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Abstract

We study gradient-based optimization methods obtained by directly discretizing
a second-order ordinary differential equation (ODE) related to the continuous
limit of Nesterov’s accelerated gradient method. When the function is smooth
enough, we show that acceleration can be achieved by a stable discretization of
this ODE using standard Runge-Kutta integrators. Specifically, we prove that un-
der Lipschitz-gradient, convexity and order-(s + 2) differentiability assumptions,
the sequence of iterates generated by discretizing the proposed second-order ODE
converges to the optimal solution at a rate of O(N ~2%+T), where s is the order
of the Runge-Kutta numerical integrator. Furthermore, we introduce a new local
flatness condition on the objective, under which rates even faster than O(N ~2)
can be achieved with low-order integrators and only gradient information. No-
tably, this flatness condition is satisfied by several standard loss functions used in
machine learning. We provide numerical experiments that verify the theoretical
rates predicted by our results.

1 Introduction

We study accelerated first-order optimization algorithms for the problem

min f(x), €))
where f is convex and sufficiently smooth. A classical method for solving (1)) is gradient descent
(GD), which displays a sub-optimal convergence rate of O(N~1)—i.e., the gap f(zn) — f(z*)
between GD and the optimal value f(z*) decreases to zero at the rate of O(N~1). Nesterov’s
seminal accelerated gradient method [19] matches the oracle lower bound of O(N _2) [18], and is
thus a central result in the theory of convex optimization.

However, ever since its introduction, acceleration has remained somewhat mysterious, especially
because Nesterov’s original derivation relies on elegant but unintuitive algebraic arguments. This
lack of understanding has spurred a variety of recent attempts to uncover the rationale behind the
phenomenon of acceleration [1} 9} [11} 13 [16} 211

We pursue instead an approach to NAG (and accelerated methods in general) via a continuous-time
perspective. This view was recently studied by Su et al. [23]], who showed that the continuous limit
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of NAG is a second order ODE describing a physical system with vanishing friction; Wibisono et al.
[26] generalized this idea and proposed a class of ODEs by minimizing Bregman Lagrangians.

Although these works succeed in providing a richer understanding of Nesterov’s scheme via its
continuous time ODE, they fail to provide a general discretization procedure that generates provably
convergent accelerated methods. In contrast, we introduce a second-order ODE that generates an
accelerated first-order method for smooth functions if we simply discretize it using any Runge-Kutta
numerical integrator and choose a suitable step size.

1.1 Summary of results

Assuming that the objective function is convex and sufficiently smooth, we establish the following:

m  We propose a second-order ODE, and show that the sequence of iterates generated by discretizing

—2s
using a Runge-Kutta integrator converges to the optimal solution at the rate O(N 5+1), where s
is the order of the integrator. By using a more precise numerical integrator, (i.e., a larger s), this
rate approaches the optimal rate O(N ~2).

m We introduce a new local flatness condition for the objective function (Assumption [I)), under
which Runge-Kutta discretization obtains convergence rates even faster than O(N ~2), without
requiring high-order integrators. In particular, we show that if the objective is locally flat around
a minimum, by using only gradient information we can obtain a convergence rate of O(N~P),
where p quantifies the degree of local flatness. Acceleration due to local flatness may seem
counterintuitive at first, but our analysis reveals why it helps.

To the best of our knowledge, this work presents the first direcﬂ discretization of an ODE that yields
accelerated gradient methods. Unlike Betancourt et al. [[/] who study symplecticity and consider
variational integrators, and Scieur et al. [22]] who study consistency of integrators, we focus on the
order of integrators (see §2.1). We argue that the stability inherent to the ODE and order conditions
on the integrators suffice to achieve acceleration.

1.2 Additional related work

Several works [2} 13,15 18] have studied the asymptotic behavior of solutions to dissipative dynamical
systems. However, these works retain a theoretical focus as they remain in the continuous time do-
main and do not discuss the key issue, namely, stability of discretization. Other works such as [[15],
study the counterpart of Su et al. [23]]’s work for mirror descent algorithms and achieve acceleration
via Nesterov’s technique. Diakonikolas and Orecchia [[10] proposes a framework to analyze the first
order mirror descent algorithms by studying ODEs derived from duality gaps. Also, Raginsky and
Bouvrie [20] obtain nonasymptotic rates for continuous time mirror descent in a stochastic setting.

A textbook treatment of numerical integration is given in [12]]; some of our proofs build on material
from Chapters 3 and 9. [14] and [25]] also provide nice introductions to numerical analysis.

2 Problem setup and background

Throughout the paper we assume that the objective f is convex and sufficiently smooth. Our key
result rests on two key assumptions introduced below. The first assumption is a local flatness con-
dition on f around a minimum; our second assumption requires f to have bounded higher order
derivatives. These assumptions are sufficient to achieve acceleration simply by discretizing suitable
ODE:s without either resorting to reverse engineering to obtain discretizations or resorting to other
more involved integration mechanisms.

We will require our assumptions to hold on a suitable subset of R?. Let x be the initial point to our
proposed iterative algorithm. First consider the sublevel set

S:={z e R?| f(z) < exp(1)((f(wo) — f(z") + lzo — 2*|*) + 1}, 2)

where z* is a minimum of (I)). Later we will show that the sequence of iterates obtained from
discretizing a suitable ODE never escapes this sublevel set. Thus, the assumptions that we introduce

IThat is, discretize the ODE with known numerical integration schemes without resorting to reverse engi-
neering NAG’s updates.



need to hold only within a subset of R%. Let this subset be defined as
A={zeR [T’ €S, [lz -2/ <1}, (3)

that is, the set of points at unit distance to the initial sublevel set (2). The choice of unit distance is
arbitrary, and one can scale that to any desired constant.

Assumption 1. There exists an integer p > 2 and a positive constant L such that for any point
x € A, and for all indices i € {1, ...,p — 1}, we have the lower-bound

flz) = f@) = LIV f ()7

where x* minimizes f and |V f(x)|| denotes the operator norm of the tensor V@ f(x).

D
—i
9
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Assumption [T| bounds high order derivatives by function suboptimality, so that these derivatives
vanish as the suboptimality converges to 0. Thus, it quantifies the flatness of the objective around
a minimum When p = 2, Assumption |1|is slightly weaker than the usual Lipschitz-continuity of
gradients (see Example|l)) typically assumed in the analysis of first-order methods, including NAG.
If we further know that the objectives Taylor expansion around an optimum does not have low order
terms, p would be the degree of the first nonzero term.

Example 1. Let [ be convex with %-Lipschitz continuous gradients, i.e.,
Ll|z — yl|. Then, for any z,y € R? we have

f(@) > fly) + (Vf(y),x —y) + LIV (@) =V (y)]*
In particular, for y = x*, an optimum point, we have V f (y) = 0, and thus we have f(x) — f(z*)
IV f()||?, which is nothing but inequality @) for p = 2 and i = 1.

Example 2. Consider the {,,-norm regression problem: min, f(x) = ||Az — b||b, for even integer
p > 2. If 3z, Ax* = b, then [ satisfies inequality (@) for p, and L depends on p and the operator
norm of A.

Vi) = Vi)l <

v

Logistic loss satisfies a slightly different version of Assumption [I] because its minimum can be at
infinity. We will explain this point in more detail in Section[3.1]

Next, we introduce our second assumption that adds additional restrictions on differentiability and
bounds the growth of derivatives.

Assumption 2. There exists an integer s > p and a constant M > 0, such that f(x) is order (s+2)
differentiable. Furthermore, for any x € A, the following operator norm bounds hold:

[V f(z)|| < M, fori=pp+1,...,8,s+1,s+2. &)

When the sublevel sets of f are compact and hence the set A is also compact; as a result, the
bound (3) on high order derivatives is implied by continuity. In addition, an L,, loss of the form
| Az — b||? also satisfy (5) with M = pl|| A|5.

2.1 Runge-Kutta integrators
Before moving onto our new results (§3)) let us briefly recall explicit Runge-Kutta (RK) integrators
used in our work. For a more in depth discussion please see the textbook [[12].

Definition 1. Given a dynamical system y = F(y), let the current point be yo and the step size by
h. An explicit S stage Runge-Kutta method generates the next step via the following update:

i—1 S
gi=v+hY a;F(g),  ®nlyo) =yo+h> biF(g), (6)
j=1 i=1

where a;j and b; are suitable coefficients defined by the integrator; ®p,(yo) is the estimation of the
state after time step h, while g; (fori = 1,...,5) are a few neighboring points where the gradient
information F(g;) is evaluated.

2One could view this as an error bound condition that reverses the gradient-based upper bounds on subop-
timality stipulated by the Polyak-Lojasiewicz condition [6} [17].



Algorithm 1: Input(f, zo,p, L, M, s, N) > Constants p, L, M are the same as in Assumptions
1: Set the initial state yo = [0; zo; 1] € R2¢+!

2: Set step size h = C/Nﬁ > C is determined by p, L, M, s, xq
3: xn + Order-s-Runge-Kutta-Integrator(F, yo, N, h) > F is defined in equation
4: return x

By combining the gradients at several evaluation points, the integrator can achieve higher precision
by matching up Taylor expansion coefficients. Let ¢y, (yo) be the true solution to the ODE with
initial condition yo; we say that an integrator @, (yo) has order s if its discretization error shrinks as

@5 (y0) — en(yo) = O(R*TH), as h — 0. 7

In general, RK methods offer a powerful class of numerical integrators, encompassing several basic
schemes. The explicit Euler’s method defined by ®,(yo) = yo + hF (yo) is an explicit RK method
of order 1, while the midpoint method @4, (yo) = yo + hF(yo + 2F(yo)) is of order 2. Some
high-order RK methods are summarized in [24].

3 Main results

In this section, we introduce a second-order ODE and use explicit RK integrators to generate iterates
that converge to the optimal solution at a rate faster than O(1/t) (where ¢ denotes the time variable
in the ODE). A central outcome of our result is that, at least for objective functions that are smooth
enough, it is not the integrator type that is the key ingredient of acceleration, but a careful analysis
of the dynamics with a more powerful Lyapunov function that achieves the desired result. More
specifically, we will show that by carefully exploiting boundedness of higher order derivatives, we
can achieve both stability and acceleration at the same time.

We start with Nesterov’s accelerated gradient (NAG) method that is defined according to the updates
Tk = Yr—1 — WV f(yr-1), yr = Tk + 55 (Tk — zp1). ®)
Su et al. [23] showed that the iteration (8] in the limit is equivalent to the following ODE

B(t) + 2i(t) + Vf((t) =0,  where i =4t o)

when one drives the step size h to zero. It can be further shown that in the continuous domain
the function value f(z(t)) decreases at the rate of O(1/t?) along the trajectories of the ODE. This
convergence rate can be accelerated to an arbitrary rate in continuous time via time dilation as in
[26]. In particular, the solution to

() + 2L i(t) + p*tP 2V f(2(t)) = 0, (10)

has a convergence rate O(1/t?). When p > 2, Wibisono et al. [26] proposed rate matching al-
gorithms via utilizing higher order derivatives (e.g., Hessians). In this work, we focus purely on
first-order methods and study the stability of discretizing the ODE directly when p > 2.

Though deriving the ODE from the algorithm is solved, deriving the update of NAG or any other
accelerated method by directly discretizing an ODE is not. As stated in [26], explicit Euler dis-
cretization of the ODE in (9) may not lead to a stable algorithm. Recently, Betancourt et al. [7]
observed empirically that Verlet integration is stable and suggested that the stability relates to the
symplectic property of the Verlet integration. However, in our proof, we found that the order condi-
tion of Verlet integration would suffice to achieve acceleration. Though symplectic integrators are
known to be stable, we weren’t able to leverage the symplecticity for the dissipative system (TT).

This principal point of departure from previous works underlies Algorithm 1, which solves (T)) by
discretizing the following ODE with an order-s integrator:

o op1
() + pt

The solution to (TT)) exists and is unique when ¢ > 0. This claim follows by local Lipschitzness of
f and is discussed in more details in Appendix A.2 of [26].

@(t) + p*tP AV f(x(t)) = 0. (11)




We further highlight that the ODE in (TI)) can also be written as the dynamical system

— 22ty — P22V f(2)
y=F(y) = v , where y = [v; z; t]. (12)
1

We have augmented the state with time to obtain an autonomous system, which can be readily
solved numerically with a Runge-Kutta integrator as in Algorithm 1. To avoid singularity at ¢ = 0,
Algorithm 1 discretizes the ODE starting from ¢ = 1 with initial condition y(1) = yo = [0; zo; 1].
The choice of 1 can be replaced by any arbitrary positive constant.

Notice that the ODE in (TI) is slightly different from the one in (T0); it has a coefficient 22 for

#(t) instead of 2+l This modification is crucial for our analysis via Lyapunov functions (more
details in Section @ and Appendix [A).

The parameter p in the ODE is set to be the same as the constant in Assumption [I|to achieve
the best theoretical upper bound by balancing stability and acceleration. Particularly, the larger
p is, the faster the system evolves. Hence, the numerical integrator requires smaller step sizes to
stabilize the process, but a smaller step size increases the number of iterations to achieve a target
accuracy. This tension is alleviated by Assumption |1} The larger p is, the flatter the function f is
around its stationary points. In other words, Assumption |1| implies that as the iterates approach a
minimum, the high order derivatives of the function f, in addition to the gradient, also converge to
zero. Consequently, the trajectory slows down around the optimum and we can stably discretize the
process with a large enough step size. This intuition ultimately translates into our main result.

Theorem 1. (Main Result) Consider the second-order ODE in (I1). Suppose that the function f
is convex and Assumptions [I| and 2] are satisfied. Further, let s be the order of the Runge-Kutta
integrator used in Algorithm 1, N be the total number of iterations, and x( be the initial point.
Also, let & := f(wo) — f(a*) + ||xo — z*||* + 1. Then, there exists a constant Cy such that if we
set the step size as h = ClN_l/(s+1)(L + M + 1)_15(;1, the iterate x  generated after running
Algorithm 1 for N iterations satisfies the inequality

P
flan) = fla*) < Cofy [EMEDS | (13)
where the constants Cy and Cs only depend on s, p, and the Runge-Kutta integrator. S is the number
of stage as defined in Since each iteration consumes S gradient, f(xn) — f(x*) will converge as
o(s FIN 7$) with respect to the number of gradient evaluations. Note that for commonly used
Runge-Kutta integrators, S < 8.

The proof of this theorem is quite involved; we provide a sketch in Section |4} deferring the detailed
technical steps to the appendix. We do not need to know the constant C; exactly in order to set the
step size h. Replacing C'; by any smaller positive constant leads to the same polynomial rate.

Theorem|I]indicates that if the objective has bounded high order derivatives and satisfies the flatness
condition in Assumption[T|with p > 0, then discretizing the ODE in (IT)) with a high order integrator
results in an algorithm that converges to the optimal solution at a rate that is close to O(N 7). In
the following corollaries, we highlight two special instances of Theorem|[I]

Corollary 2. If the function f is convex with L-Lipschitz gradients and is 4" order differentiable,
then simulating the ODE (T1) for p = 2 with a numerical integrator of order s = 2 for N iterations
results in the suboptimality bound

Co(f(wo) = f(a*) + |lwo —a*|* +1)*(L + M +1)°
N4/3 :

flzn) = f(@") <

Note that higher order differentiability allows one to use a higher order integrator, which leads to the
optimal O(N ~2) rate in the limit. The next example is based on high order polynomial or £, norm.

Corollary 3. Consider the objective function f(x) = || Az + b||}. Assume that 3z, s.t.Ax = —b.
Simulating the ODE for p = 4 with a numerical integrator of order s = 4 for N iterations
results in the suboptimality bound

flen) - flar) < U ZJ@) + ||$]0V1_6;E5*H2 FAL M)




3.1 Logistic loss

Discretizing logistic loss f(z) = log(1 + e*wT"’”) does not fit exactly into the setting of Theorem
due to nonexistence of z*. This potentially causes two problems. First, Assumption [I]is not well
defined. Second, the constant £y in Theorem E] is not well defined. We explain in this section how
we can modify our analysis to admit logistic loss by utilizing its structure of high order derivatives.

The first problem can be resolved by replacing f(x*) by inf,cra f(z) in Assumption |1} then, the
logistic loss satisfies Assumption [T] with arbitrary integer p > 0. To approach the second problem,
we replace x* by 7 that satisfies the following relaxed inequalities. For some €1, €5, €3 < 1 we have

(@ — & V@) > flx)— f(&) — e, (14)
f(x) = f(@) > VO f(@)]|77 — e, f(@) — inf fz) < e (15)

z€ERE
As the inequalities are relaxed, there exists a vector Z € R? that satisfies the above conditions. If we
follow the original proof and balance the additional error terms by picking & carefully, we obtain

Corollary 4. (Informal) If the objective is f(x) = log(1 + efwT“"), then discretizing the ODE (11)
with an order s numerical integrator for N iterations with step size h = (’)(N_l/(s“)) results in a
convergence rate of O(SP=+1 N P+1),

4 Proof of Theorem[l

We prove Theorem [1] as follows. First(Proposition [5), we show that the suboptimality f(x(t)) —
f(x*) along the continuous trajectory of the ODE (II)) converges to zero sufficiently fast. Sec-
ond(Proposition [6), we bound the discretization error ||®,(yx) — ¢n(yx)|l, which measures the
distance between the point generated by discretizing the ODE and the true continuous solution.
Finally(Proposition [7), a bound on this error along with continuity of the Lyapunov function (16)
implies that the suboptimality of the discretized sequence of points also converges to zero quickly.

Central to our proof is the choice of a Lyapunov function used to quantify progress. We propose in
particular the Lyapunov function £ : R2?+! — R defined as

2
E(fv ;1)) = Zf?nvuz +e+ % 2| 4 (@) - £ (16)

The Lyapunov function (T6)) is similar to the ones used by Su et al. [23]], Wibisono et al. [26], except
for the extra term % ||v]|?. This term allows us to bound ||v|| by O(%) This dependency is crucial
for us to achieve the O(N ~2) bound(see Lemmafor more details).

We begin our analysis with Proposition [5] which shows that the function £ is non-increasing with
time, i.e., £(y) < 0. This monotonicity then implies that both t*(f(z) — f(z*)) and 4%HUH2 are
bounded above by some constants. The bound on ¢P(f(x) — f(z*)) provides a convergence rate of
O(1/t?) on the sub-optimality f(x(t)) — f(x*). It further leads to an upper-bound on the derivatives
of the function f(z) in conjunction with Assumption

Proposition 5 (Monotonicity of £). Consider the vector y = [v;x;t] € R2*! as a trajectory of
the dynamical system (12). Let the Lyapunov function £ be defined by (16). Then, for any trajectory
y = [v; x; t], the time derivative E(y) is non-positive and bounded above; more precisely,

. t
S < =23 17
(y) < pllvll (17)

The proof of this proposition follows from convexity and (IT)); we defer the details to Appendix [Al

Next, to bound the Lyapunov function for numerical solutions, we need to bound the distance be-
tween points in the discretized and continuous trajectories. As in Section [2.1] for the dynamical
system y = F(y), let ®1,(yo) denote the solution generated by a numerical integrator starting at
point yo with step size h. Similarly, let ¢, (yo) be the corresponding true solution to the ODE.
An ideal numerical integrator would satisfy @5, (yo) = ¢n(yo); however, due to discretization error



there is always a difference between @, (yo) and ¢, (yo) determined by the order of the integra-
tor as in (7). Let {yx} Y, be the sequence of points generated by the numerical integrator, that is,
Ye+1 = Pp(yx). In the following proposition, we derive an upper bound on the resulting discretiza-
tion error ||®p (yx) — @n (yk)|l-

Proposition 6 (Discretization error). Let yr = [vk;Tk;tx] be the current state of the dynamical
system § = F(y) defined in (12). Suppose x, € S defined in (@2). If we use a Runge-Kuita
integrator of order s to discretize the ODE for a single step with a step size h such that h <
min{0.2, C }, then

1
14+£)C(1+E(yx)) (M+L+1)

(O E@DI 10+ £ o

tr Lk

1@ (yx) — en(yr)| < C'RZFH(M+L+1)

where the constants C, k, and C' only depend on p, s, and the integrator.

The proof of Proposition[6]is the most challenging part in proving Theorem [T} Details may be found
in Appendix [B| The key step is to bound ||8‘9};%[<I)h(yk) — ¢n(yk)]ll- To do so, we first bound
the high order derivative tensor ||V(*) f|| using Assumption |I|and Proposition |5| within a region of
radius R. By carefully selecting R, we can show that for a reasonably small h, ®,(yx) and ¢, (yx)
is constrained in the region. Second, we need to compute the high order derivatives of y = F(y)
as a function of V() f which is bounded in the region of radius R. As shown in Appendix El, the
expressions for higher derivatives become quite complicated as the order increases. We approach
this complexity by using the notation for elementary differentials (see Appendix [E)) adopted from
[12]; we then induct on the order of the derivatives to bound the higher order derivatives. The flatness
assumption (Assumption[I)) provides bounds on the operator norm of high order derivatives relative
to the objective function suboptimality, and hence proves crucial in completing the inductive step.

By the conclusion in Proposition [6]and continuity of the Lyapunov function £, we conclude that the
value of £ at a discretized point is close to its continuous counterpart. Using this observation, we
expect that the Lyapunov function values for the points generated by the discretized ODE do not
increase significantly. We formally prove this key claim in the following proposition.

Proposition 7. Consider the dynamical system §y = F(y) defined in and the Lyapunov func-
tion £ defined in (16). Let yo be the initial state of the dynamical system and yy be the final point
generated by a Runge-Kutta integrator of order s after N iterations. Further, suppose that Assump-

tions |l| and |2| are satisfied. Then, there exists a constant C determined by p, s and the numerical

integrator, such that if the step size h satsfies h = C T NZIV +_11)/(S;(20) 1) then we have
E(yn) < exp(1) E(yo) + 1. (19)

Please see Appendix [C|for a proof of this claim.

Proposition [/| shows that the value of the Lyapunov function £ at the point ¥ is bounded above
by a constant that depends on the initial value £(yq). Hence, if the step size h satisfies the required
condition in Proposition[7] we can see that

o) =16 < 52 < s )

The first inequality in follows from the definition of the £ (16). Replacing the step size h in
(20) by the choice used in Proposition [7] yields

(L + M+ 1)P(e€(yo) + 1)PH1

and the claim of Theorem [Tl follows.

; 2n

Note: The dependency of the step size h on the degree of the integrator s suggests that an integrator
of higher order allows for larger step size and therefore faster convergence rate.

S Numerical experiments

We perform numerical experiments to verify Theorem [I] and compare ODE direct discretizating
(DD) methods described in Algorithm 1 against gradient descent (GD) and Nesterov’s accelerated
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Figure 1: (a) Convergence paths of GD, NAG, and the proposed algorithm with integrators of degree
s =1, s = 2, and s = 4. The objectives is quadratic. (b) Minimizing quadratic objective by
discretizing different ODEs (different choices of ¢ in (22)) with the RK44 integrator (4" order).
(c/d) Minimizing L4/logistic loss by discretizing different ODEs with a second order integrator.

gradient(NAG) method. All figures in this section are on log-log scale. For each optimization
method, we empirically choose the largest step size among {10~%|k € Z} subject to that the algo-
rithm remains stable in the first 1000 iterations.

In Figure [Ta] we generate synthetic linearly separable dataset and fit linear model Az = b. A is
entry-wise Gaussian and the feasibility is achieved via increasing data dimension. We then minimize
Ly loss f(x) = ||Az — b||3. In particular, we discretize the ODE (TT)) for p = 2 with integrators
of different orders, i.e., s € {1,2,4} and compare them against GD and NAD. Observe that GD
eventually attains linear rate and NAG achieves local acceleration close to the optimal point as men-
tioned in [4]. For DD, if we simulate the ODE with an integrator of order s = 1, the algorithm is
eventually unstable. Using a higher order integrator leads to stable accelerated algorithms.

Throughout this paper, we have assumed that the constant p in is the same as the one in As-
sumption [T] to attain the best theoretical upper bounds. In Figu(]re% we empirically explore the
convergence rate of discretizing the ODE

#(t) + 2L a(t) + ¢*t1 2V f((t)) = 0, (22)
when ¢ # p. We minimize the same Lo loss with different values of ¢ using a fourth order integrator
with the same step size. We observe that when ¢ > 2, the algorithm diverges eventually. We then
discretize ODEs with different parameter g for L4 loss and logistic loss on the same set of data points
using a second order RK integrator. As shown in Figure[Tc] the objective decreases faster for larger
q up to ¢ = 6 and diverges when ¢ = 8. Given that L4 loss has p = 4, this result suggests that our
analysis might be conservative. Finally, figure [Id]summarizes the experiment result for minimizing
logistic loss. We notice that the algorithm is stable even when ¢ = 8. This result verifies Corollary[4]

6 Discussion

Our paper obtains accelerated gradient methods by directly discretizing second order ODEs (instead
of reverse engineering Nesterov-like constructions), yet it does not fully explain acceleration. First,



unlike Nesterov’s accelerated gradient method that only requires first order differentiability, our
results require the objective function to be (s + 2)-times differentiable (where s is the order of the
integrator). The precision of numerical integrators only increases with their order when the function
is sufficiently differentiable. This property inherently limits our analysis. Second, while we achieve
the O(N ~2) convergence rate, some of the constants in our bound are loose (e.g., for squared loss
and logistic regression they are quadratic in L versus linear in L for NAG). Achieving the optimal
dependence on initial errors f(zo) — f(z*), the diameter |zo — x*||, as well as constants L and M
requires further investigation.

In addition, we identified a new condition in Assumption [I] that quantifies the local flatness of con-
vex functions. At first, this condition may appear counterintuitive, because gradient descent actually
converges fast when the objective is not flat and the progress slows down if the gradient vanishes
close to the minimum. However, when we discretize the ODE, the trajectories with vanishing gra-
dients oscillate slowly, and hence allow stable discretization with large step sizes, which ultimately
allows us to achieve acceleration. We think this high-level idea, possibly as embodied by Assump-
tion [I] could be more broadly used in analyzing and designing other optimization methods.

Based on the above two points, this paper contains both positive and negative message for the recent
trend in ODE interpretation of optimization methods. On one hand, it shows that with careful
analysis, discretizing ODE can preserve some of its trajectories properties. On the other hand, our
proof suggests that nontrivial additional conditions might be required to ensure stable discretization.
Hence, designing an ODE with nice properties in the continuous domain doesn’t guarantee the
existence of a practical optimization algorithm.
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