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Abstract

While designing the state space of an MDP, it is common to include states that are
transient or not reachable by any policy (e.g., in mountain car, the product space of
speed and position contains configurations that are not physically reachable). This
results in weakly-communicating or multi-chain MDPs. In this paper, we introduce
TUCRL, the first algorithm able to perform efficient exploration-exploitation in
any finite Markov Decision Process (MDP) without requiring any form of prior
knowledge. In particular, for any MDP with SC communicating states, A actions
and ΓC ≤ SC possible communicating next states, we derive a Õ(DC

√
ΓCSCAT )

regret bound, where DC is the diameter (i.e., the length of the longest shortest
path between any two states) of the communicating part of the MDP. This is in
contrast with existing optimistic algorithms (e.g., UCRL, Optimistic PSRL) that
suffer linear regret in weakly-communicating MDPs, as well as posterior sampling
or regularised algorithms (e.g., REGAL), which require prior knowledge on the bias
span of the optimal policy to achieve sub-linear regret. We also prove that in weakly-
communicating MDPs, no algorithm can ever achieve a logarithmic growth of the
regret without first suffering a linear regret for a number of steps that is exponential
in the parameters of the MDP. Finally, we report numerical simulations supporting
our theoretical findings and showing how TUCRL overcomes the limitations of the
state-of-the-art.

1 Introduction
Reinforcement learning (RL) [1] studies the problem of learning in sequential decision-making
problems where the dynamics of the environment is unknown, but can be learnt by performing
actions and observing their outcome in an online fashion. A sample-efficient RL agent must trade
off the exploration needed to collect information about the environment, and the exploitation of
the experience gathered so far to gain as much reward as possible. In this paper, we focus on the
regret framework in infinite-horizon average-reward problems [2], where the exploration-exploitation
performance is evaluated by comparing the rewards accumulated by the learning agent and an optimal
policy. Jaksch et al. [2] showed that it is possible to efficiently solve the exploration-exploitation
dilemma using the optimism in face of uncertainty (OFU) principle. OFU methods build confidence
intervals on the dynamics and reward (i.e., construct a set of plausible MDPs), and execute the optimal
policy of the “best” MDP in the confidence region [e.g., 2, 3, 4, 5, 6]. An alternative approach is
posterior sampling (PS) [7], which maintains a posterior distribution over MDPs and, at each step,
samples an MDP and executes the corresponding optimal policy [e.g., 8, 9, 10, 11, 12].

Weakly-communicating MDPs and misspecified states. One of the main limitations of UCRL [2]
and optimistic PSRL [12] is that they require the MDP to be communicating so that its diameter
D (i.e., the length of the longest path among all shortest paths between any pair of states) is finite.
While assuming that all states are reachable may seem a reasonable assumption, it is rarely verified in
practice. In fact, it requires a designer to carefully define a state space S that contains all reachable
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Figure 1: Examples of non-communicating domains. Fig. b represents a phase plane plot of the
Mountain car domain (x, ẋ) ∈ [−1.2, 0.6]× [−0.07, 0.07]. The initial state is (−0.5, 0) and the red
area corresponds to non-reachable states from the initial state. Other non-reachable states may exist.
Fig. a shows the initial state, one reachable state (middle) and an unreachable one (right).

states (otherwise it may not be possible to learn the optimal policy), but it excludes unreachable
states (otherwise the resulting MDP would be non-communicating). This requires a considerable
amount of prior knowledge about the environment. Consider a problem where we learn from images
e.g., the Atari Breakout game [13]. The state space is the set of “plausible” configurations of the
brick wall, ball and paddle positions. The situation in which the wall has an hole in the middle is a
valid state (e.g., as an initial state) but it cannot be observed/reached starting from a dense wall (see
Fig. 1a). As such, it should be removed to obtain a “well-designed” state space. While it may be
possible to design a suitable set of “reachable” states that define a communicating MDP, this is often
a difficult and tedious task, sometimes even impossible. Now consider a continuous domain e.g., the
Mountain Car problem [14]. The state is decribed by the position x and velocity ẋ along the x-axis.
The state space of this domain is usually defined as the cartesian product [−1.2, 0.6]× [−0.07, 0.07].
Unfortunately, this set contains configurations that are not physically reachable as shown on Fig. 1b.
The dynamics of the system is constrained by the evolution equations. Therefore, the car can not go
arbitrarily fast. On the leftmost position (x = −1.2) the speed ẋ cannot exceed 0 due to the fact that
such position can be reached only with velocity ẋ ≤ 0. To have a higher velocity, the car would need
to acquire momentum from further left (i.e., x < −1.2) which is impossible by design (−1.2 is the
left-boundary of the position domain). The maximal speed reachable for x > −1.2 can be attained by
applying the maximum acceleration at any time step starting from the state (x, ẋ) = (−1.2, 0). This
identifies the curve reported in the Fig. 1b which denotes the boundary of the unreachable region.
Note that other states may not be reachable. Whenever the state space is misspecified or the MDP is
weakly communicating (i.e., D = +∞), OFU-based algorithms (e.g.,UCRL) optimistically attribute
large reward and non-zero probability to reach states that have never been observed, and thus they
tend to repeatedly attempt to explore unreachable states. This results in poor performance and linear
regret. A first attempt to overcome this major limitation is REGAL.C [3] (Fruit et al. [6] recently
proposed SCAL, an implementable efficient version of REGAL.C), which requires prior knowledge of
an upper-bound H to the span (i.e., range) of the optimal bias function h∗. The optimism of UCRL
is then “constrained” to policies whose bias has span smaller than H . This implicitly “removes”
non-reachable states, whose large optimistic reward would cause the span to become too large.
Unfortunately, an accurate knowledge of the bias span may not be easier to obtain than designing
a well-specified state space. Bartlett and Tewari [3] proposed an alternative algorithm – REGAL.D–
that leverages on the doubling trick [15] to avoid any prior knowledge on the span. Nonetheless,
we recently noticed a major flaw in the proof of [3, Theorem 3] that questions the validity of the
algorithm (see App. A for further details). PS-based algorithms also suffer from similar issues.1 To
the best of our knowledge, the only regret guarantees available in the literature for this setting are
[17, 18, 19]. However, the counter-example of Osband and Roy [20] seems to invalidate the result of
Abbasi-Yadkori and Szepesvári [17]. On the other hand, Ouyang et al. [18] and Theocharous et al.
[19] present PS algorithms with expected Bayesian regret scaling linearly with H , where H is an
upper-bound on the optimal bias spans of all the MDPs that can be drawn from the prior distribution
([18, Asm. 1] and [19, Sec. 5]). In [18, Remark 1], the authors claim that their algorithm does not
require the knowledge of H to derive the regret bound. However, in App. B we show on a very simple
example that for most continuous prior distributions (e.g., uninformative priors like Dirichlet), it is
very likely that H = +∞ implying that the regret bound may not hold (similarly for [19]). As a

1We notice that the problem of weakly-communicating MDPs and misspecified states does not hold in the
more restrictive setting of finite horizon [e.g., 8] since exploration is directly tailored to the states that are
reachable within the known horizon, or under the assumption of the existence of a recurrent state [e.g., 16].
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result, similarly to REGAL.C, the prior distribution should contain prior knowledge on the bias span to
avoid poor performance.

In this paper, we present TUCRL, an algorithm designed to trade-off exploration and exploitation in
weakly-communicating and multi-chain MDPs (e.g., MDPs with misspecified states) without any
prior knowledge and under the only assumption that the agent starts from a state in a communicating
subset of the MDP (Sec. 3). In communicating MDPs, TUCRL eventually (after a finite number
of steps) performs as UCRL, thus achieving problem-dependent logarithmic regret. When the
true MDP is weakly-communicating, we prove that TUCRL achieves a Õ(

√
T ) regret that with

polynomial dependency on the MDP parameters. We also show that it is not possible to design
an algorithm achieving logarithmic regret in weakly-communicating MDPs without having an
exponential dependence on the MDP parameters (see Sec. 5). TUCRL is the first computationally
tractable algorithm in the OFU literature that is able to adapt to the MDP nature without any prior
knowledge. The theoretical findings are supported by experiments on several domains (see Sec. 4).

2 Preliminaries
We consider a finite weakly-communicating Markov decision process [21, Sec. 8.3] M = 〈S,A, r, p〉
with a set of states S and a set of actions A =

⋃
s∈S As. Each state-action pair (s, a) ∈ S × As

is characterized by a reward distribution with mean r(s, a) and support in [0, rmax] as well as a
transition probability distribution p(·|s, a) over next states. In a weakly-communicating MDP, the
state-space S can be partioned into two subspaces [21, Section 8.3.1]: a communicating set of states
(denoted SC in the rest of the paper) with each state in SC accessible –with non-zero probability–
from any other state in SC under some stationary deterministic policy, and a –possibly empty– set
of states that are transient under all policies (denoted ST). We also denote by S = |S|, SC = |SC|
and A = maxs∈S |As| the number of states and actions, and by ΓC = maxs∈SC,a∈A ‖p(·|s, a)‖0 the
maximum support of all transition probabilities p(·|s, a) with s ∈ SC. The sets SC and ST form a
partition of S i.e., SC ∩ ST = ∅ and SC ∪ ST = S . A deterministic policy π : S → A maps states to
actions and it has an associated long-term average reward (or gain) and a bias function defined as

gπM (s) := lim
T→∞

E
[

1

T

T∑

t=1

r
(
st, π(st)

)]
; hπM (s) := C- lim

T→∞
E
[ T∑

t=1

(
r(st, π(st))− gπM (st)

)]
,

where the bias hπM (s) measures the expected total difference between the rewards accumulated by
π starting from s and the stationary reward in Cesaro-limit2 (denoted C- lim). Accordingly, the
difference of bias values hπM (s)− hπM (s′) quantifies the (dis-)advantage of starting in state s rather
than s′. In the following, we drop the dependency on M whenever clear from the context and
denote by spS {hπ} := maxs∈S hπ(s) − mins∈S hπ(s) the span of the bias function. In weakly
communicating MDPs, any optimal policy π∗ ∈ arg maxπ g

π(s) has constant gain, i.e., gπ
∗
(s) = g∗

for all s ∈ S. Finally, we denote by D, resp. DC, the diameter of M , resp. the diameter of the
communicating part of M (i.e., restricted to the set SC):

D := max
(s,s′)∈S×S,s 6=s′

{τM (s→ s′)}, DC := max
(s,s′)∈SC×SC,s6=s′

{τM (s→ s′)}, (1)

where τM (s→ s′) is the expected time of the shortest path from s to s′ in M .

Learning problem. Let M∗ be the true (unknown) weakly-communicating MDP. We consider the
learning problem where S, A and rmax are known, while sets SC and ST, rewards r and transition
probabilities p are unknown and need to be estimated on-line. We evaluate the performance of a
learning algorithm A after T time steps by its cumulative regret ∆(A, T ) = Tg∗ −∑T

t=1 rt(st, at).
Furthermore, we state the following assumption.
Assumption 1. The initial state s1 belongs to the communicating set of states SC.

While this assumption somehow restricts the scenario we consider, it is fairly common in practice.
For example, all the domains that are characterized by the presence of a resetting distribution (e.g.,
episodic problems) satisfy this assumption (e.g., mountain car, cart pole, Atari games, taxi, etc.).

Multi-chain MDPs. While we consider weakly-communicating MDPs for ease of notation, all our
results extend to the more general case of multi-chain MDPs.3 In this case, there may be multiple

2For policies whose associated Markov chain is aperiodic, the standard limit exists.
3In the case of misspecified states, we implicitly define a multi-chain MDP, where each non-reachable state

has a self-loop dynamics and it defines a “singleton” communicating subset.
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communicating and transient sets of states and the optimal gain g∗ is different in each communicating
subset. In this case we define SC as the set of states that are accessible –with non-zero probability–
from s1 (s1 included) under some stationary deterministic policy. ST is defined as the complement of
SC in S i.e., ST := S \SC. With these new definitions of SC and ST, Asm. 1 needs to be reformulated
as follows:

Assumption 1 for Multi-chain MDPs. The initial state s1 is accessible –with non-zero probability–
from any other state in SC under some stationary deterministic policy. Equivalently, SC is a commu-
nicating set of states.

Note that the states belonging to ST can either be transient or belong to other communicating subsets
of the MDP disjoint from SC. It does not really matter because the states in ST will never be visited
by definition. As a result, the regret is still defined as before, where the learning performance is
compared to the optimal gain g∗(s1) related to the communicating set of states SC 3 s1.

3 Truncated Upper-Confidence for Reinforcement Learning (TUCRL)
In this section we introduce Truncated Upper-Confidence for Reinforcement Learning (TUCRL),
an optimistic online RL algorithm that efficiently balances exploration and exploitation to learn in
non-communicating MDPs without prior knowledge (Fig. 2).

Similar to UCRL, at the beginning of each episode k, TUCRL constructs confidence intervals for the
reward and the dynamics of the MDP. Formally, for any (s, a) ∈ S ×A we define

Bp,k(s, a) =
{
p̃(·|s, a) ∈ C : ∀s′ ∈ S, |p̃(s′|s, a)− p̂(s′|s, a)| ≤ βsas′p,k

}
, (2)

Br,k(s, a) := [r̂k(s, a)− βsar,k, r̂k(s, a) + βsar,k] ∩ [0, rmax], (3)

where C = {p ∈ RS |∀s′, p(s′) ≥ 0 ∧∑s′ p(s
′) = 1} is the (S − 1)-probability simplex, while the

size of the confidence intervals is constructed using the empirical Bernstein’s inequality [22, 23] as

βsar,k :=

√
14σ̂2

r,k(s, a)bk,δ

N+
k (s, a)

+
49
3 rmaxbk,δ

N±k (s, a)
, βsas

′

p,k :=

√
14σ̂2

p,k(s′|s, a)bk,δ

N+
k (s, a)

+
49
3 bk,δ

N±k (s, a)
,

where Nk(s, a) is the number of visits in (s, a) before episode k, N+
k (s, a) := max{1, Nk(s, a)},

N±k (s, a) := max{1, Nk(s, a)−1}, σ̂2
r,k(s, a) and σ̂2

p,k(s′|s, a) are the empirical variances of r(s, a)

and p(s′|s, a) and bk,δ = ln(2SAtk/δ). The set of plausible MDPs associated with the confidence
intervals is thenMk =

{
M = (S,A, r̃, p̃) : r̃(s, a) ∈ Br,k(s, a), p̃(·|s, a) ∈ Bp,k(s, a)

}
. UCRL

is optimistic w.r.t. the confidence intervals so that for all states s that have never been visited the
optimistic reward r̃(s, a) is set to rmax, while all transitions to s (i.e., p̃(s|·, ·)) are set to the largest
value compatible withBp,k(·, ·). Unfortunately, some of the states withNk(s, a) = 0 may be actually
unreachable (i.e., s ∈ ST) and UCRL would uniformly explore the policy space with the hope that at
least one policy reaches those (optimistically desirable) states. TUCRL addresses this issue by first
constructing empirical estimates of SC and ST (i.e., the set of communicating and transient states in
M∗) using the states that have been visited so far, that is SCk :=

{
s ∈ S

∣∣ ∑
a∈As Nk(s, a) > 0

}
∪

{stk} and STk := S \ SCk, where tk is the starting time of episode k.

In order to avoid optimistic exploration attempts to unreachable states, we could simply execute
UCRL on SCk, which is guaranteed to contain only states in the communicating set (since s1 ∈ SC by
Asm. 1, we have that SCk ⊆ SC). Nonetheless, this algorithm could under-explore state-action pairs
that would allow discovering other states in SC, thus getting stuck in a subset of the communicating
states of the MDP and suffering linear regret. While the states in SCk are guaranteed to be in the
communicating subset, it is not possible to know whether states in STk are actually reachable from
SCk or not. Then TUCRL first “guesses” a lower bound on the probability of transition from states
s ∈ SCk to s′ ∈ STk and whenever the maximum transition probability from s to s′ compatible with the
confidence intervals (i.e., p̂k(s′|s, a)+βsas

′

p,k ) is below the lower bound, it assumes that such transition
is not possible. This strategy is based on the intuition that a transition either does not exist or it should
have a sufficiently “big” mass. However, these transitions should be periodically reconsidered in
order to avoid under-exploration issues. More formally, let (ρt)t∈N be a non-increasing sequence
to be defined later, for all s′ ∈ STk, s ∈ SCk and a ∈ As, the empirical mean p̂k(s′|s, a) and variance
σ̂2
p,k(s′|s, a) are zero (i.e., this transition has never been observed so far), so the largest probability
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Input: Confidence δ ∈]0, 1[, rmax, S, A
Initialization: Set N0(s, a) := 0 for any (s, a) ∈ S ×A, t := 1 and observe s1.
For episodes k = 1, 2, ... do
1. Set tk = t and episode counters νk(s, a) = 0

2. Compute estimates p̂k(s′|s, a), r̂k(s, a) and a setMk

3. Compute an rmax/
√
tk-approximation π̃k of Eq. 5

4. While tk == t or
(∑

a∈Ast
Nk(st, a) > 0 and νk(st, π̃k(st)) ≤ max {1, Nk (st, π̃k(st))}

)
do

(a) Execute at = π̃k(st), obtain reward rt, and observe st+1

(b) Set νk(st, at) += 1 and set t += 1

5. Set Nk+1(s, a) = Nk(s, a) + νk(s, a)

Figure 2: TUCRL algorithm.

(most optimistic) of transition from s to s′ through any action a is p̃+
k (s′|s, a) = 49

3
bk,δ

N±k (s,a)
. TUCRL

compares p̃+
k (s′|s, a) to ρtk and forces all transition probabilities below the threshold to zero, while

the confidence intervals of transitions to states that have already been explored (i.e., in SCk) are
preserved unchanged. This corresponds to constructing the alternative confidence interval

Bp,k(s, a) = Bp,k(s, a) ∩
{
p̃(·|s, a) ∈ C : ∀s′ ∈ STk and p̃+

k (s′|s, a) < ρtk , p̃(s
′|s, a) = 0

}
. (4)

Given Bp,k, TUCRL (implicitly) constructs the corresponding set of plausible MDPsMk and then
solves the optimistic optimization problem

(M̃k, π̃k) = arg max
M∈Mk,π

{gπM}. (5)

The resulting algorithm follows the same structure as UCRL and it is shown in Fig. 2. The episode
stopping condition at line 4 is slightly modified w.r.t. UCRL. In fact, it guarantees that one action is
always executed and it forces an episode to terminate as soon as a state previously in STk is visited
(i.e., Nk(st, a) = 0). This minor change guarantees that Nk+1(s, a) = 0 for all the states s ∈ STk that
were not reachable at the beginning of the episode. The algorithm also needs minor modifications
to the extended value iteration (EVI) algorithm used to solve (5) to guarantee both efficiency and
convergence. All technical details are reported in App. C.

In practice, we set ρt =
49bt,δ

3

√
SA
t , so that the condition to remove transition reduces toN±k (s, a) >√

tk/SA. This shows that only transitions from state-action pairs that have been poorly visited so
far are enabled, while if the state-action pair has already been tried often and yet no transition to
s′ ∈ STk is observed, then it is assumed that s′ is not reachable from s, a. When the number of visits
in (s, a) is big, the transitions to “unvisited” states should be discarded because if the transition
actually exists, it is most likely extremely small and so it is worth exploring other parts of the MDP
first. Symmetrically, when the number of visits in (s, a) is small, the transitions to “unvisited” states
should be enabled because the transitions are quite plausible and the algorithm should try to explore
the outcome of taking action a in s and possibly reach states in STk. We denote the set of state-action
pairs that are not sufficiently explored by Kk =

{
(s, a) ∈ SCk ×A : N±k (s, a) ≤

√
tk/SA

}
.

3.1 Analysis of TUCRL

We prove that the regret of TUCRL is bounded as follows.
Theorem 1. For any weakly communicating MDP M , with probability at least 1− δ it holds that for
any T > 1, the regret of TUCRL is bounded as

∆(TUCRL, T ) = O

(
rmaxD

C

√
ΓCSCAT ln

(
SAT

δ

)
+ rmax

(
DC
)2

S3A ln2

(
SAT

δ

))
.

The first term in the regret shows the ability of TUCRL to adapt to the communicating part of the
true MDP M∗ by scaling with the communicating diameter DC and MDP parameters SC and ΓC. The
second term corresponds to the regret incurred in the early stage where the regret grows linearly.
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When M∗ is communicating, we match the square-root term of UCRL (first term), while the second
term is bigger than the one appearing in UCRL by a multiplicative factor DCS (ignoring logarithmic
terms, see Sec. 5).

We now provide a sketch of the proof of Thm. 1 (the full proof is reported in App. D). In order to
preserve readability, all following inequalities should be interpreted up to minor approximations and
in high probability.

Let ∆k :=
∑
s,a νk(s, a)(g∗ − r(s, a)) be the regret incurred in episode k, where νk(s, a) is the

number of visits to s, a in episode k. We decompose the regret as

∆(TUCRL, T ) .
m∑

k=1

∆k · 1{M∗ ∈Mk} .
m∑

k=1

∆k · 1{tk < C(k)}+

m∑

k=1

∆k · 1{tk ≥ C(k)}

where C(k) = O
(
(DC)2S3A ln2(2SAtk/δ)

)
defines the length of a full exploratory phase, where the

agent may suffer linear regret.

Optimism. The first technical difficulty is that whenever some transitions are disabled, the plausible
set of MDPsMk may actually be biased and not contain the true MDP M∗. This requires to prove
that TUCRL (i.e., the gain of the solution returned by EVI) is always optimistic despite “wrong”
confidence intervals. The following lemma helps to identify the possible scenarios that TUCRL can
produce (see App. D.2).4

Lemma 1. Let episode k be such that M∗ ∈ Mk, STk 6= ∅ and tk ≥ C(k). Then, either STk = ST
(case I) or Kk 6= ∅, i.e., ∃(s, a) ∈ SCk ×A for which transitions to STk are allowed (case II).

This result basically excludes the case where STk ⊃ ST (i.e., some states have not been reached) and
yet no transition from SCk to them is enabled. We start noticing that when STk = ∅, the true MDP
M∗ ∈ Mk = Mk w.h.p. by construction of the confidence intervals. Similarly, if STk = ST then
M∗ ∈Mk w.h.p., since TUCRL only truncates transitions that are indeed forbidden in M∗ itself. In
both cases, we can use the same arguments in [2] to prove optimism. In case II the gain of any state
s′ ∈ STk is set to rmax and, since there exists a path from SCk to STk, the gain of the solution returned
by EVI is rmax, which makes it trivially optimistic. As a result we can conclude that g̃k & g∗ (up to
the precision of EVI).

Per-episode regret. After bounding the optimistic reward r̃k(s, a) w.r.t. r(s, a), the only part left to
bound the per-episode regret ∆k is the term ∆̃k =

∑
s,a νk(s, a)(g̃k − r̃k(s, a)). Similar to UCRL,

we could use the (optimistic) optimality equation and rewrite ∆̃k as

∆̃k =
∑

s∈S
νk(s, π̃k(s))

(∑

s′∈S
p̃k(s′|s, π̃k(s))h̃k(s′)− h̃k(s)

)
= ν′k

(
P̃k − I

)
wk (6)

where wk := h̃k −mins∈S{h̃k}e is a shifted version of the vector h̃k returned by EVI at episode
k, and then proceed by bounding the difference between P̃k and Pk using standard concentration
inequalities. Nonetheless, we would be left with the problem of bounding the `∞ norm of wk
(i.e., the range of the optimistic vector h̃k) over the whole state space, i.e., ‖wk‖∞ = spS{h̃k} =

maxs∈S h̃k(s)−mins∈S h̃k(s). While in communicating MDPs, it is possible to bound this quantity
by the diameter of the MDP as spS {hk} ≤ D [2, Sec. 4.3], in weakly-communicating MDPs
D = +∞, thus making this result uninformative. As a result, we need to restrict our attention to the
subset of communicating states SC, where the diameter is finite. We then split the per-step regret
over states depending on whether they are explored enough or not as ∆k .

∑
s,a νk(s, a)(g̃k −

r̃k(s, a))1{(s, a) /∈ Kk} + rmax

∑
s,a νk(s, a)1{(s, a) ∈ Kk}. We start focusing on the poorly

visited state-action pairs, i.e., (s, a) ∈ Kk. In this case TUCRL may suffer the maximum per-step
regret rmax but the number of times this event happen is cumulatively “small” (App. D.4.1):
Lemma 2. For any T ≥ 1 and any sequence of states and actions {s1, a1, . . . . . . sT , aT } we have:
m∑

k=1

∑

s,a

νk(s, a)1{N±k (s, a) ≤
√
tk/SA︸ ︷︷ ︸

(s,a)∈Kk

} ≤
T∑

t=1

1

{
N±kt(st, at) ≤

√
t/SA

}
≤ 2

(√
SCAT + SCA

)

4Notice that M∗ ∈Mk is true w.h.p. sinceMk is obtained using non-truncated confidence intervals.
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Figure 3: Cumulative regret in the taxi with misspecified states (left-top) and in the communicating
taxi (left-bottom), and in the weakly communicating three-states domain with D = +∞ (right).
Confidence intervals βr,k and βp,k are shrunk by a factor 0.05 and 0.01 for the three-states domain
and taxi, respectively. Results are averaged over 20 runs and 95% confidence intervals are reported.

When (s, a) /∈ Kk (i.e., N±k (s, a) >
√
tk/SA holds),

∑
s,a νk(s, a)(g̃k − r̃k(s, a)) · 1{(s, a) /∈ Kk}

can be bounded as in Eq. 6 but now restricted on SCk, so that,

νk(P̃k − I)h̃k =
∑

s∈SC
k

νk(s, π̃k(s))

( ∑

s′∈SC
k

p̃k(s′|s, π̃k(s))wk(s′)− wk(s)

)
.

Since the stopping condition guarantees that νk(s, π̃k(s)) = 0 for all s ∈ STk, we can first restrict
the outer summation to states in SC. Furthermore, all state-action pairs (s, a) /∈ Kk are such that
the optimistic transition probability p̃k(s′|s, a) is forced to zero for all s′ ∈ STk, thus reducing the
inner summation. We are then left with providing a bound for the range of wk restricted to the
states in SCk, i.e., spSC

k
{wk} = maxs∈SC

k
{wk}. We recall that EVI run on a set of plausible MDPs

Mk returns a function h̃k such that h̃k(s′) − h̃k(s) ≤ rmax · τMk
(s → s′), for any pair s, s′ ∈ S,

where τMk
(s → s′) is the expected shortest path in the extended MDPMk. Furthermore, since

M∗ ∈Mk, for all s, s′ ∈ SCk, τMk
(s→ s′) ≤ DC. Unfortunately, since M∗ may not belong toMk,

the bound on the shortest path inMk (i.e., τMk
(s → s′)) may not directly translate into a bound

for the shortest path inMk, thus preventing from bounding the range of h̃k even on the subset of
states in SCk. Nonetheless, in App. E we show that a minor modification to the confidence intervals of
Mk makes the shortest paths between any two states s, s′ ∈ SCk equivalent in both sets of plausible
MDPs, thus providing the bound spSC

k
{wk} ≤ DC. 5 The final regret in Thm. 1 is then obtained by

combining all different terms.

4 Experiments
In this section, we present experiments to validate the theoretical findings of Sec. 3. We compare
TUCRL against UCRL and SCAL.6 We first consider the taxi problem [24] implemented in OpenAI
Gym [25].7 Even such a simple domain contains misspecified states, since the state space is con-
structed as the outer product of the taxi position, the passenger position and the destination. This
leads to states that cannot be reached from any possible starting configuration (all the starting states
belong to SC). More precisely, out of 500 states in S, 100 are non-reachable. On Fig. 3(left) we
compare the regret of UCRL, SCAL and TUCRL when the misspecified states are present (top)

5Note that there is not a single way to modify the confidence intervals ofMk to keep spSC
k
{wk} under

control. In App. F we present an alternative modifications for which the shortest paths between any two states
s, s′ ∈ SCk is not equal but smaller than inMk thus ensuring that spSC

k
{wk} ≤ DC.

6To the best of out knowledge, there exists no implementable algorithm to solve the optimization step of
REGAL and REGAL.D.

7The code is available on GitHub.
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Figure 4: 4a Expected regret of UCRL (with known horizon T given as input) as a function of T .
4b 4c Toy example illustrating the difficulty of learning non-communicating MDPs. We represent a
family of possible MDPsM = (Mε)ε∈[0,1] where the probability ε to go from x to y lies in [0, 1].

and when they are removed (bottom). In the presence of misspecified states (top), the regret of
UCRL clearly grows linearly with T while TUCRL is able to learn as expected. On the other hand,
when the MDP is communicating (bottom) TUCRL performs similarly to UCRL. The small loss in
performance is most likely due to the initial exploration phase during which the confidence intervals
on the transition probabilities used by UCRL (see definition ofMk) are tighter than those used by
TUCRL (see definition ofM+

k ). TUCRL uses a “loose” bound on the `1-norm while UCRL uses S
different bounds, one for every possible next state. Finally, SCAL outperforms TUCRL by exploiting
prior knowledge on the bias span.

We further study TUCRL regret in the simple three-state domain introduced in [6] (see App. H
for details) with different reward distributions (uniform instead of Bernouilli). The environment is
composed of only three states (s0, s1 and s2) and one action per state, except in s2 where two actions
are available. As a result, the agent only has the choice between two possible policies. Fig. 3(left)
shows the cumulative regret achieved by TUCRL and SCAL (with different upper-bounds on the
bias span) when the diameter is infinite i.e., SC = {s0, s2} and ST = {s1} (we omit UCRL, since
it suffers linear regret). Both SCAL and TUCRL quickly achieve sub-linear regret as predicted by
theory. However, SCAL and TUCRL seem to achieve different growth rates in regret: while SCAL
appears to reach a logarithmic growth, the regret of TUCRL seems to grow as

√
T with periodic

“jumps” that are increasingly distant (in time) from each other. This can be explained by the way the
algorithm works: while most of the time TUCRL is optimistic on the restricted state space SC (i.e.,
SCk = SC), it periodically allows transitions to the set ST (i.e., SCk = S), which is indeed not reachable.
Enabling these transitions triggers aggressive exploration during an entire episode. The policy played
is then sub-optimal creating a “jump” in the regret. At the end of this exploratory episode, SCk will be
set again to SC and the regret will stop increasing until the condition N±k ≤

√
tk/SA occurs again

(the time between two consecutive exploratory episodes grows quadratically). The cumulative regret
incurred during exploratory episodes can be bounded by the term plotted in green on Fig. 3(left). In
Lem. 2 we proved that this term is always bounded by O(

√
SCAT ). Therefore, it is not surprising

to observe a
√
T increase of both the green and red curves. Unfortunately, the growth rate of the

regret will keep increasing as
√
T and will never become logarithmic unlike SCAL (or UCRL when

the MDP is communicating). This is because the condition N±k ≤
√
tk/SA will always be triggered

Θ(
√
T ) times for any T . In Sec. 5 we show that this is not just a drawback specific to TUCRL, but it

is rather an intrinsic limitation of learning in weakly-communicating MDPs.

5 Exploration-exploitation dilemma with infinite diameter

In this section we further investigate the empirical difference between SCAL and TUCRL and prove
an impossibility result characterising the exploration-exploitation dilemma when the diameter is
allowed to be infinite and no prior knowledge on the optimal bias span is available.
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We first recall that the expected regretE[∆(UCRL,M, T )] of UCRL (with input parameter δ = 1/3T )
after T ≥ 1 time steps and for any finite MDP M can be bounded in several ways:

E[∆(UCRL,M, T )] ≤





rmaxT (by definition)
C1 · rmaxD

√
ΓSAT ln(3T 2) + 1

3 [2, Theorem 2]
C2 · rmax

D2ΓSA
γ ln(T ) + C3(M) [2, Theorem 4]

(7)

where γ = g∗M −maxs,π{gπM (s) : gπM (s) < g∗M} is the gap in gain, C1 := 34 and C2 := 342 are
numerical constants independent of M , and C3(M) := O(maxπ:π(s)=a Tπ) with Tπ a measure of
the “mixing time” of policy π. The three different bounds lead to three different growth rates for the
function T 7−→ E[∆(UCRL,M, T )] (see Fig. 4a): 1) for T †M ≥ T ≥ 0, the expected regret is linear
in T , 2) for T ∗M ≥ T ≥ T †M the expected regret grows as

√
T , 3) finally for T ≥ T ∗M , the increase in

regret is only logarithmic in T . These different “regimes” can be observed empirically (see [6, Fig.
5, 12]). Using (7), it is easy to show that the time it takes for UCRL to achieve sub-linear regret is
at most T †M = Õ(D2ΓSA). We say that an algorithm is efficient when it achieves sublinear regret
after a number of steps that is polynomial in the parameters of the MDP (i.e., UCRL is then efficient).
We now show with an example that without prior knowledge, any efficient learning algorithm must
satisfy T ∗M = +∞ when M has infinite diameter (i.e., it cannot achieve logarithmic regret).
Example 1. We consider a family of weakly-communicating MDPsM = (Mε)ε∈[0,1] represented
on Fig. 4(right). Every MDP instance inM is characterised by a specific value of ε ∈ [0, 1] which
corresponds to the probability to go from x to y. For ε > 0 (Fig. 4b), the optimal policy of Mε is
such that π∗(x) = b and the optimal gain is g∗ε = 1 while for ε = 0 (Fig. 4c) the optimal policy is
such that π∗(x) = d and the optimal gain is g∗0 = 1/2. We assume that the learning agent knows
that the true MDP M∗ belongs toM but does not know the value ε∗ associated to M∗ = Mε∗ . We
assume that all rewards are deterministic and that the agent starts in state x (coloured in grey).
Lemma 3. Let C1, C2, α, β > 0 be positive real numbers and f a function defined for all ε ∈]0, 1]
by f(ε) = C1(1/ε)α. There exists no learning algorithm AT (with known horizon T ) satisfying both
1. for all ε ∈]0, 1], there exists T †ε ≤ f(ε) such that E[∆(AT ,Mε, x, T )] < 1/6 · T for all T ≥ T †ε ,
2. and there exists T ∗0 < +∞ such that E[∆(AT ,M0, x, T )] ≤ C2(ln(T ))β for all T ≥ T ∗0 .

Note that point 1 in Lem. 3 formalizes the concept of “efficient learnability” introduced by Sutton
and Barto [26, Section 11.6] i.e., “learnable within a polynomial rather than exponential number of
time steps”. All the MDPs inM share the same number of states S = 2 ≥ Γ, number of actions
A = 2, and gap in average reward γ = 1/2. As a result, any function of S, Γ, A and γ will be
considered as constant. For ε > 0, the diameter coincides with the optimal bias span of the MDP and
D = spS {h∗} = 1/ε < +∞, while for ε = 0, D = +∞ but spS {h∗} = 1/2. As shown in Eq. 7
and Thm. 1, UCRL and TUCRL satisfy property 1. of Lem. 3 with α = 2 and C1 = O(S2A) but do
not satisfy 2. On the other hand, SCAL satisfies 2. with β = 1 and C2 = O(H2SA/γ) (although this
result is not available in the literature, it is straightforward to adapt the proof of UCRL [2, Theorem
4] to SCAL) but since [6, Theorem 12] holds only when H ≥ spS {h∗}, SCAL only satisfies 1. for
ε ≥ 1/H and ε = 0 (not for ε ∈]0, 1/H[). Lem. 3 proves that no algorithm can actually achieve both
1. and 2. As a result, since TUCRL satisfies 1., it cannot satisfy 2. This matches the empirical results
presented in Sec. 4 where we observed that when the diameter is infinite, the growth rates of the regret
of SCAL and TUCRL were respectively logarithmic and of order Θ(

√
T ). An algorithm that does not

satisfy 1. could potentially satisfy 2. but, by definition of 1., it would suffer linear regret for a number
of steps that is more than polynomial in the parameters of the MDP (more precisely, eD

1/β

). This is
not a very desirable property and we claim that an efficient learning algorithm should always prefer
finite time guarantees (1.) over asymptotic guarantees (2.) when they cannot be accommodated.

6 Conclusion
We introduced TUCRL, an algorithm that efficiently balances exploration and exploitation in weakly-
communicating and multi-chain MDPs, when the starting state s1 belongs to a communicating set
(Asm. 1). We showed that TUCRL achieves a square-root regret bound and that, in the general case,
it is not possible to design algorithm with logarithmic regret and polynomial dependence on the MDP
parameters. Several questions remain open: 1) relaxing Asm. 1 by considering a transient initial state
(i.e., s1 ∈ ST), 2) refining the lower bound of Jaksch et al. [2] to finally understand whether it is
possible to scale with spS {h∗} (at least in communicating MDPs) instead of D without any prior
knowledge (the flaw in REGAL.D may suggest it is indeed impossible).
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