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Abstract

Reasoning plays an essential role in Visual Question Answering (VQA). Multi-step
and dynamic reasoning is often necessary for answering complex questions. For
example, a question “What is placed next to the bus on the right of the picture?”
talks about a compound object “bus on the right,” which is generated by the
relation <bus, on the right of, picture>. Furthermore, a new relation including this
compound object <sign, next to, bus on the right> is then required to infer the
answer. However, previous methods support either one-step or static reasoning,
without updating relations or generating compound objects. This paper proposes
a novel reasoning model for addressing these problems. A chain of reasoning
(CoR) is constructed for supporting multi-step and dynamic reasoning on changed
relations and objects. In detail, iteratively, the relational reasoning operations form
new relations between objects, and the object refining operations generate new
compound objects from relations. We achieve new state-of-the-art results on four
publicly available datasets. The visualization of the chain of reasoning illustrates
the progress that the CoR generates new compound objects that lead to the answer
of the question step by step.

1 Introduction

“The technical issues of acquiring knowledge, representing it, and using it appropriately to construct
and explain lines-of-reasoning, are important problems in the design of knowledge-based systems,
which illuminates the art of Artificial Intelligence” [1]. Advances in image and language processing
have developed powerful tools on knowledge representation, such as long short-term memory
(LSTM) [2] and convolutional neural network (CNN) [3]. However, it is still a challenge to construct
“lines-of-reasoning” with these representations for different tasks. This paper meets the challenge in
visual question answering, a typical field of Artificial Intelligence.

Visual question answering (VQA) aims to select an answer given an image and a related question.
The left part of Fig. 1 gives an example of the image and the question. Lots of work has been
done on this task in recent years. Among them, reasoning, named in different ways, plays a critical
role. Most of existing VQA models that enable reasoning can be divided into three categories.
Firstly, relation-based method [4] views reasoning procedure as relational reasoning. It calculates
the relations between image regions to infer the answer in one-step. However, one-step relational
reasoning can only construct pairwise relations between initial objects, which is not always sufficient
for complex questions. It is not a trivial problem to extend one-step reasoning to multi-step because
of the exponential increase of computational complexity. Secondly, attention-based methods [5, 6]
view reasoning procedure as to update the attention distribution on objects, such as image regions
or bounding boxes, so as to gradually infer the answer. However, no matter how many times the
attention distributions are updated, the objects are still from the original input, and the entire reasoning
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Figure 1: Chain of Reasoning for VQA. The alternate updating of objects and relations forms a chain
of reasoning. The relational reasoning operation forms new relations between objects. The object
refining operation generates new compound objects from relations.

procedure does not produce compound objects, such as “sign next to the bus on the right”, which
many questions talk about. Thirdly, module-based methods [7, 8, 9] view reasoning procedure as
a layout generated from manually pre-defined modules. It uses the layout to instantiate modular
networks. However, the modules are pre-defined which means the reasoning procedure does not
produce new modules or relations anymore. As a result, it is difficult to meet the requirements of
diversity of relations in dynamic and multi-step reasoning.

This paper tries to construct a chain of reasoning (CoR) for addressing these problems. Both of the
iteratively updated relations and compound objects are used as nodes in the chain. Updated relations
push reasoning to involve more compound objects; compound objects maintain the intermediate
conclusions of reasoning and make the next-step relational reasoning possible by lowering the
computational complexity efficiently. An example of the CoR is shown in Fig. 1. Initial objects in the
image are first recognized, such as two buses and a sign in the original image. All pairwise relations
between these objects are then calculated, and a combination of the relations are used to generate
compound objects, such as “bus on the right.” More complex relations are further calculated between
the compound objects and initial objects to generate more complex compound objects, such as “sign
next to the bus on the right,” which brings us the answer.

In summary, our contributions are as follows:

• We introduce a new VQA model that performs a chain of reasoning, which generates new
relations and compound objects dynamically to infer the answer.

• We achieve new state-of-the-art results on four publicly available datasets. We conduct
a detailed ablation study to show that our proposed chain structure is superior to stack
structure and parallel structure.

• We visualize the chain of reasoning, which shows the progress that the CoR generates new
compound objects dynamically that lead to the answer of the question step by step.

2 Related Work

Reasoning plays a crucial role in VQA. Recent studies modeled the reasoning procedure from
different perspectives. In this section, we briefly review three types of existing work that enable
reasoning. We also highlight differences between previous models and ours.

Relation-based methods The relation-based method performs one-step relational reasoning to
infer the answer. [4] proposed a plug-and-play module called “Relation Networks” (RN). RN uses
full arrangement to model all the interactions between objects in the image and performs multi-layer
perceptrons (MLPs) to calculate all the relations. Then, the relations are summed and passed through
other MLPs to infer the final answer. Modeling pairwise relationships already brings the O(m2)
computational complexity and makes it impossible to carry out multi-step reasoning. By object
refining, our model lowers the computational complexity and makes the multi-step reasoning possible.
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Figure 2: The overall structure of the proposed model for solving the VQA task. It consists of Data
Embedding, Chain of Reasoning, and Decision Making, marked with dash lines respectively.

Attention-based methods Usually, attention-based methods enable reasoning by locating relevant
objects in original input features, such as bounding boxes or image regions. Initially, [10] proposed
one-step attention to locate relevant objects of images. Furthermore, [5, 6] proposed multi-step
attention to update relevant objects of images and infer the answer progressively. Additionally,
[11, 12] proposed multi-modal attention, which finds not only the relevant objects of images but also
questions or answers. Recently, [13, 14, 15, 16] used bilinear fusion in attention mechanism to find
more accurate objects of input features. Attention distributions in the above work are always on
original input features. In contrast, our model pay attentions on not only objects in original input
features but also new compound objects generated dynamically during reasoning.

Module-based methods Module-based methods try to define relations as modules in advance, and
the reasoning procedure is determined by a layout generated from these modules. [7] proposed neural
module network, which uses fixed layouts generated from dependency parses. Later, [8] proposed
dynamic neural module network, which learns to optimize the layout structure by predicting a list of
layout candidates. However, the layout candidates are still generated by dependency parses. To solve
this problem, [9] proposed an end-to-end module network, which learns to optimize over full space
of network and requires no parser at evaluation time. Our model forms new relations dynamically in
the reasoning procedure, instead of choosing from a set of manually pre-defined modules.

3 Chain of Reasoning based model for VQA

The overall structure of our model for VQA is illustrated in Fig. 2. It consists of three parts: Data
Embedding, Chain of Reasoning, and Decision Making. Data Embedding pre-processes the image
and question. Chain of Reasoning is the core part of the model. Starting from outputs of Data
Embedding, relational reasoning on initial objects forms new relations, and object refining generates
new compound objects based on the new relations. Iteratively, these two operations on updated
relations and objects build the chain of reasoning, which outputs a series of results. Decision Making
makes use of all the results to select the final answer of the question. We give the details of the three
parts in Section 3.1∼3.3 respectively.

3.1 Data Embedding

Faster-RCNN [17] is used to encode images with the static features provided by bottom-up-
attention [18], GRU [19] is used to encode text with the parameters initialized with skip-thoughts [20],
as denoted in Eq. (1).

V = RCNN(image), Q = GRU(question), (1)
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where V ∈ Rm×dv denotes the visual features of the top-ranked m detection boxes and Q ∈
Rdq denotes the question embedding. Here, V is viewed as a set of m initial objects, i.e. V =
{v1, v2, . . . , vm}. From the perspective of reasoning, V can also be viewed as m initial premises.

3.2 Chain of Reasoning

Starting from initial objects O(1) = V defined in Eq. (1), a chain of reasoning consists of a series of
sub-chains and an output at each time, which is explained in Fig. 3.

                

                                    

  sub-chain

output

  sub-chain

output

Figure 3: Sub-chains and their outputs in Chain of Reasoning.

In Fig. 3, O(t) ∈ Rm×dv is the set of initial objects at time t = 1 or compound objects at time t > 1.
Õ(t) ∈ Rdv is the output of the chain at time t. R(t) ∈ Rm×m×dv is the set of updated relations at
time t. O(t+1) ∈ Rm×dv is the set of new compound objects at time t+ 1. From the perspective of
reasoning, O(t) can also be viewed as intermediate conclusions when t > 1. We first give the details
on the output at time t, and then describe how the sub-chain is formed.

The output at time t is designed to capture information provided by O(t) under the guidance of
question . An attention-based method is used as in Eq. (2)∼(5).

P (t) = relu(O(t)W (t)
o ), S(t) = relu(QW (t)

q ), (2)

F (t) =

K∑
k=1

(P (t)W
(t)
p,k)� (S(t)W

(t)
s,k) (3)

α(t) = softmax(F (t)W
(t)
f ), (4)

Õ(t) =
(
α(t)

)T
O(t), (5)

where Eq. (2) maps the objects at time t to P (t) ∈ Rm×dp and maps the question feature to S(t) ∈ Rds

at time t. Eq. (3) uses the Mutan fusion mechanism proposed by [16]. K is the hyperparameter.
F (t) ∈ Rm×df is the fusion embedding at time t. α(t) ∈ Rm in Eq. (4) is the attention distribution
over the m compound objects at time t. Õ(t) ∈ Rdv in Eq. (5) is the result of attention at time t,
which is also the output of chain of reasoning at time t. The output at each time t will be used for
final decision making. To write simple, we omit the bias b.

The sub-chain O(t) → R(t) → O(t+1) is performed in two operations. The first operation from O(t)

to R(t) is called relational reasoning which forms new relations between objects, and the second
operation from R(t) to O(t+1) is called object refining which generates new compound objects to
start a new sub-chain. We introduce them respectively as follows.

Relational reasoning from O(t) to R(t) The m objects in O(t) interact with the m initial objects
in O(1) under the guidance of the question Q, as denoted in Eq. (6)∼(7).

Gl = σ (relu(QWl1)Wl2) , Gr = σ (relu(QWr1)Wr2) , (6)

R
(t)
ij = (O

(t)
i �Gl)⊕ (O

(1)
j �Gr), (7)

where Eq (6) maps question feature to the same dimension as the object feature by a two-layer MLP
with different weights respectively. σ is the sigmoid function. Gl, Gr ∈ Rdv are the guidances. Eq. 7
is the sum of the guided ith compound object at time t and the guided jth initial object. � denotes
the element-wise multiplication and ⊕ denotes the element-wise summation.
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Notice that Gl and Gr are different guidances with different weights, but the weights in Gl and Gr

are shared among all sub-chains respectively. As a result, two sets of weights are trained: the set of
weights in Gl make the question focus on the compound objects and another set of weights in Gr

make the question focus on the initial objects. This is in line with the reasoning procedure — the
question decides what the model should do for the intermediate conclusions it already got and the
initial premises. Besides, initial objects O(1)

j used at each time allow the model to capture initial
premises through the whole reasoning procedure.

Object refining from R(t) to O(t+1) The previous relational reasoning operation producesm×m
relations between m compound objects and m initial objects. Since modeling the pairwise relations
increases the compexity of reasoning fromO(m) toO(m2), n-step reasoning will face the complexity
of O(mn). In order to avoid the exponential complexity of multi-step reasoning, we refine these
relations to m new compound objects, each denoted in Eq. (8):

O
(t+1)
j =

m∑
i=1

α
(t)
i R

(t)
ij , (8)

where O(t+1)
j is the jth compound object at time t + 1, In Eq. (8), the attention weights of the

compound objects α(t) are used to refine the relations R(t) formed by the compound objects and the
initial objects. This has two advantages: Firstly, Eq. (8) is more in line with the reasoning procedure.
The jth compound object at time t+ 1 is determined by all the compound objects at time t and the
jth initial object. This means that any conclusion generated by the next reasoning step will use all the
intermediate conclusions in the previous step. At the same time, if an intermediate conclusion in the
previous step is important, then its information is more likely to be used in the next step. Secondly,
Eq. (8) makes it mathematically simple and computationally feasible to begin a next turn reasoning.
Mathematically, we can use a single set of equations to describle the whole chain. Computationally,
we can keep the complexity of O(nm2) when we perform n sub-chains of reasoning.

3.3 Decision Making

The decision maker at time T gives an answer to the question by making use of all the outputs
Õ(t) (t = 1, 2, ..., T ). An concatenation is employed for integrating T outputs in Eq. (9).

O∗ = [relu(Õ(1)W (1)); relu(Õ(2)W (2)); ...; relu(Õ(T )W (T ))], (9)

where O∗ ∈ Rd∗ is the joint feature of outputs. We further fuse joint feature and question by Eq.(10).

H =

K∑
k=1

(O∗Wo∗,k)� (QWq′,k), (10)

where K ∈ R+ is the hyperparameter, H ∈ Rdh is the joint embedding. Finally, a linear layer with a
softmax activation function is used to predict the candidate answer distribution as shown in Eq. (11).

â = softmax(HWh), (11)

3.4 Training

We first calculate the ground-truth answer distribution in Eq. (12):

ai =

∑N
j=1 1{uj = i}

N −
∑N

j=1 1{uj /∈ D}
, (12)

where a ∈ R|D| is the ground-truth answer distribution, ui is the answer given by the ith annotator.
N is the number of annotators. In detail, N is 10 in the VQA 1.0 and VQA 2.0 dataset; N is 1 in the
COCO-QA dataset and the TDIUC dataset.

Finally, we use the KL-divergence as the loss function between a and â in Eq. (13):

L (â, a) =
|D|∑
i=1

ai log

(
ai
âi

)
. (13)
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Table 1: Comparision with the state-of-the-arts on the VQA 1.0 dataset.
VQA 1.0 Test-dev VQA 1.0 Test-std

Open-Ended MC Open-Ended MC

Method All Y/N Num. Other All All Y/N Num. Other All
Single
image
feature

HighOrderAtt[12] - - - - 69.4 - - - - 69.3
MLB(7)[14] 66.77 84.54 39.21 57.81 - 66.89 84.61 39.07 57.79 -
Mutan(5)[16] 67.42 85.14 39.81 58.52 - 67.36 84.91 39.79 58.35 -

Multi
image
feature

DualMFA[21] 66.01 83.59 40.18 56.84 70.04 66.09 83.37 40.39 56.89 69.97
ReasonNet[22] - - - - - 67.9 84.0 38.7 60.4 -

Single
image
feauture

CoR-2(36boxes)
(ours) 68.16 85.57 43.76 58.80 72.60 68.19 85.61 43.10 58.75 72.61

CoR-3(36boxes)
(ours) 68.37 85.69 44.06 59.08 72.84 68.54 85.83 43.93 59.11 72.93

Table 2: Comparision with the state-of-the-arts on the VQA 2.0 dataset.
VQA 2.0 Test-dev VQA 2.0 Test-std

Method All Y/N Num. Other All Y/N Num. Other
MF-SIG-VG[23] 64.73 81.29 42.99 55.55 - - - -
Up-Down(36 boxes)[24] 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26
LC_Baseline(100 boxes)[25] 67.50 82.98 46.88 58.99 67.78 83.21 46.60 59.20
LC_Counting(100 boxes)[25] 68.09 83.14 51.62 58.97 68.41 83.56 51.39 59.11
CoR-2(36 boxes) (ours) 67.96 84.7 47.1 58.42 68.15 84.82 46.8 58.52
CoR-3(36 boxes) (ours) 68.19 84.98 47.19 58.64 68.59 85.16 47.19 59.07
CoR-3(100 boxes) (ours) 68.62 85.22 47.95 59.15 69.14 85.76 48.4 59.43

Table 3: Comparision with the state-of-the-arts on the COCO-QA dataset.
Method All Obj. Num. Color Loc. WUPS0.9 WUPS0.0

QRU [26] 62.50 65.06 46.90 60.50 56.99 72.58 91.62
HieCoAtt [11] 65.4 68.0 51.0 62.9 58.8 75.1 92.0
Dual-MFA [21] 66.49 68.86 51.32 65.89 58.92 76.15 92.29
CoR-2(36 boxes) (ours) 68.67 69.76 55.14 73.36 59.52 77.47 92.68
CoR-3(36 boxes) (ours) 69.38 70.42 55.83 74.13 60.57 78.10 92.86

Table 4: Comparision with the state-of-the-arts on the TDIUC dataset.

Question Type MCB-A[13] RAU[27] CATL-QTAW [28] CoR-2
(ours)

CoR-3
(ours)

Sceen Recognition 93.06 93.96 93.80 94.48 94.68
Sport Recognition 92.77 93.47 95.55 95.94 95.90
Color Attributes 68.54 66.86 60.16 73.59 74.47
Other Attributes 56.72 56.49 54.36 59.59 60.02
Activity Recognition 52.35 51.60 60.10 60.29 62.19
Positional Reasoning 35.40 35.26 34.71 39.34 40.92
Sub. Object Recognition 85.54 86.11 86.98 88.38 88.83
Absurd 84.82 96.08 100.00 95.17 94.70
Utility and Affordances 35.09 31.58 31.48 40.35 37.43
Object Presence 93.64 94.38 94.55 95.40 95.75
Counting 51.01 48.43 53.25 57.72 58.83
Sentiment Understanding 66.25 60.09 64.38 66.72 67.19
Overall (Arithmetric MPT) 67.90 67.81 69.11 72.25 72.58
Overall (Harmonic MPT) 60.47 59.00 60.08 65.65 65.77
Overall Accuracy 81.86 84.26 85.03 86.58 86.91
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4 Experiments

4.1 Datasets and evaluation metrics

We evaluate our model on four public datasets: the VQA 1.0 dataset [29], the VQA 2.0 dataset [30], the
COCO-QA dataset[31] and the TDIUC dataset [27]. VQA 1.0 contains 614,163 samples, including
204,721 images from COCO [32]. VQA 2.0 is a more balanced version and contains 1,105,904
samples. COCO-QA is a smaller dataset that contains 78,736 samples. TDIUC is a larger dataset that
contains 1,654,167 samples and 12 question types. For VQA 1.0 and VQA 2.0, we use the evaluation
tool proposed in [29] to evaluate the model. For COCO-QA and TDIUC, we calculate the simple
accuracy for each question type. Besides, additional WUPS [33] is calculated for COCO-QA and
additional Arithmetic/Harmonic mean-per-type (MPT) [27] is calculated for TDIUC.

4.2 Implementation details

During the data-embedding phase, the image features are mapped to the size of 36×2048 and the text
features are mapped to the size of 2400. In the chain of reasoning phase, the number of hidden layer
in Mutan is 510; hyperparameter K is 5. The attention hidden unit number is 620. In the decision
making phase, the joint feature embedding is set to 510. All the nonlinear layers of the model all use
the relu activation function and dropout [34] to prevent overfitting. All settings are commonly used in
previous work. We implement the model using Pytorch. We use Adam[35] to train the model with a
learning rate of 10−4 and a batch_size of 64. More details, including source codes, will be published
in the near future.

4.3 Comparison with the state-of-the-art

In this section, we compare our single CoR-T model with the state-of-the-art models on four datasets.
CoR-T means that the model consists of T sub-chains. Firstly, Tab. 1 shows the results on the VQA
1.0 dataset. Using a single image feature, CoR-3 not only outperforms all the models that use single
image feature but also outperforms the state-of-the-art ReasonNet [22] model, which uses six input
image features including face analysis, object classification, scene classification and so on. Secondly,
Tab. 2 shows the results on the VQA 2.0 dataset. Compared with Up-Down (36 boxes) [24], which is
the winning model in the VQA challenge 2017, CoR-3 (36 boxes) achieves 2.92% higher accuracy in
test-std set. Compared with the most recent state-of-the-art model LC_counting (100 boxes) [25], our
single CoR-3 (100 boxes) model achieves a new state-of-the-art result of 69.14% in the test-std set.
Thirdly, Tab. 3 shows the results on the COCO-QA dataset. CoR-3 improves the overall accuracy
of the state-of-the-art Dual-MFA from 66.49% to 69.38%. In particular, there is an improvement of
4.51% in “Num.” and 8.24% in “Color”. Fourthly, Tab. 4 shows the results on the TDIUC dataset.
CoR-3 improves the overall accuracy of the state-of-the-art CATL-QTAW [28] from 85.03% to
86.91%. There is also an improvement of 5.58% in “Counting” and 5.93% in “Color Attributes”. In
summary, CoR achieves consistently best performance on all four datasets.

4.4 Ablation study

In this section, we conduct some ablation experiments. For a fair comparion, all the data provided in
this section are trained under the VQA 2.0 training set and tested on the VQA 2.0 validation set. All
the models use the exact same bottom-up-attention feature (36 boxes) extracted from faster-rcnn.

Tab. 5 shows the effectiveness of the chain structure. We implement MLB[14], Mutan [16] and
their stack and parallel structure. The stack structure is proposed by SAN [5], which stacks 2 or 3
attention layers. The parallel structure is similar to Multi-Head Attention [36], which consists of 2 or
3 attention layers running in parallel. As shown in Tab. 5, the chain structure not only significantly
improves the performance of attention models but also superior to their stack or parallel structures.
For example, compared with Mutan, Mutan-Stack-3 is only 0.29% higher while CoR-3 is 1.53%
higher. Furthermore, the chain structure is insensitive to the attention model. CoR-2 and CoR-3 can
achieve high performance whether using Mutan or MLB.

Tab. 6 shows the effectiveness of the relational reasoning operation. Firstly, we implement CoR-2 with
[O

(t)
i ;O

(1)
j ;G]W1, which is proposed RN [4]. We find it lowers the performance (64.96%→62.46%).

This is because the purpose of relational reasoning here is to prepare for generating compound
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Table 5: Effectiveness of the chain structure on the VQA 2.0 validation.

Method MLB[14] MLB-
Stack-2

MLB-
Stack-3

MLB-
Parallel-2

MLB-
Parallel-3

CoR-2
with MLB

CoR-3
with MLB

Val 62.91 63.28 63.55 63.20 63.28 64.90 64.96

Method Mutan[16] Mutan-
Stack-2

Mutan-
Stack-3

Mutan-
Parallel-2

Mutan-
Parallel-3 CoR-2 CoR-3

Val 63.61 63.78 63.90 63.66 63.80 64.96 65.14

Table 6: Effectiveness of relational reasoning operation on the VQA 2.0 validation.
Method Val

CoR-2 with [O
(t)
i ;O

(1)
j ;G]W1 62.46

CoR-2 with (O
(t)
i +O

(1)
j )�G 64.73

CoR-2 with (O
(t)
i �Gl)⊕ (O

(t)
j �Gr) 64.24

CoR-2 64.96

Table 7: Effectiveness of object refining operation on the VQA 2.0 validation.
Method Val

CoR-2 with
∑m

i=1 α
(t)
i R

(t)
ji 64.42

CoR-2 64.96

Table 8: Effectiveness of the model on different question types on the CLEVR dataset.
Method Overall Count Exist Compare

Numbers
Query

Attribute
Compare
Attribute

MLB 85.0 90.0 76.7 78.8 91.1 82.7
Mutan 86.3 92.5 80.2 81.7 91.2 84.5

RN 96.4 - - - - -
CoR-2 98.7 98.8 97.7 92.3 99.9 99.7

objects, and the element-wise sum in Eq. (7) is more fine-grained. Secondly, we implement CoR-
2 with (O

(t)
i ⊕ O

(1)
j ) � G, which uses a single question guidance and also lowers performance

(64.96%→64.73%). This shows that different guidances for compound objects and initial objects are
beneficial to improve the performance. Thirdly, we implement CoR-2 with (O

(t)
i �Gl)⊕(O

(t)
j �Gr),

which calculates the relations by the compound objects themselves without the initial object O(1)
j .

We find it still lowers the performance (64.96%→64.24%). This shows using initial premises O(1)
j at

each step is crucial and may avoid “over-reasoning” by modeling very complex relations between
compound objects.

Tab. 7 shows the effectiveness of the object refining operation. We implement a similar operation∑m
i=1 α

(t)
i R

(t)
ji . Although the formula is similar to

∑m
i=1 α

(t)
i R

(t)
ij in Eq. 8, the meaning is totally

different.
∑m

i=1 α
(t)
i R

(t)
ij generates the jth compound object by weighted sum of the relations between

each compound object and the jth initial object while
∑m

i=1 α
(t)
i R

(t)
ji generates that by weighted sum

of the relations between each initial object and jth compound object. The former focuses on using
the previous reasoning conclusions while the latter focuses on the initial premises. CoR-2 has better
results and is more in line with the reasoning procedure — focusing more on previous intermediate
conclusions to push the next step reasoning.

Tab. 8 shows effectiveness of the model on different question types. We conduct experiments on
the state description matrix version of the CLEVR dataset [37]. CoR-2 reaches an overall accuracy
of 98.7%, which outperforms MLB and Mutan on the same setup. Furthermore, CoR-2 achieves
the performance of 99.9% in question type of “Query Attribute” and 99.7% in question type of

“Compare Attribute”. It is worth mentioning that there is still room for improvement in “Compare
Numbers” questions.

8



4.5 Qualitative evaluation

Example 1. What object is on the upper
right side of the picture?

Example 2. How many people can be
seen in the picture?
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Figure 4: Visualization of the reasoning procedure of CoR-3.

In Figure 4, we visualize the compound objects generated by CoR-3 and their attention weights. Four
examples are given including three success cases and one failure case. Each example contains three
steps. The red box and the blue box in each step represent objects with the top two attention weights
respectively. The initial objects in the first step are part of the original image and easy to visualize by
the bounding box, but the compound objects in the second and third step are difficult to visualize
directly. Therefore, we search from 1105904 × 36 boxes (1105904 is the number of samples and
each sample has 36 boxes) and find the box with the most similar feature by cosine similarity to
represent the compound object. The upper left corner of each box contains a tuple of the form (w, s).
w is the attention weight, s is the similarity between the searched box and the real compound object.

In Example 1, the left image shows a pillar (red box) and ground (blue box). Their values of w are
0.22 and 0.19 respectively. Since they are initial top two rcnn objects in O(1), the values of s are 1.
The model focuses on some disperse “objects”, which can be further seen by attention distribution
histogram below. The middle image shows top two compound objects in the second step. The red box
focuses on “objects on the upper”. The attention weight of the red box increased slightly to 0.25. The
similarity between the red box and the real compound object is 0.92. The right image shows top two
more complex compound objects in the third step. The “objects on the upper right” has been focused
in the red box. Interestingly, the w of the red box increases to 0.81, which means in the third step,
CoR-3 is very confident that the box containing “hydrant” is exactly the final answer. Statistics show
that 96.76% of the success cases satisfy the phenomenon of dispersion to concentration. In Example
2∼3, two more success cases are shown. In Example 4, the model already gets the intermediate
result “dog in the image” in the third step but fails to further find “leg on the right of the dog in the
image”, which seems that three-step reasoning is insufficient here.

5 Conclusion

In this paper, we propose a novel chain of reasoning model for VQA task. The reasoning procedure
is viewed as the alternate updating of objects and relations. Experimental results on four publicly
available datasets show that CoR outperforms state-of-the-art approaches. Ablation study shows that
proposed chain structure is superior to stack structure and parallel strucuture. The visualization of the
chain of reasoning illustrates the progress that the CoR generates new compound objects that lead
to the answer of the question step-by-step. In the future, we plan to apply CoR to other tasks that
require reasoning like reading comprehension question answering or video question answering.
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