However, the main drawback of
these approaches is their conservativeness. Characterizing sub-optimality performance of the cor-
responding solution policy also remains a challenging task. On the other hand, recently in policy
gradient, [2] proposed the constrained policy optimization (CPO) method that extends trust-region
policy optimization (TRPO) to handle the CMDP constraints. While this algorithm is scalable and
its policy is safe during training, applying this methodology to more general RL algorithms (that are
not in the family of proximal PG algorithms) is quite non-trivial.

Lyapunov functions have been extensively used in control theory to analyze the stability of dynamic
systems [20, 28]. A Lyapunov function is a type of scalar potential function that keeps track of the
energy that a system continually dissipates. Besides modeling physical energy, Lyapunov functions
can also represent abstract quantities, such as the steady-state performance of a Markov process [16].
In many fields, Lyapunov functions provide a powerful paradigm to translate global properties of
a system to local ones and vice-versa. Using Lyapunov functions in RL was first studied by [31],
where Lyapunov functions were used to guarantee closed-loop stability of an agent. Recently [6]
used Lyapunov functions to guarantee a model-based RL agent’s ability to re-enter an “attraction
region” during exploration. However, no previous works have used Lyapunov approaches to explic-
itly model constraints in a CMDP. Furthermore, one major drawback of these approaches is that the
Lyapunov functions are hand-crafted, and there are no principled guidelines on designing Lyapunov
functions that can guarantee the agent’s performance.

The contribution of this paper is four-fold. First, we formulate the problem of safe RL as a CMDP
and propose a novel Lyapunov approach to solve it. While the main challenge of other Lyapunov-
based methods is to design a Lyapunov function candidate, we propose an LP-based algorithm to
construct Lyapunov functions w.r.t. generic CMDP constraints. We also show that our method is
guaranteed to always return a feasible policy, and under certain technical assumptions, it achieves
optimality. Second, leveraging the theoretical underpinnings of the Lyapunov approach, we present
two safe DP algorithms — safe policy iteration (SPI) and safe value iteration (SVI) — and analyze the
feasibility and performance of these algorithms. Third, to handle unknown environments and large
state/action spaces, we develop two scalable safe RL algorithms — (i) safe DON, an off-policy fitted
Q-iteration method, and (ii) safe DPI, an approximate policy iteration method. Fourth, to illustrate
the effectiveness of these algorithms, we evaluate them in several tasks on a benchmark 2D planning
problem and show that they outperform common baselines in terms of balancing performance and
constraint satisfaction.

2 Preliminaries

We consider RL problems in which the agent’s interaction with the system is modeled as a
Markov decision process (MDP). A MDP is a tuple (X, A, ¢, P,zg), where X = X' U {Z1em}
is the state space, with transient state space X’ and terminal state @rem; A is the action space;



c(z,a) € [0,Cipax] is the immediate cost function (negative reward); P(-|z,a) is the transition
probability distribution; and xy € X" is the initial state. Our results easily generalize to random ini-
tial states and random costs, but for simplicity we will focus on the case of deterministic initial state
and immediate cost. In a more general setting where cumulative constraints are taken into account,
we define a constrained Markov decision process (CMDP), which extends the MDP model by in-
troducing additional costs and associated constraints. A CMDP is defined by (&X', A, ¢, d, P, z¢, dy),
where the components X', A, ¢, P, z( are the same for the unconstrained MDP; d(z) € [0, Dyax] is
the immediate constraint cost; and dg € R>( is an upper-bound on the expected cumulative (through
time) constraint cost. To formalize the optimization problem associated with CMDPs, let A be the
set of Markov stationary policies, i.e., A(z) = {n(-|z) : X = R>qs : >, m(alz) = 1}, for any
state © € X. Also let T* be a random variable corresponding to the first-hitting time of the terminal
state Z1em, induced by policy 7. In this paper, we follow the standard notion of transient MDPs and
assume that the first-hitting time is uniformly bounded by an upper bound T for any stationary poli-
cies [10]. This assumption implies that every stationary policy is proper [7], whose induced Markov
chain has an absorbing property (see [13] for an example). While this assumption may seem restric-
tive, it is a standard one in stochastic shortest path problems for showing that the Bellman operator
is a contraction. Its justification follows from the fact that sample trajectories collected in most RL
algorithms consist of a finite stopping time (also known as a time-out); In general this assumption
may also be relaxed in cases where a discount factor v < 1 is applied on future costs. For notational
convenience, at each state z € X”’, we define the generic Bellman operator w.r.t. policy 7 € A and

generic cost function h: T ,[V](z) = >, 7(alx) {h(cc, a)+> P (@ |z, a)V(x’)} .

Given a policy # € A, an initial state xz(, the cost function is defined as C,(xzg) :=

E| ZI‘T:(; Yoz, ar) | o, 7|, and the safety constraint is defined as D, (zo) < do, where the safety

constraint function is given by Dy (zo) := E[ ;F:*Jl d(z) | o, 7|. In general the CMDP problem

we wish to solve is given as follows:

Problem OP7: Given an initial state xy and a threshold dg, solve
minzea {Cx(20) : Dr(x0) < do} . If there is a non-empty solution, the optimal
policy is denoted by 7*.

Under the transient CMDP assumption, Theorem 8.1 in [3] shows that if the feasibility set is non-
empty, then there exists an optimal policy in the class of stationary Markovian policies A. To
motivate the CMDP formulation studied in this paper, in Appendix A, we include two real-world
examples in modeling safety using (i) the reachability constraint, and (ii) the constraint that limits
the agent’s visits to undesirable states. Recently there has been a number of works on CMDP
algorithms; their details can be found in Appendix B.

3 A Lyapunov Approach to Solve CMDPs

In this section, we develop a novel methodology for solving CMDPs using the Lyapunov approach.
To start with, without loss of generality we assume to have access to a baseline feasible policy of
the OPT problem, namely 75 € A.! We define a non-empty? set of Lyapunov functions w.r.t. the
initial state ¢y € X and constraint threshold dg as

Ly (xo,do)= {L: X —=R>0:Trp.alLl(z) <L(z),Vz € X'; L(z) = 0, Vo € X\X'; L(xg) < do}

ey
For any arbitrary Lyapunov function L € L., (zo,dp), we denote by Fr(z) =
{m(|z) € A: Tra[L](x) <L(x)} the set of L—induced Markov stationary policies. Since T} 4
is a contraction mapping [7], any L—induced policy 7 has the following property: D,(z) =
limg_y 00 T7’f7d[L](x) < L(z), Vx € X'. Together with the property of L(xg) < dy, this further
implies any L—induced policy is a feasible policy of the OPT problem. However, in general the
set F1(x) does not necessarily contain any optimal policies of the OPT problem , and our main

contribution is to design a Lyapunov function (w.r.t. a baseline policy) that provides this guarantee.
In other words, our main goal is to construct a Lyapunov function L € L, (zq, dy) such that

L(z) > Tr+ q[L](x), L(zo) < do. 2)

'One example of 7 is a policy that minimizes the constraint, i.e., 75 (-|z) € arg min,ea(z) Dr(z).
’To see this, the constraint cost function Dy () is a valid Lyapunov function, i.e., Drp(z0) < do,

Darp(z) =0,Yz € X\ X, and Dy, () = Trp.a[Drp)(z) = E [Zf:*gl d(zt) | 75, x] Yz e X



Before getting into the main results, we consider the following important technical lemma, which
states that with appropriate cost-shaping, one can always transform the constraint value function
D+ (x) w.r.t. optimal policy 7* into a Lyapunov function that is induced by 7p, i.e., Le(z) €
L (20, do). The proof of this lemma can be found in Appendix C.1.

Lemma 1. There exists an auxiliary constraint cost € : X' — R such that a Lyapunov function is
given by L.(z) = E[ ;1“:0—1 d(xt) + €(x) |7TB,$} , Ve € X', and Le(x) = 0, Vo € X\ X

Moreover, L. is equal to the constraint value function w.r.t. ¥, i.e., L () = Dy ().

From the structure of L., one can see that the auxiliary constraint cost function € is uniformly
bounded by €*(z) := 2T Dyax Dy (7*||75) (), ie., e(x) € [—€*(x),e*(x)], for any z € A”.
However, in general it is unclear how to construct such a cost-shaping term e without explicitly
knowing 7* a-priori. Rather, inspired by this result, we consider the bound €* to propose a Lyapunov
function candidate L.-. Immediately from its definition, this function has the following properties:

L (2) > Trp d[Ler](x), Lex(x) > max {D,,* (), Dy (:E)} >0,Vre X 3)

The first property is due to the facts that: (i) €* is a non-negative cost function; (ii) T, g4+ is a
contraction mapping, which by the fixed point theorem [7] implies L« () = Ty dyer [Lex](x) >
Ty, .d[Le](z), V& € X’. For the second property, from the above inequality one concludes that
the Lyapunov function L.« is a uniform upper-bound to the constraint cost, i.e., Lex (2) > Drp (),
because the constraint cost D, (x) w.r.t. policy 75 is the unique solution to the fixed-point equation
Ty, .4[V](x) = V(x), z € X’. On the other hand, by construction, ¢*(x) is an upper-bound of the
cost-shaping term €(x). Therefore, Lemma 1 implies that the Lyapunov function L.« is a uniform
upper-bound to the constraint cost w.r.t. optimal policy 7%, i.e., Les () > Dys ().

To show that L.~ is a Lyapunov function that satisfies (2), we propose the following condition that
enforces a baseline policy 7 to be sufficiently close to an optimal policy 7*.

Assumption 1. The feasible baseline policy mp satisfies the condition max ey €*(2) < Dipax -
s dO*’D‘ﬂ'B (IO) TDmaxfﬁ
— { TDmax * TDmaxtD

}, where D = max, ¢y max, Dy (z).

This condition characterizes the maximum allowable distance between wg and 7*, such that the set
of L.~—induced policies contains an optimal policy. To formalize this claim, we have the following
main result showing that L.« € L (o, do), and the set of policies F7, . contains an optimal policy.

Theorem 1. Suppose the baseline policy T satisfies Assumption 1, then on top of the properties in
(3), the Lyapunov function candidate L.~ also satisfies the properties in (2), and thus, its induced
feasible set of policies Fy,_. contains an optimal policy.

The proof of this theorem is given in Appendix C.2. Suppose the distance between the baseline and
optimal policies can be estimated effectively. Using the above result, one can immediately determine
if the set of L.~ —induced policies contain an optimal policy. Equipped with the set of L. —induced
feasible policies, consider the following safe Bellman operator:

. minﬂe}-Le* (z) TmC[V](l‘) ifzxe X’
TVi(@) = { 0 otherwise

Using standard analysis of Bellman operators, one can show that 7" is a monotonic and contraction
operator (see Appendix C.3 for the proof). This further implies that the solution of the fixed-point
equation T[V](z) = V(x), Yo € X is unique. Let V* be such a value function. The following
theorem shows that under Assumption 1, V*(xg) is a solution to the OPT problem.

4)

Theorem 2. Suppose that the baseline policy wp satisfies Assumption 1. Then, the fixed-point
solution at © = xq, i.e, V*(x0), is equal to the solution of the OPT problem. Furthermore, an
optimal policy can be constructed by 7*(-|r) €argmingcr, () Tr.c[V*](2), Vo€ X'

The proof of this theorem can be found in Appendix C.4. This shows that under Assumption 1,
an optimal policy of the OP7T problem can be found using standard DP algorithms. Note that
verifying whether mp satisfies this assumption is still challenging, because one requires a good
estimate of Dy (7*||wg). Yet to the best of our knowledge, this is the first result that connects
the optimality of CMDP to Bellman’s principle of optimality. Another key observation is that in

*The definition of total variation distance is given by Drv (7*||75)(z) = 3 Y aca lmB(alr) — 7 (a|z)].



practice, we will explore ways of approximating €* via bootstrapping and empirically show that this
approach achieves good performance, while guaranteeing safety at each iteration. In particular, in
the next section, we will illustrate how to systematically construct a Lyapunov function using an
LP in both planning and RL (when the model is unknown and/or we use function approximation)
scenarios in order to guarantee safety during learning.

4 Safe Reinforcement Learning Using Lyapunov Functions

Motivated by the challenge of computing a Lyapunov function L.~ such that its induced set of
policies contains 7, in this section, we approximate ¢* with an auxiliary constraint cost €, which is
the largest auxiliary cost that satisfies the Lyapunov condition: Lz(z) > Ty, a[Le](x), Vo € X/,
and the safety condition Lz(z9) < dy. The larger the €, the larger the set of policies F,.. Thus, by
choosing the largest such auxiliary cost, we hope to have a better chance of including the optimal
policy 7* in the set of feasible policies. So, we consider the following LP problem:

Tcarg max { 3" (@) do — Dap(wo) = L(z0) (I~ {P(&' |2, 75) bawrenr) e } )
e:X’—>R>q flompvl

Here 1(xz¢) represents a one-hot vector in which the non-zero element is located at © = xo.

On the other hand, whenever 7p is a feasible policy, the problem in (5) always has a non-empty
solution.* Furthermore, note that 1(zq) " (I — {P(2’|z,7p)}s.wcar)” t1(z) represents the total
visiting probability E[EtT:O_ "1{z; = x} | 2o, 75] from the initial state z, to any state z € X’
which is a non-negative quantity. Therefore, using the extreme point argument in LP [23], one
can simply conclude that the maximizer of problem (5) is an indicator function whose non-zero
element locates at state z that corresponds to the minimum total visiting probability from zg,
ie., &x) = (do — Dry(w0)) - Yo =2} /E[Y,_ Moy =2} | 2o, 75] > 0, Yz € X', where
T € argmingex E[Zth(;l 1{x: = x} | zo,7p]. On the other hand, suppose that we further
restrict the structure of €(x) to be a constant function, i.e., €(x) = €, Vo € X’. Then, one can
show that the maximizer is given by €(z) = (do — Dxy(20))/E[T* | zo, 78], V& € X', where
1(xo) " (I — {P(2|2,7B) }ewrexr) H[1,...,1]T = E[T* | zo, 7] is the expected stopping time
of the transient MDP. In cases where computing the expected stopping time is expensive, one rea-
sonable approximation is to replace the denominator of € with the upper-bound T.

Using this Lyapunov function Lz, we propose the safe policy iteration (SPI) in Algorithm 1, in which
the Lyapunov function is updated via bootstrapping, i.e., at each iteration Lz is recomputed using (5),
w.r.t. the current baseline policy. Properties of SPI are summarized in the following proposition.

Algorithm 1 Safe Policy Iteration (SPI)
Input: Initial feasible policy mo;
fork=0,1,2,...do
Step 0: With 7, = 7, evaluate the Lyapunov function L, , where € is a solution of (5)
Step 1: Evaluate the cost value function V;, (z) = Cx, (z)
Step 2: Update the policy by solving the problem 7,41 (+|z) € argmin,refLFk @) Tr,e [V J(2), Vo € X7

end for
Return Final policy 7=

Proposition 1. Algorithm I has the following properties: (i) Consistent Feasibility, i.e., suppose that
the current policy Ty, is feasible, then the updated policy i1 is also feasible, i.e., Dy, (zo) < do
implies Dy, ., (x0) < dy; (ii) Monotonic Policy Improvement, i.e., the cumulative cost induced by
Tky1 is lower than or equal to that by Ty, i.e., Cr, ., (x) < Cr, (x), Yo € X'; (iii) Convergence,
i.e., if we add a strictly concave regularizer to the optimization problem (5) and a strictly convex
regularizer to the policy optimization step, then the policy sequence asymptotically converges.’

The proof of this proposition is given in Appendix C.5, and the sub-optimality performance bound
of SPI can be found in Appendix C.6. Analogous to SPI, we also propose a safe value iteration
(SVI), in which the Lyapunov function estimate is updated at every iteration via bootstrapping,
using the current optimal value estimate. Details of SVI is given in Algorithm 2 and its properties
are summarized in the following proposition, whose proof is given in Appendix C.7.

*This is due to the fact that dy — Dy, (x0) > 0, and thus, €(z) = 0 is a feasible solution.
SThe strict concavity property in the objective function is mainly for the purpose of tie-breaking. One
standard example is the entropy regularizer with a small regularization term.



Proposition 2. Algorithm 2 has: (i) Consistent Feasibility and (ii) Convergence.

To justify the notion of bootstrapping in both SVI and SPI, the Lyapunov function is updated based
on the best baseline policy (the policy that is feasible and by far has the lowest cumulative cost).
Once the current baseline policy 7y, is sufficiently close to an optimal policy 7*, then by Theorem 1,
one may conclude that the Lz—induced set of policies contains an optimal policy. Although these
algorithms do not have optimality guarantees, empirically, they often return a near-optimal policy.

At each iteration, the policy optimization step in SPI and SVIrequires solving |X”’| LP sub-problems,
where each of them has |.A| + 2 constraints and has a |.A|]—dimensional decision-variable. Collec-
tively, at each iteration its complexity is O(|X’||.A|*(|.A| + 2)). While in the worst case SVI con-
verges in K = O(T) steps [7] and SPI converges in K = O(]X’||.A|T log T) steps [38], in practice,
K is much smaller than | X’||.A|. Therefore, even with the additional complexity of policy evaluation
in SPI that is O(T|X”’|?), or the complexity of updating Q—function in SVI that is O(|.A|?|X’|?), the
complexity of these methods is O(K|X'||A|> + K|X'|?|.A|?), which in practice is much lower than
that of the dual LP method, whose complexity is O(|X”|3|.4|?) (see Appendix B for more details).

Algorithm 2 Safe Value Iteration (SVI)
Input: Initial Q-function Qo; Initial Lyapunov function L., w.r.t. auxiliary cost function eo(z) =0;
fork=0,1,2,...do
Step 0: Compute Q-function Qi11(z,a) = c(z,a) + 3, P(z'|z,a) mingcr, (@) 7(|z") " Qr(2’,")
k
and policy 7 (+|z) € arg mimwehﬂC @ (7)) T Qu(z, )
Step 1: With mg = 7, construct the Lyapunov function L
end for
Return Final policy 7=

ept1> Where €x41 is a solution to (5);

4.1 Lyapunov-based Safe RL Algorithms

In order to improve scalability of SVI and SPI, we develop two off-policy safe RL algorithms, namely
safe DQN and safe DPI, which replace the value and policy updates in safe DP with function ap-
proximations. Their pseudo-codes can be found in Appendix D. Before going into their details, we
first introduce the policy distillation method, which will be later used in the safe RL algorithms.

Policy Distillation: Consider the following LP problem for policy optimization in SVI and SPI:
7' (fr) € argmin {x(|2) Q(z, ) s (w(|e) — 75 (1) Qu(e,) <T (@)}, ®)

where Qr(z,a) = d(x) + € (x) + Y, P(2'|x,a)Lz(x") is the state-action Lyapunov function.
When the state-space is large (or continuous), we shall use function approximation. Consider a
parameterized policy 7, with weights ¢. Utilizing the distillation concept [36], after comput-
ing the optimal action probabilities w.r.t. a batch of states, the policy 7y is updated by solving

¢* € argmin, % 27]:[:1 tT:_Ul Dysp(mg(-|ze,m) || ©(-|4,m)), where Disp is the Jensen-Shannon
divergence. Pseudo-code of distillation is given in Algorithm 3 in Appendix D.

Safe ()—learning (SDQN): Here we sample an off-policy mini-batch of state, action, cost, and
next-state from the replay buffer, and use it to update the value function estimates that minimize

the MSE losses of the Bellman residuals. We first construct the state-action Lyapunov function
estimate Qr,(z,a;0p,07) = Qp(z,a;0p) +€ - Qr(x, a; O7) by learning the constraint value net-
work Qp and stopping time value network Q. With a current baseline policy 7, one can use
function approximation to approximate the auxiliary constraint cost (which is the solution to (5))
by &(2) = & = (do — m(-l20) " Qp (w0, -1 0p))/mr(-|0) T Qr (o, - 0r). Equipped with the Lya-
punov function, at each iteration, one can do a standard DQN update, except that the optimal action
probabilities are computed by solving (6). Details of SDQN is given in Algorithm 4 in Appendix D.

Safe Policy Improvement (SDPI): Similar to SDQN, in this algorithm, we first sample an off-
policy mini-batch from the replay buffer and use it to update the value function estimates (w.r.t. ob-
jective, constraint, and stopping-time estimate) that minimize MSE losses. Different from SDQN,
in SDPI the value estimation is done using policy evaluation, which means that the objective
(Q—function is trained to minimize the Bellman residual w.r.t. actions generated by the current pol-
icy 7, instead of the greedy actions. Using the same construction as in SDQN for auxiliary cost ¢’

and state-action Lyapunov function @Q)r,, we then perform a policy improvement step by computing
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Figure 1: Results of various planning algorithms on the grid-world environment with obstacles,
with x-axis showing the obstacle density. From the leftmost column, the first figure illustrates the
2D planning domain example (p = 0.25). The second and the third figures show the average return
and the average cumulative constraint cost of the CMDP methods, respectively. The fourth figure
displays all the methods used in the experiment. The shaded regions indicate the 80% confidence
intervals. Clearly the safe DP algorithms compute policies that are safe and have good performance.

a set of greedy action probabilities from (6) and constructing an updated policy 71 using pol-
icy distillation. Assuming both value and policy approximations have low error, SDPI resembles
several interesting properties of SPI, such as maintaining safety during training and monotonically
improving the policy. To improve learning stability, instead of the full policy update, one can further
consider a partial update 7,1 = (1—a)m+an’, where a € (0, 1) is a mixing constant that controls
safety and exploration [2, 19]. Details of SDPI is summarized in Algorithm 5 in Appendix D.

5 Experiments

Motivated by the safety issues of RL in [22], we validate our safe RL algorithms using a stochastic
2D grid-world motion planning problem. In this domain, an agent (e.g., a robotic vehicle) starts
in a safe region and its objective is to travel to a given destination. At each time step, the agent
can move to any of its four neighboring states. Due to sensing and control noise, however, with
probability 6 a move to a random neighboring state occurs. To account for fuel usage, the stage-wise
cost of each move until reaching the destination is 1, while the reward achieved for reaching the
destination is 1000. Thus, we would like the agent to reach the destination in the shortest possible
number of moves. In between the starting and destination points, there are number of obstacles
that the agent may pass through but should avoid for safety; each time the agent hits an obstacle it
incurs a constraint cost of 1. Thus, in the CMDP setting, the agent’s goal is to reach the destination
in the shortest possible number of moves, while hitting the obstacles at most dy times or less. For
demonstration purposes, we choose a 25 x 25 grid-world (see Figure 1) with a total of 625 states.
We also have a density ratio p € (0,1) that sets the obstacle-to-terrain ratio. When p is close to 0,
the problem is obstacle-free, and if p is close to 1, then the problem becomes more challenging. In
the normal problem setting, we choose a density p = 0.3, an error probability 6 = 0.05, a constraint
threshold dp = 5, and a maximum horizon of 200 steps. The initial state is located in (24, 24) and
the goal is placed in (0, «), where o € [0, 24] is a uniform random variable. To account for statistical
significance, the results of each experiment are averaged over 20 trials.

CMDP Planning: In this task, we have explicit knowledge of the reward function and transition
probability. The main goal is to compare our safe DP algorithms (SPI and SVI) with the following
common CMDP baseline methods: (i) Step-wise Surrogate, (ii) Super-martingale Surrogate, (iii)
Lagrangian, and (iv) Dual LP. Since the methods in (i) and (ii) are surrogate algorithms, we will
also evaluate these methods with both value iteration and policy iteration. To illustrate the level of
sub-optimality, we will also compare the returns and constraint costs of these methods with baselines
that are generated by maximizing return or minimizing constraint cost of two separate MDPs. The
main objective here is to illustrate that safe DP algorithms are less conservative than other surrogate
methods, are more numerically stable than the Lagrangian method, and are more computationally
efficient than the Dual LP method (see Appendix F), without using function approximations.

Figure 1 presents the results on returns and cumulative constraint costs of the aforementioned CMDP
methods over a spectrum of p values, ranging from 0 to 0.5. In each method, the initial policy is a
conservative baseline policy 7w that minimizes the constraint cost. The empirical results indicate
that although the polices generated by the four surrogate algorithms are feasible, they do not have
significant policy improvement, i.e., return values are close to that of the initial baseline policy.
Over all density settings, the SPI algorithm consistently computes a solution that is feasible and has
good performance. The policy returned by SVI is always feasible and has near-optimal performance
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Figure 2: Results of various RL algorithms on the grid-world environment with obstacles, with x-
axis in thousands of episodes. We include runs using discrete observations (a one-hot encoding of
the agent’s position) and image observations (showing the entire RGB 2D map of the world). We
discover that the Lyapunov-based approaches can perform safe learning, despite the fact that the
model of the environment is not known and that deep function approximation is necessary.

when the obstacle density is low. However, due to numerical instability, its performance degrades as
p grows. Similarly, the Lagrangian methods return a near-optimal solution over most settings, but
due to numerical issues their solutions start to violate constraint as p grows.

Safe Reinforcement Learning: Here we present the results of RL algorithms on this safety task.
We evaluate their learning performance on two variants: one in which the observation is a one-hot
encoding of the agent’s location, and the other in which the observation is the 2D image represen-
tation of the grid map. In each of these, we evaluate performance when dy = 1 and dy = 5. We
compare our proposed safe RL algorithms, SDPI and SDQN, with their unconstrained counterparts,
DPI and DQN, as well as the Lagrangian approach to safe RL, in which the Lagrange multiplier is
optimized via extensive grid search. Details of the experimental setup are given in Appendix F. To
make the tasks more challenging, we initialize the RL algorithms with a randomized baseline policy.

Figure 2 shows the results of these methods across all task variants. We observe that SDPI and
SDQN can adequately solve the tasks and compute good return performance (similar to that of
DQN and DPI in some cases), while guaranteeing safety. Another interesting observation in the
SDQN and SDPI algorithms is that, once the algorithm finds a safe policy, then all updated policies
remain safe throughout training. On the contrary, the Lagrangian approach often achieves worse
rewards and is more apt to violate the constraints during training, ¢, and the performance is very
sensitive to the initial conditions. Furthermore, in some cases (in experiment with dy = 5 and with
discrete observations) the Lagrangian method cannot guarantee safety throughout training.

6 Conclusion

In this paper, we formulated the problem of safe RL as a CMDP and proposed a novel Lyapunov
approach to solve CMDPs. We also derived an effective LP-based method to generate Lyapunov
functions, such that the corresponding algorithm guarantees feasibility and optimality under certain
conditions. Leveraging these theoretical underpinnings, we showed how Lyapunov approaches can
be used to transform DP (and RL) algorithms into their safe counterparts that only require straight-
forward modifications in the algorithm implementations. We empirically validated our theoretical
findings in using the Lyapunov approach to guarantee safety and robust learning in RL. In general,
our work represents a step forward in deploying RL to real-world problems in which guaranteeing
safety is of paramount importance. Future research will focus on two directions. On the algorithmic
perspective, one major extension is to apply the Lyapunov approach to policy gradient algorithms
and compare its performance with CPO in continuous action problems. On the practical aspect,
future work includes evaluating the Lyapunov-based RL algorithms on several real-world testbeds.

%In Appendix F, we also report the results from the Lagrangian method in which the Lagrange multiplier is
learned using gradient ascent method [10] and we observe similar (or even worse) behaviors.
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