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Abstract

We study a safe reinforcement learning problem in which the constraints are de-
fined as the expected cost over finite-length trajectories. We propose a constrained
cross-entropy-based method to solve this problem. The method explicitly tracks
its performance with respect to constraint satisfaction and thus is well-suited for
safety-critical applications. We show that the asymptotic behavior of the pro-
posed algorithm can be almost-surely described by that of an ordinary differential
equation. Then we give sufficient conditions on the properties of this differential
equation for the convergence of the proposed algorithm. At last, we show with
simulation experiments that the proposed algorithm can effectively learn feasi-
ble policies without assumptions on the feasibility of initial policies, even with
non-Markovian objective functions and constraint functions.

1 Introduction

This paper studies the following constrained optimal control problem: given a dynamical system
model with continuous states and actions, a objective function and a constraint function, find a
controller that maximizes the objective function while satisfying the constraint. Although this topic
has been studied for decades within the control community [3], it is still challenging for practical
problems. To illustrate some major difficulties, consider the synthesis of a policy for a nonholonomic
mobile robot to reach a goal while avoiding obstacles (which introduces constraints) in a cost-efficient
way (which induces an objective). The obstacle-free state space is usually nonconvex. The equations
of the dynamical system model are typically highly nonlinear. Constraint functions and cost functions
may not be convex or differentiable in the state and action variables. There may even be hidden
variables that are not observable and make transitions and costs non-Markovian. Given all these
difficulties, we still need to compute a policy that is at least feasible and improve the cost objective as
much as possible.

Reinforcement learning (RL) methods have been widely used to learn optimal policies for agents with
complicated or even unknown dynamics. For problems with continuous state and action spaces, the
agent’s policy is usually modeled as a parameterized function of states such as deep neural networks
and later trained using policy gradient methods [355 1305 275 28 215 185 29]]. By encoding control tasks
as reward or cost functions, RL has successfully solved a wide range of tasks such as Atari games
[19; 20], the game of Go [315132], controlling simulated robots [36} 24]] and real robots [[15; 1375 22].
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Most of the existing methods for RL solve only unconstrained problems. However, it is generally
non-trivial to transform a constrained optimal control problem into an unconstrained one, due to
the asymmetry between the goals of objective optimization and constraint satisfaction. On the one
hand, it is usually acceptable to output a policy that is only locally optimal with respect to the
optimization objective. On the other hand, in many application scenarios where constraints encode
safety requirements or the amount of available resources, violating the constraint even by a small
amount may have significant consequences.

Existing methods for safe reinforcement learning that are based on policy gradient methods cannot
guarantee strict feasibility of the policies they output, even when initialized with feasible initial
policies. When initialized with an infeasible policy, they usually are not be able to find even a single
feasible policy until their convergence (with an example in Section[3). These limitations motivate the
following question: Can we develop a reinforcement learning algorithm that explicitly addresses the
priority of constraint satisfaction? Rather than assuming that the initial policy is feasible and that one
can always find a feasible policy in the estimated gradient direction, we need to deal with cases in
which the initial policy is not feasible, or we have never seen a feasible policy before.

Inspired by stochastic optimization methods based on the cross-entropy (CE) concept [L1], we
propose a new safe reinforcement learning algorithm, which we call the constrained cross-entropy
(CCE) method. The basic framework is the same with standard CE methods: In each iteration, we
sample from a distribution of policies, select a set of elite sample policies and use them to update the
policy distribution. Rather than treating the constraints as an extra term in the objective function as
what policy gradient method do, we use constraint values to sort sample policies. If there are not
enough feasible sample policies, we select only those with the best constraint performance as elite
sample policies. If a given proportion of the sample policies are feasible, we select the feasible sample
policies with the best objective values as elite sample policies. Instead of initializing the optimization
with a feasible policy, the method improves both the objective function and the constraint function
with the constraint as a prioritized concern.

Our algorithm can be used as a black-box optimizer. It does not even assume that there is an
underlying reward or cost function encoding the optimization objective and constraint functions.
In fact, the algorithm can be applied to any finite-horizon problem (say, with horizon N) whose
objective and constraint functions are defined as the average performance over some distribution of
trajectories. For example, a constraint function can be the probability that the agent satisfies a given
task specification (which may be Markovian or non-Markovian) with policy g, if the satisfaction
of the given task can be decided with any N-step trajectory. An optimization objective may be the
expected number of steps before the agent reaches a goal state, or the expected maximum distance the
agent has left from its origin, or the expected minimum distance between the agent and any obstacle
over the whole trajectory.

Our contributions are as follows. First, we present a model-free constrained RL algorithm that works
with continuous state and action spaces. Second, we prove that the asymptotic behavior of our
algorithm can be almost-surely described by that of an ordinary differential equation (ODE), which is
easily interpretable with respect to the objectives. Third, we give sufficient conditions on the properties
of this ODE to guarantee the convergence of our algorithm. We show with numerical experiments
that, our algorithm converges to feasible policies in all our experiments with all combinations of
feasible or infeasible initial policies, Markovian or non-Markovian objectives and constraints, while
other policy-gradient-based algorithms fail to find strictly feasible solutions.

2 Related Work

Safety has long been concerned in RL literature and is formulated as various criteria [7]]. We choose
to take the so-called constrained criterion [7]] to encode our safety requirement, which is the same as
in the literature of constrained Markov decision processes (CMDP) [2]]. Approaches are still limited
for safe RL with continuous state and action spaces. Uchibe and Doya [34] proposed a constrained
policy gradient reinforcement learning algorithm, which relies on projected gradients to maintain
feasibility. The computation of projection restricts the types of constraints it can deal with, and there
is no known guarantee on convergence. Chow et al. [4] came up with a trajectory-based primal-dual
subgradient algorithm for a risk-constrained RL problem with finite state and action spaces. The
algorithm is proved to converge almost-surely to a local saddle point. However, the constraints are



just implicitly considered by updating dual variables and the output policy may not actually satisfy the
constraints. Recently, Achiam et al. [[1]] proposed a trust region method for CMDP called constrained
policy optimization (CPO), which can deal with high-dimensional policy classes such as neural
networks and claim to maintain feasibility if started with a feasible solution. However, we found in
Section [5] that feasibility is rarely guaranteed during learning in practice, possibly due to errors in
gradient and Hessian matrix estimation.

Cross-entropy-based stochastic optimization techniques have been applied to a series of RL and
optimal control problems. Mannor et al. [[18] used cross-entropy methods to solve a stochastic
shortest-path problem on finite Markov decision processes, which is essentially an unconstrained
problem. Szita and Lorincz [33] took a noisy variant to learn how to play Tetris. Kobilarov [14]
introduced a similar technique to motion planning in constrained continuous-state environments
by considering distributions over collision-free trajectories. Livingston et al. [[17]] generalized this
method to deal with a broader class of trajectory-based constraints called linear temporal logic
specifications. Both methods simply discard all sample trajectories that violate the given constraints,
and thus their work can be considered as a special case of our work when the constraint function has
binary outputs. Similar applications in approximate optimal control with constraints can be found in
[235 165 16].

3 Preliminaries

For a set B, let D(B) be the set of all probability distributions over B, int(B) be the interior of B
and B¥ := {s0,81,...,8,_1 |8 € B, Vt =0,...,k — 1} be the set of all sequences composed by
elements in B of length k for any k € N7,

A (reward-free) Markov decision process (MDP) is defined as a tuple (S, A, T, P,), where S is a set
of states, A is a set of actions, T : S x A — D(S) is a transition distribution function and Py € D(S)
is an initial state distribution. Let IT : S — D(.A) be the set of all stationary policies. Given a
finite horizon N, an N-step trajectory is a sequence of IV state-action pairs. Each stationary policy
7 € II decides a distribution over N-step trajectories such that the probability to draw a trajectory
T = 80,00,---,SN—1,aN—1 18 Pr n(T) = Po(s0) Hi\;f)z T(st41]8¢, at) Hivzgl m(ag|s:). Without
loss of generality, we assume that N is fixed and use Py to represent P n.

An objective function J : (S x A)Y — R is a mapping from each N-step trajectory to a scalar value.
For each 7 € 11, let

Gy(m) :=E;up, [J(7)]
be the expected value of J with the N-step trajectory distribution decided by 7. A policy 7 € Il is an
optimal policy in II with respect to J if G ;(7) = max e Gy (7).

A cost function Z : (S x A)NY — Ris also a function defined on N-step trajectories. Let
Hz(r) :=Ernp,[Z(7)]
be the expected cost over trajectory distribution P,. A policy 7 € 1l is feasible for a constrained

optimization problem with cost function Z and constraint upper bound d if Hz(mw) < d. Let Iz 4 be
the set of all feasible policies.

For notational simplicity, we omit .J and Z in GGy and Hz whenever there is no ambiguity. For any
policy 7 € II, we refer to G(m) and H () as the G-value and H-value of .

4 Constrained Cross-Entropy Framework

4.1 Problem Formulation

In this paper, we consider a finite-horizon RL problem with a strictly positive objective function
J: (8 x AN — R, acost function Z : (S x A)Y — R and a constraint upper bound d. For
MDPs with continuous state and action spaces, it is usually intractable to exactly solve an optimal
stationary policy due to the curse of dimensionality. An alternative is to use function approximators,
such as neural networks, to parameterize a subset of policies. Given a parameterized class of policies
e with a parameter space © C R%, we aim to solve the following problem:

*

7" = argmax G ().
wGH@ﬂHZYd



The proposed algorithm, which we call the constrained cross-entropy method, generalizes the well-
known cross-entropy method [[18]] for unconstrained optimization. The basic idea is to generate a
sequence of policy distributions that eventually concentrates on a feasible (locally) optimal policy.
Given a distribution over I1g, we randomly generate a set of sample policies, sort them with a ranking
function that depends on their G-values and H-values and then update the policy distribution with a
subset of high-ranking sample policies.

Given the policy parameterization Ilg, we use distributions over the parameter space O to represent
distributions over the policy space IIg. We focus ourselves on a specific family of distributions
over O called natural exponential family (NEF), which includes many useful distributions such as
Gaussian distribution and Gamma distribution. A formal definition of NEF is as follows.

Definition 4.1. A parameterized family Iy = {f, € D(0),v € V C R%} is called a natural
exponential family if there exist continuous mappings I : R% — R% and K : R% — R such that
fo(0) = exp (vTT(0) — K(v)), where V C {v € R% : |K(v)| < oo} is the natural parameter
space and K (v) = log [ exp (vTT'(6))d6.

As with other CE-based algorithms, we replace the original objective G(mg) = E;p,, [J(7)] with
a surrogate function. For the unconstrained CE method, the surrogate function is the conditional
expectation over policies whose G-values are highly ranked with the current sampling distribution
fv- The ranking function is defined using the concept of p-quantiles for random variables, which is
formally defined as below.

Definition 4.2. [10] Given a distribution P € D(R), p € (0, 1) and a random variable X ~ P, the
p-quantile of X is defined as a scalar + such that Pr(X <) > pand Pr(X >~v)>1—p.

For p € (0,1), v € V and any function X : © — R, we denote the p-quantile of X for 6 ~ f,, by
Ex(p,v). Wealsodefine 6 : R x {>,<,>,<,=} x R — {0, 1} as an indicator function such that
foro € {>,<,>,<,=},6(xoy) = 1if and only if x o y holds. The surrogate objective function for
the unconstrained CE method is Eg ¢, [G(79)d(G(mg) > £c(1 — p,v))]. In other words, a policy
7o is considered as highly ranked if G(mg) > £c(1 — p, v). When there is a constraint H(7) < d,
we define U : IIg — R such that U(my) := G(mg)d(H (mg) < d) for any § € © and extend the
surrogate function as follows:

L(v; p) = {E0~fv [G(7)d(H () < & (p,v))], if &1 (p, v) > d;

Eo-, [U(m9)3(U(mg) > €y (1 — p,v))],  otherwise. (1)

We can combine the two cases. Define S : IIg x V x (0,1) — {0, 1} such that

S(mo,v,p) =6({n(p,v) > d)6(H(mg) < En(p,v))+
5(&m (p,v) < d)d(H(mp) < d)d(U(mg) = v (1 = p,v)),

then (T)) can be rewritten as
L(v; p) = Eo~ p, [G(70) S (Mo, v, p)]- ©)

The interpretation of L is as follows: If the p-quantile of H for the current policy distribution f,, is
greater than the constraint threshold d, we select policies in Ilg by their H-values in order to increase
the probability of drawing feasible policies. Consequently, 7y is highly ranked if H (79) < g (p, v).
If the proportion of feasible policies is higher than p, we select policies that are both feasible and with
large objective values, i.e., g is highly ranked if H(my) < d and U(mg) > £y (1 — p, v). Intuitively,
S can be considered as the indicator function of the highly-ranked or elite samples.

Remark 1. By maximizing U, we implicitly prioritizes feasibility over the G objective: For any
feasible policy 7 and infeasible policy 7', it can be easily verified that U(w) > U(n’), as G and U
are non-negative by definition.

Remark 2. 1f i (p, v) < d, then G(m)6(G(mg) = Ea(1 — p,v)) > Ul(mp)d(U(mg) = Eu(1 —
p,v)) > G(mp)d(H(mp) < Em(p,v)). Intuitively, if at least 100p% of all policies are feasible,
L(v; p) is less than the objective value for the unconstrained CE method and greater than the expected
G-value over the 100p% policies of the highest H-values.

The main problem we solve in this paper can be then stated as follows.



Algorithm 1 Constrained Cross-Entropy Method

Require: An objective function G, a constraint function H, a constraint upper bound d, a class of
parameterized policies IIg, an NEF family Fy,.
1: [ < 1. Initialize n;, vy, p, \j, oq. kj < |_p’l’Ll~|. 7 < 0.

2: repeat

3:  Sample6y,...,0,, ~ fy, iid..

4. fori=1,...,n;do

5: Simulate 7y, and estimate G (7, ), H (7, ).

6: end for

7: Sort {6;}1, in ascending order of H. Let A; be the first k; elements.

8: if H(mp,,) < dthen

9: Sort {6; | H(mg,) > d} in descending order of G. Let A; be the first k; elements.
10:  endif Glme) e
11: ?714_1 — ZOEA; mf(ﬂ) =+ (1 — al)(vﬁ 21;1 F(e,) -+ (1 — )\l)'f]l)

_
N

vy m T ().
13: Update nj, A\j, . L <~ 1+ 1. k; fpnl].
14: until Stopping rule is satisfied.

Problem 1. Given a set 11 = {my : 6 € O} of policies with parameter space ©, an NEF F, =
{fv € D(O) : v € V} of distributions over ©, two functions G : Il - Rt and H : 11 - R, a
constraint upper bound d and p € (0, 1), compute v* € V such that

v* = argmax L(v; p),
veV

where L : V x (0,1) — R is defined in (1) or @).

4.2 The Constrained Cross-Entropy Algorithm

The pseudocode of the constrained cross-entropy algorithm is given in Algorithm[I] We first explain
the basic ideas behind the updates in Algorithm |1} and provide a proof of convergence in Section

We first describe the key idea behind the (idealized) CE-based stochastic optimization method as in
[12]]. For notational simplicity, we use E,[-] to represent Eg. ¢, [-] in the rest of this paper. Define
m(v) = E,[I'(0)] € R% for v € V, which is continuously differentiable in v and 2 m(v) =
Cov,[I'(0)] where Cov,[I'(0)] denotes the covariance matrix of I'(f) with 6 ~ f,. We take
Assumption E] to guarantee that m~! exists and is continuously differentiable over {n : 3 v €
int(V) s.t.n = m(v)} (see Lemma 1 in supplemental material).

Assumption 1. Cov,['(0)] is positive definite for any v € V C int({v € R% : |K(v)| < oc}).

By definition of p-quantiles, it is a rare event to sample the highly ranked policies for small p. Thus
we apply importance sampling to estimate L(v; p) using any sampling distribution g that shares the
same support © as f,, among which the optimal distribution g;; [25] with minimal variance is

go(0) = G080 0 1u(0),
L(v;p)

In practice we smoothen the updates by including a learning rate « € (0, 1) so the goal distribution is
v = agi+(1—a) fr,. We can project g, to fo,y € F) by minimizing the Kullback-Leibler (KL) diver-
gence of f,» € Iy from §,,, which is equivalent to minimizing the cross entropy between §,, and fy,.
If F is an NEF, log f,(0) = (v")TT(f) — K (v") is concave in v”; thus — [ o (0) log fo (0)df

is convex in v". As aresult, v’ can be found by setting 52 ( — Jo Gv(0)10g fur (6)d9) = 0, which

3)

induces
m(v') = m(v) =a(Ey [0(6)] — m(v)). @

As a property of NEF, the KL-divergence of f,, from g satisfies a%DKL (9, fo) = —E4[T'(8)] +m(v).
Therefore

(')~ m(v) = ~a( o Dics (g5 for))

D07 (&)

)
v''=v



which confirms that m(v) is always updated in the negative gradient direction of the objective
function Dk 1. (g%, fv) where g, is the optimal sampling distribution from importance sampling.

Remark 3. The equality in () holds not just for the optimal distribution g;; but for any reference
distribution.

Define L(v; p) := Ey-[['(0)] — m(v). If G has a strictly positive lower bound and is bounded, then

IN/(U;[)) _ EU[G(’]TQ)LS’((,;TQK;;LP)F(H)] — m(v)
_ [ G(mp)S(mg, v, p) o
= [ ST 1 0)(0(6) — m(w)d0 .
¢ [ G(me)S(mg,v,0) O (xx) 0 Eoyn[G(m)S(m9, v, p)]
7/@ L(v; p) (8va(0))d9 ov" L(v; p) v'=v
:%logEvu [G(79)S(mg,v, p)] ey’

where the () step holds by noticing C,)%f,,(e) = f»(0)(I'(9) — m(v)) and the (*x) step holds by the
dominated convergence theorem. Combining (d) and (6), we get

= aa,v// log By [G(m9)S (e, v, p)] . = ai(”? P (7
which leads to the second interpretation of the updates: The update from v to v’ approximately
follows the gradient direction of log L(v"”; p), while the quantiles are estimated using the previous
distribution f,.

m(v') —m(v)

Algorithm [T]essentially takes the above updates in (3)) and (@) in each iteration, with all expectations
and quantiles estimated by Monte Carlo simulation. Given f,,, € D(©) in the [*" iteration, we sample
over policies (Step , evaluate their G-values and H-values (Step , estimate S(-, v, p) (Step to
and estimate m(v;41) with 7,41 (Step and finally update the sampling distribution to v;

(Step[12).

4.3 Convergence Analysis

We prove the convergence of Algorithmby comparing the asymptotic behavior of {7j; };>o with the
flow induced by the following ordinary differential equation (ODE):

1O B () ). ®

where we define 7 := m(v) or equivalently, v = m~1(n).
We need a series of assumptions for technical reasons.

Assumption 2. (2a) L(v;p) is continuous in v € int(V) and (8) has a unique integral curve
for any given initial condition.

(2b) The number of samples in the I'" iteration is n; = ©(1°), 3 > 0. The gain sequence {a;}
is positive and decreasing with lim;_,o. oy = 0, Y= oy = 00. {\} satisfies N\, = O(liA

Sfor some X\ > 0 such that B + 2\ > 1.

(2¢) For any p € (0,1) and f, for any v € V, the p-quantile of {H(mg) : 0 ~ f,} and the
(1 — p)-quantile of {U(mp) : 0 ~ [y} are both unique.

(2d) Both © andV are compact.

(2e) The function G defined in Problem || is bounded and has a positive lower bound:
infrerr G(m) > 0. The function H in Problem|[l|is bounded.

(2f) v; € int(V) for any iteration I.

Assumption[(Za)| ensures that (§) is well-posed and has a unique solution. Assumption [(2b)]addresses
some requirements on the number of sampled policies in each iteration and other hyperparameters



in Algorithm[I] Assumptions to are used in the proof of the convergence of Algorithm|[I]
Assumption is required to show that ;- 35\, G(7g) in Step|11|of Algorithmis an unbiased
estimate of [E,, [G(mg) S (g, v1, p)]. Assumption [2d)| and are compactness and boundedness
constraints for the sets and functions involved in Algorithm|I} which are unlikely to be restrictive in
practice. Assumption [(2f)|states that V is large enough such that the learned v lies within its interior.

The main result that connects the asymptotic behavior of Algorithm [I|with that of an ODE is stated
in Theorem 4.1} The main idea behind the proof of Theorem [.1]is similar to that of Theorem 3.1 in
[12], although the details are tailored to our problem. There are two major parts in the convergence
proof: The first part shows that all the sampling-based estimates converge to the true values almost
surely, including sample quantiles and sample estimates of G, H and L. The second part shows that
the asymptotic behavior of the idealized updates in (@) can be described by the ODE (8). A detailed
proof of Theorem[4.1]is shown in the supplemental material.

Theorem 4.1. IfAssumptionsand hold, the sequence {7 }1>0 in StepofAlgorithmconverges
to a connected internally chain recurrent set of (8)) as | — oo with probability 1.

By definition of 7 in (8), we know ) — v . Coy, [['(#)]. Since Cov,[I'(#)] is invertible by

ot . ot
Assumption [T} (8) can be rewritten with variable v
ov = T ~1
== (L(v; p)) (Cov, [T(0)]) " )

The conclusion of Theorem [@.T|can be equivalently stated in terms of the variable v: the sequence
{vi}i1>0 of Algorithm converges to a connected internally chain recurrent set of (@) as [ — oo with
probability 1.

Intuitively, a point vg € V is chain recurrent for (Q) if the solution v(¢) of (9) with initial condition
v(0) = vy can return to vy within some finite time ¢ > 0 itself or just with finitely many arbitrarily
small perturbations. An internally chain recurrent set is a nonempty compact invariant set of
chain-recurrent points, i.e., v can never leave an internally chain recurrent set if vy belongs to it.

Theorem implies that with probability 1, the set of points that occur infinitely often in {v;};>0
are internally chain recurrent for (). Since f,, belongs to NEF, Cov,,[I'(6)] is the Fisher information
matrix at v and the right hand side of (9) is an estimate of the natural gradient of log L(v; p) with
a fixed indicator function S. This suggests that v evolves to increase L(v; p), which is consistent
with the optimization problem (T)) and our motivation to solve a constrained RL problem. Note that
internally chain-recurrent sets are generally not unique and our algorithm can still converge to a local
optimum.

To further interpret Theorem we first note that any equilibrium of (8]) forms an internally chain
recurrent set by itself. The following result shows a sufficient condition for an equilibrium point v*
of (8) to be locally asymptotically stable, i.e., there is a small neighborhood of this equilibrium of v*
such that once entered, (9) will converge to v*.

Theorem 4.2. Let ¢ : V — R be any function such that %(p(v) = L(v;p). Any equilibrium
©0* € int(V) of O) that is an isolated local maximum of p(v) is locally asympototically stable.

The proof of Theorem .2]is done by constructing a local Lyapunov function and is given in the
supplemental material. It also shows that ¢(v) always decreases in the interior of )V unless it hits a
stationary point of (9)), which suggests a stronger property of our algorithm as stated in Theorem [4.3]

Theorem 4.3. If all equilibria of () are isolated, the sequence {v;};>o derived by Algorithm
converges toward an equilibrium of Q) as | — oo with probability 1.

5 Experimental Results

We consider a mobile robot navigation task with only local sensors. There is a compact goal region G
and a non-overlapping compact bad region B in the robot’s environment. The transition function is
deterministic. The robot uses a local sensing model to observe if B or G is in its neighborhood and
the direction of the center of G in its local coordinate. Details of this experiment and the local sensing
model can be found in the supplemental material.

We compare the performance of CCE to trust region policy optimization (TRPO) [27], a state-of-
the-art unconstrained RL algorithm, and its variant for constrained problems, i.e., CPO []]. For all
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Figure 1: Learning curves of CCE, CPO and TRPO with different objectives G 7, and constraints
Hy,. The x-axes show the total number of sample trajectories for CCE and the total number of
equivalent sample trajectories for TRPO and CPO. The y-axes show the sample mean of the objective
and constraint values of the learned policy (for TRPO and CPO) or the learned policy distribution
(for CCE). Each experiment is repeated for 5 times. More details can be found in the supplemental

material.

Table 1: J;(7), Z;(7) and constraint upper bound d; fori = 1,2,3,4, 7 € (S x A)V.

{ Ji(T) Z;(T) d;  J; Markovian Z; Markovian
1 for each state in G; 2|y| for -1 if the robot arrives
1 each state with G which is absorbing; -0.5 Yes Yes
y € [—2,—0.2]; 0 otherwise. 0 otherwise.
) 30 times the minimum e oo viited
signed distance from any . . .5 No No
. G in 7; 0 otherwise.
state in 7 to 3.
-1 for each state in G;
3 Same as Jo(7). 0 otherwise. -5 No Yes
-1 if the robot visits
4 Same as J1 (7). G and never visits B;  -0.5 Yes No

0 otherwise.

experiments, the agent’s policy is modeled as a fully connected neural network with two hidden layers
with 30 nodes in each layer. Trajectory length for all experiments is set to N = 30. All experiments

are implemented in rllab [5]].

Figure [I] shows the learning curves of CCE, o

TRPO and CPO for four different objectives
and constraints (¢ = 1,2,3,4). The objective 80
functions and constraint functions used in each 60

TRPO
—CPO

—CCE———————

7

e

experiment are interpreted in Table[I] For exper- ot

iments in which J; is not strictly positive, we use
exp(J;) instead of J; for the CCE. TRPO results
show that the constraints cannot be satisfied by
merely optimizing the corresponding objectives.
We first initialize each experiment with a ran-
domly generated infeasible policy. We find that
CCE successfully outputs feasible policies in all
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(@) Gy, (mo).

(b) Hz, (o).

Figure 2: Average performance of CCE, CPO and
TRPO for Experiment 4 with initial feasible policy.



experiments. On the other hand, CPO needs significantly more samples to find a single feasible
policy, or simply converges to an infeasible policy especially if the constraint is non-Markovian.

We repeat the first experiment (¢ = 1) with feasible initial policies and obtain the result in the last
column of Figure[T] In this case, CPO leaves the feasible region rapidly and then follows generally the
same path as if it is initialized with an infeasible policy. This behavior suggests that its incapability to
enforce constraint satisfaction is not due to the lack of initial feasibility. Although CCE also leaves
the feasible region at an early stage of iterations, it regains feasibility much faster than the previous
case with infeasible initial polices. These results suggest that CCE is more reliable than CPO for
applications where the strict constraint satisfaction is critical.

In Figure 2] we compare the performance of CPO and CCE in Experiment 4 to that of TRPO with
objective G j, — 100H z,. Due to the non-Markovian nature of Z4, Hz, () is not sensitive to local
changes in 7(s) at any state s. It therefore makes it more difficult for standard RL algorithms to
improve its Hz,-value. The fixed penalty coefficient 100 is chosen to be neither too large nor too
small so it can show a large variety of locally optimal behaviors with very different G ;,-values and
H 7, -values. Figure[2|clearly shows the trade-off between G ;,-values and H z, -values, which partially
explains the gap between G j,-value outputs of CCE and CPO. With a fixed penalty coefficient, the
policies learned by TRPO are either infeasible or with very small constraint values. The policy output
by CCE has higher G j,-value than all feasible policies found by TRPO and CPO.

6 Conclusions and Future Work

In this work, we studied a safe reinforcement learning problem with the constraints that are defined
as the expected cost over finite-length trajectories. We proposed a constrained cross-entropy-based
method to solve this problem, analyzed its asymptotic performance using an ODE and proved
its convergence. We showed with simulation experiments that our method can effectively learn
feasible policies without assumptions on the feasibility of initial policies with both Markovian and
non-Markovian objective functions and constraint functions.

CCE is expected to be less sample-efficient than gradient-based methods especially for high-
dimensional systems. Unlike gradient-based methods such as TRPO, CCE does not infer the
performances of unseen policies from previous experience. As a result, it has to repetitively sample
good policies in order to make steady improvement. Meanwhile, CCE can be easily parallelized
as each sampled policy is evaluated independently. This may mitigate the problem of high sample
complexity as other evolutionary methods [26].

Given all these limitations, we find the CCE method to be particularly useful in learning hierarchical
policies. With a high-level policy that specifies intermediate goals and thus reduces the state space
for low-level policies, we can use CCE to train a (locally) optimal low-level policy while satisfying
local constraints. As shown in the experiment of our paper, CCE converges with reasonable sample
complexity and outperforms CPO on its constraint performance. Since the satisfaction of low-
level constraints is of critical significance to the performance of the overall policy, CCE seems to
be especially well-suited for this application. In future work, we will combine this method with
off-policy policy evaluation techniques such as [[13;[9] to improve sample complexity.
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