
Automating Bayesian optimization
with Bayesian optimization

Gustavo Malkomes, Roman Garnett
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

{luizgustavo, garnett}@wustl.edu

Abstract

Bayesian optimization is a powerful tool for global optimization of expensive
functions. One of its key components is the underlying probabilistic model used for
the objective function f . In practice, however, it is often unclear how one should
appropriately choose a model, especially when gathering data is expensive. We in-
troduce a novel automated Bayesian optimization approach that dynamically selects
promising models for explaining the observed data using Bayesian optimization
in model space. Crucially, we account for the uncertainty in the choice of model;
our method is capable of using multiple models to represent its current belief about
f and subsequently using this information for decision making. We argue, and
demonstrate empirically, that our approach automatically finds suitable models for
the objective function, which ultimately results in more-efficient optimization.

1 Introduction

Global optimization of expensive, potentially gradient-free functions has long been a critical compo-
nent of many complex problems in science and engineering. As an example, imagine that we want to
tune the hyperparameters of a deep neural network in a self-driving car. That is, we want to maximize
the generalization performance of the machine learning algorithm, but the functional form of the
objective function f is unknown and even a single function evaluation is costly — it might take hours
(or even days!) to train the network. These features render the optimization particularly difficult.

Bayesian optimization has nonetheless shown remarkable success on optimizing expensive gradient-
free functions [8, 1, 18]. Bayesian optimization works by maintaining a probabilistic belief about
the objective function and designing a so-called acquisition function that intelligently indicates the
most-promising locations to evaluate f next. Although the design of acquisition functions has been
the subject of a great deal of research, how to appropriately model f has received comparatively less
attention [17], despite being a decisive factor for performance. In fact, this was considered the most
important problem in Bayesian optimization by Močkus [12], in a seminal work in the field:

“The development of some system of a priori distributions suitable for different
classes of the function f is probably the most important problem in the application
of [the] Bayesian approach to ... global optimization” (Močkus 1974, p. 404).

In this work, we develop a search mechanism for appropriate surrogate models (prior distributions) to
the objective function f . Inspired by Malkomes et al. [11], our model-search procedure operates via
Bayesian optimization in model space. Our method does not prematurely commit to a single model;
instead, it uses several models to form a belief about the objective function and plan where the next
evaluation should be. Our adaptive model averaging approach accounts for model uncertainty, which
more realistically copes with the limited information available in practical Bayesian optimization

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

observations D true function predictive mean 95% credible interval

expected improvement
next observation location

Figure 1: Importance of model selection in Bayesian optimization. Top left: one model represents
the belief about the objective. Top right: a mixture of models selected by our approach represents the
belief about f . Bottom: the acquisition function value (expected improvement) computed using the
respective beliefs about the objective. ABO places the next observation at the optimum.

applications. In Figure 1, we show two instances of Bayesian optimization where our goal is to
maximize the red objective function f . Both instances use expected improvement as acquisition
function. The difference between is the belief about f : using a single model (left) or combining
several models using our automated Bayesian optimization (ABO) approach (right). A single model
does not capture the nuances of the true function. In contrast, ABO captures the linear increasing
trend of the true function and produces a credible interval which successfully captures the function’s
behavior. Consequently, ABO finds the optimum in the next iteration.

Finally, we demonstrate empirically that our approach is consistently competitive with or outperforms
other strong baselines across several domains: benchmark functions for global optimization functions,
hyperparameter tuning of machine learning algorithms, reinforcement learning for robotics, and
determining cosmological parameters of a physical model of the Universe.

2 Bayesian optimization with multiple models

Suppose we want to optimize an expensive, perhaps black-box function f : X → R on some compact
set X ⊆ X . We may query f at any point x and observe a possibly noisy value y = f(x) + ε. Our
ultimate goal is to find the global optimum:

xOPT = arg min
x∈X

f(x) (1)

through a sequence of evaluations of the objective function f . This problem becomes particularly
challenging when we may only make a limited number of function evaluations, representing a real-
world budget B limiting the total cost of evaluating f . Throughout this text, we denote by D a set of
gathered observations D = (X,y), where X is a matrix aggregating the input variables xi ∈ X , and
y is the respective vector of observed values yi = f(xi) + ε.

Modeling the objective function. Assume we are given a prior distribution over the objective
function p(f) and, after observing new information, we have means of updating our belief about f
using Bayes’ rule:

p(f | D) =
p(D | f)p(f)

p(D)
. (2)

The posterior distribution above is then used for decision making, i.e., selecting the x we should
query next. When dealing with a single model, the posterior distribution (2) suffices. Here, however,

2

we want to make our model of f more flexible, accounting for potential misspecification. Suppose
we are given a collection of probabilistic models {Mi} that offer plausible explanations for the data.
Each modelM is a set of probability distributions indexed by a parameter θ from the corresponding
model’s parameter space ΘM. With multiple models, we need a means of aggregating their beliefs.
We take a fully Bayesian approach and we use the model evidence (or marginal likelihood), the
probability of generating the observed data given a modelM,

p(y | X,M) =

∫
p(y | X, θ,M) p(θ | M) dθ, (3)

as the key quantity for measuring the fit of each model to the data. The evidence integrates over the
parameters θ to compute the probability of the model generating the observed data under a hyperprior
distribution p(θ | M). Given (3), one can easily compute the model posterior,

p(M | D) =
p(y | X,M)p(M)

p(y | X)
=

p(y | X,M)p(M)∑
i p(y | X,Mi)p(Mi)

, (4)

where p(M) represents a prior probability distribution over the models. The model posterior gives us
a principled way of combining the beliefs of all models. Our model of f can now be summarized
with the following model-marginalized posterior distribution:

p(f | D) =
∑
i

p(Mi | D)

∫
p(f | D, θ,Mi)p(θ | D,Mi) dθ︸ ︷︷ ︸

p(f |D,Mi)

. (5)

Note that (5) takes into consideration all plausible models {Mi} and the integral p(f | D,Mi)
accounts for the uncertainty in each model’s hyperparameters θ ∈ ΘMi

. Unfortunately, the latter is
often intractable and we will discuss means of approximating it in Section 4.2. Next, we describe
how to use the model-marginalized posterior to intelligently optimize the objective function.

Selecting where to evaluate next. Given our belief about f , we want to use this information to
select which point x we want to evaluate next. This is typically done by maximizing an acquisition
function α : X → R. Instead of solving (1) directly, we optimize the proxy (and simpler) problem

x∗ = arg max
x∈X

α(x;D). (6)

We use expected improvement (EI) [12] as our acquisition function. Suppose that f ′ is the minimal
value observed so far.1 EI selects the point x that, in expectation, improves upon f ′ the most:

αEI(x ;D,M) = Ey
[
max(f ′ − y, 0) | x,D,M

]
. (7)

Note that if p(y | x,D,M) is a Gaussian distribution (or can be approximated as one), the expected
improvement can be computed in closed form. Usually, acquisition functions are evaluated for a
given model choiceM. As before, we want to incorporate multiple models in this framework. For
EI, we can easily take into account all models as follows:

αEI(x ;D) = Ey,M
[
max(f ′ − y, 0) | x,D

]
= EM

[
αEI(x ;D,M)

]
. (8)

We could also derive similar results for other acquisition functions such as probability of improvement
[9] and GP upper confidence bound (GP-UCB) [19].

3 Automated model selection for fixed-size datasets

Before introducing our automated method for Bayesian optimization, we need to review a previously
proposed method for automated model selection of fixed-size datasets. We begin with a brief
introduction to Gaussian processes and a description of the model space we adopted in this paper.

Gaussian processes models. We take a standard nonparametric approach and place a Gaussian
process (GP) prior distribution on f , p(f) = GP(f ;µ,K), where µ : X → R is a mean function
and K : X × X → R is a positive-semidefinite covariance function or kernel. Both µ and K may
have hyperparameters, which we conveniently concatenate into a single vector θ. To connect to our

1We make a simplifying assumption that the noise level is small, thus f ′ ≈ mini µf |D(xi) and y(x) ≈ f(x).

3

framework, a GP modelM comprises µ, K, and a prior over its associated hyperparameters p(θ).
Thanks to the elegant marginalization properties of the Gaussian distribution, computing the posterior
distribution p(f | θ,D) can be done in closed form, if we assume a standard Gaussian likelihood
observation model, ε ∼ N(0, σ2). For a more detailed introduction to GPs, see [16].

Gaussian processes are extremely powerful modeling tools. Their success, however, heavily depends
on an appropriate choice of the mean function µ and covariance function K. In some cases, a domain
expert might have an informative opinion about which GP model could be more fruitful. Here,
however, we want to avoid human intervention and propose an automatic approach.

Space of models. First we need a space of GP models that is general enough to explain virtually any
dataset. We adopt the generative kernel grammar of [2] due to its ability to create arbitrarily complex
models. We start with a set of so-called base (one-dimensional) kernels, such as the common squared
exponential (SE) and rational quadratic (RQ) kernels. Then, we create new and potentially more
complex kernels by summation and multiplication, over individual dimensions, of the base kernels.
This let us create kernels over multidimensional inputs. As a result, we have a space of kernels that
allows one to search for appropriate structures (different kernel choices) as well as relevant features
(subsets of the input). Now, we need an efficient method for searching models from this given space.
Fortunately, this was accomplished by the work of [11], which we summarize next.

Bayesian optimization for model search. Suppose we are given a space of probabilistic models
M such as the above-cited generative kernel grammar. As mentioned before, the key quantity for
model comparison in a Bayesian framework is the model evidence (3). Previous work has shown that
we can search for promising modelsM ∈ M by viewing the evidence as a function g : M→ R to
be optimized [11]. Their method consists of a Bayesian optimization approach to model selection
(BOMS), in which we try to find the optimal model

MOPT = arg max
M∈M

g(M;D), (9)

where g(M;D) is the (log) model evidence: g(M;D) = log p(y | X,M). Two key aspects of their
method deserve special attention: their unusual GP prior, p(g) = GP(g;µg,Kg), where the mean
and covariance functions are appropriately defined over the model space M; and their heuristic for
traversing M by maintaining a set of candidate models C. The precise mechanism for traversing the
space of models is not particular relevant for our exposition, but the fact that C is changing as we
search for better models is. Due to limited space, we refer the reader to the original work for more
information. Nevertheless, it is important to note that their approach was shown to be more efficient
than previous methods.

4 Automating Bayesian optimization with Bayesian optimization

Here, we present our automated Bayesian optimization (ABO) algorithm. ABO is a two-level Bayesian
optimization procedure. The “outer level” solves the standard Bayesian optimization problem, where
we want to search for the optimum of the objective function f . Inside the Bayesian optimization
loop, we use a second “inner” Bayesian optimization, where the goal is to search for appropriate
models {Mi} to the objetive function f . The inner optimization seeks models maximizing the model
evidence as in BOMS (Section 3). The motivation is to refine the set of models {Mi} before choosing
where we want to query the (expensive) objective function f next. Given a set of models, we can use
the methodology presented in Section 2 to perform Bayesian optimization with multiple models.

In the next subsection, we will describe the inner Bayesian optimization method which we refer to
as active BOMS (ABOMS). Before going to the second Bayesian optimization level, we summarize
ABO in Algorithm 1. First, we initialize our set of promising models {Mi} with random models
chosen from the grammar of kernel, same used in [2]. To select these models, we perform random
walks from the the empty kernel and repeatedly apply a random number of grammatical operations.
The number of operations is sampled from a geometric distribution with termination probability of
1
3 . Then, at each iteration: we update all models with current data, computing the corresponding
model evidence of each model; use ABOMS (the inner model-search optimization) to include more
promising candidate models in {Mi}; exclude all models that are unlikely to explain the current data,
those with p(M | D) < 10−4; sample the function at location x∗ using (8) and all models {Mi};
finally, we evaluate y∗ = f(x∗) + ε and include this new observation in our dataset.

4

Algorithm 1 Automated Bayesian Optimization

Input: function f , budget B, initial data D
{Mi} ← Initial set of promising models
repeat
{Mi} ← update models ({Mi},D)
{Mi} ← ABOMS({Mi},D)
p(M | D)← compute model posterior
discard irrelevant models p(Mi | D) < 10−4

x∗ ← arg maxx∈X αEI(x ;D).
y∗ ← f(x∗) + ε
D ← D ∪ {(x∗, y∗)}

until budget B is depleted

4.1 Active Bayesian optimization for model search

The critical component of ABO is the inner optimization procedure that searches for suitable models
to the objective function: the active Bayesian optimization for model search (ABOMS). Notice that
the main challenge is that ABOMS is nested in a Bayesian optimization loop, meaning that both data
and models will change as we perform more outer Bayesian optimization iterations.

Suppose we already gathered some observations D of the objective function f . Additionally, we use
the previously proposed BOMS (Section 3) as the inner model search procedure. Inside BOMS, we tried
different models, gathering observations of the (log) model evidence, g(M;D) = log p(y | X,M).
We denote by Dg = {Mj , g(Mj ;D)} the observations of the inner Bayesian optimization. After
one loop of the outer Bayesian optimization, we obtain new data D′ = D ∪ {(x∗, y∗)}. Now, the
model evidence of all previously evaluated models Dg changes since g(Mj ,D) 6= g(Mj ,D′) for
all j. As a result, we would have to retrain all models in Dg to correctly compare them. Recall
that there are good models in Dg for explaining the objective function f . These models will be
passed to the outer Bayesian optimization, where they will be updated — ultimately, we want to
provide outstanding suggestions x∗ for where to query f next, thus they need to be retrained. A large
portion of the tested models in Dg , however, are not appropriated for modeling f ; in fact, they can be
totally ignored by the outer optimization. Yet these “bad” models can help guide the search toward
more-promising regions of model space. How to retain information from previously evaluated models
without resorting to exhaustive retraining?

Our answer is to modify BOMS in two ways. First, we place a GP on the normalized model evidence,
g(M;D) = log p(y | X,M) / |D|, which let us compare models across iterations. Second, we
assume that each evidence evaluation is corrupted by noise, the variance of which depends on the
number of data points used to compute it: the more data we use, the more accurate our estimate,
and the lower the noise. More specifically, we use the same GP prior of [11], p(g) = GP(g;µg,Kg),
where µg : M → R is just a constant mean function and Kg : M2 → R is the “kernel kernel”
defined as a squared exponential kernel that uses the (averaged) Hellinger distance between the
inputs as oppose to the standard `2 norm (see the original paper for more details). Our observation
model, however, assumes that the observations of the normalized model evidence are corrupted by
heterogenous noise:

yg(M;Dn) =
g(M;Dn)

n
+ ε
(1

n

)
. (10)

To choose the amount of noise, we observed that, using the chain rule, the marginal likelihood can
be written as log p(y | X,M) =

∑
i log p

(
yi | xi,

{
(xj , yj) | j < i

}
,M

)
, which is the sum of the

marginal predictive log likelihoods for the points in the D. When we divide log p(y | X,M) by
|D| = n, we can interpret the result as an estimate of the average predictive log marginal likelihood.2
Therefore, if

log p(y | X,M)/n ≈ E
[

log p(y∗ | x∗,D,M) | M
]
,

then the variance of this estimate with n measurements is

Var
[

log p
(
yi | xi,

{
(xj , yj) | j < i

}
,M

)]
/n.

2Note that the training data is not independent since we are choosing the locations x, and we are not assuming
that n→∞

5

which shrinks like σ2
g/n for a small constant σg (e.g., 0.5). For large n it goes to 0. This mechanism

gracefully allows us to condition on the history of all previously proposed models during the search.
By modeling earlier evidence computations as noisier, we avoid recomputing the model evidence of
previous models every round, but we still make the search for good models better informed.

4.2 Implementation

In practice, several distributions presented above are often intractable for GPs. Now, we discuss how
to efficiently approximate these quantities. First, instead of using just a delta approximation to the
hyperparameter posterior p(θ | D,M), e.g. MLE/MAP, we use a Laplace approximation, i.e., we
make a second-order Taylor expansion around its mode: θ̂ = arg maxθ log p(θ | D,M). This results
in a multivariate Gaussian approximation:

p(θ | D,M) ≈ N (θ; θ̂,Σ) where Σ−1 = −∇2 log p(θ | D,M)
∣∣
θ=θ̂

.

Conveniently, the Laplace approximation also give us a means of approximating the model evidence:

log p(y | X,M) ≈ log p(y | X, θ̂,M) + log p(θ̂ | M)− 1
2 log det Σ−1 + d

2 log 2π,

where d is the dimension of θ. The above approximation can be interpreted as rewarding explaining
the data well while penalizing model complexity [13, 15].

Next consider the posterior distribution p(f | D,M), which is an integral over the model’s hyperpa-
rameters. This distribution is intractable, even with our Gaussian approximation to the hyperparameter
posterior p(θ | D,M) ≈ N (θ; θ̂,Σ). We use a general approximation technique originally proposed
by [14] (Section 4) in the context of Bayesian quadrature. This approach assumes that the posterior
mean of p(f∗ | x∗,D, θ,M) is affine in θ around θ̂ and the GP covariance is constant. Let

µ∗(θ) = E[f∗ | x∗,D, θ,M] and ν∗(θ) = Var[f∗ | x∗,D, θ,M]

be the posterior predictive mean and variance of f∗. The result of this approximation is that the
posterior distribution of f∗ is approximated by

p(f∗ | x∗,D,M) ≈ N
(
f∗;µ∗(θ̂), σ2

AFFINE

)
, where σ2

AFFINE =
[
∇µ∗(θ̂)

]>
Σ
[
∇µ∗(θ̂)

]
.

This approach was shown to be a good alternative for propagating the uncertainty in the hyperpa-
rameters [14]. Finally, given the Gaussian approximations above (11), we use standard techniques to
analytically approximate the predictive distribution:

p(y∗ | x∗,D,M) =

∫
p(y∗ | f∗) p(f∗ | x∗,D,M) df∗.

Our code and data will be available online: https://github.com/gustavomalkomes/abo.

5 Related Work

Our approach is inspired by some recent developments in the field of automated model selection
[11, 2, 6]. Here, we take these ideas one step further and consider automated model selection when
actively acquiring new data.

Gardner et al. [3] also tackled the problem of model selection in an active learning context but with a
different goal. Given a fixed set of candidate models, the authors proposed a method for gathering
data to quickly identify which model best explains the data. Here our ultimate goal is to perform
global optimization (1) when we can dynamically change our set of models. In future work, it would
be interesting to examine whether it may be possible to combine our ideas with their proposed method
to actively learn in model space.

More recently, Gardner et al. [4] developed an automated model search for Bayesian optimization
similar to our method. Their approach, however, uses a MCMC strategy for sampling new promising
models, whereas we adapt the Bayesian optimization search of proposed by Malkomes et al. [11].
We will discuss further differences between our approach and their MCMC method in the next section.

6

https://github.com/gustavomalkomes/abo

10 30 50 70 90

−1.42

−1.4

−1.38

−1.36

Function evaluations

L
og

ob
je

ct
iv

e
fu

nc
tio

n

SE
BOM
MCMC
ABO

(a) SVM

10 30 50 70 90

7.14

7.15

7.16

7.17

Function evaluations

(b) LDA

10 30 50 70 90

−2.7

−2.6

−2.5

−2.4

Function evaluations

(c) Logistic Regression

10 30 50 70 90

2.1

2.2

2.3

2.4

Function evaluations

L
og

ob
je

ct
iv

e
fu

nc
tio

n

(d) Neural Network Boston

10 20 30 40 50

−2

−1

0

1

Function evaluations

(e) Robot pushing 3D

10 20 30 40 50

2

4

6

8

Function evaluations

(f) Cosmological constants

Figure 2: Averaged minimum observed function value and standard error of all methods for several
objective functions. For better visualization, we omit the first 10 function evaluations since they are
usually much higher than the final observations.

6 Empirical Results

We validate our approach against several optimization alternatives and across several domains. Our
first baseline is a random strategy that selects twice as many locations as the other methods. We refer
to this strategy as RANDOM 2× [10]. We also consider a competitive Bayesian optimization imple-
mentation which uses a single non-isotropic squared exponential kernel (SE), expected improvement
as the acquisition function and all the approximations described in Section 4.2. Then, we considered
two more baselines that represent the uncertainty about the unknown function through a combination
of multiple models. One baseline uses the same collection of predefined models throughout its
execution; we refer to this approach as the bag of models (BOM). The other is an adaptation of the
method proposed in [4], here referred as MCMC, which, similar to ABO, is allowed to dynamically
select more models every iteration. Instead of using the additive class of models proposed in the
original work, we adapted their Metropolis–Hastings algorithm to the more-general compositional
grammar proposed by Duvenaud et al. [2], which is also used by our method. This choice lets us
compare which adaptive strategy performs better in practice. Specifically, given an initial modelM,
the MCMC proposal distribution randomly selects a neighboring modelM′ from the grammar. Then
we compute the acceptance probability as in [4].

All multiple models strategies (BOM, MCMC and ABO) start with the same selection of models (See
Section 4) and they aim to maximize the model-marginalized expected improvement (8). Both
adaptive algorithms (ABO and MCMC) are allowed to perform five model evidence computations
before each function evaluation; ABO queries five new models and MCMC performs five new proposals.
In our experiments, we limited the number of models to 50, always keeping those with the higher
model evidence. Model choice and acquisition functions apart, we kept all configurations the same.
All methods used L-BFGS to optimize each model’s hyperparameters. To avoid bad local minima, we
perform two restarts, each begining from a sample of p(θ | M). All the approximations described in
Section 4.2 were also used. We maximized the acquisition functions by densely sampling 1000d2

points from a d-dimensional low-discrepancy Sobol sequence, and starting MATLAB fmincon (a

7

Table 1: Results for the average gap performance across 20 repetitions for different test functions and
methods. RANDOM 2× (R 2×) results are averaged across 1000 experiments. Numbers that are not
significantly different from the highest average gap for each function are bolded (one-sided paired
Wilcoxon signed rank test, 5% significance level).

function d R 2× SE BOM MCMC ABO

Ackley 2d 2 0.422 0.717 0.984 0.988 0.980
Beale 2 0.725 0.541 0.644 0.596 0.688
Branin 2 0.743 1.000 0.950 0.996 0.998
Eggholder 2 0.461 0.516 0.529 0.546 0.579
Six-Hump Camel 2 0.673 0.723 0.988 0.992 0.998
Drop-Wave 2 0.458 0.496 0.421 0.447 0.481
Griewank 2d 2 0.669 0.924 0.954 0.941 0.964

synthetic Rastrigin 2 0.538 0.410 0.832 0.827 0.850
objectives Rosenbrock 2 0.787 1.000 0.999 0.993 0.999

Shubert 2 0.337 0.384 0.374 0.332 0.481
Hartmann 3 0.682 1.000 0.970 0.999 1.000
Levy 3 0.669 0.774 0.913 0.942 0.971
Rastrigin 4d 4 0.414 0.261 0.823 0.715 0.821
Ackley 5d 5 0.299 0.736 0.409 0.886 0.809
Griewank 5d 5 0.605 0.971 0.756 0.974 0.968

mean gap 0.566 0.697 0.770 0.812 0.839
median gap 0.605 0.723 0.832 0.941 0.964

SVM 3 0.903 0.912 0.840 0.938 0.956
LDA 3 0.939 0.950 0.925 0.950 0.950
Logistic regression 4 0.928 0.774 0.899 0.936 0.994
Robot pushing 3d 3 0.815 0.927 0.878 0.967 0.935

real-world Robot pushing 4d 4 0.824 0.748 0.619 0.668 0.715
objectives Neural network Boston 4 0.491 0.594 0.703 0.640 0.757

Neural network cancer 4 0.845 0.645 0.682 0.773 0.749
Cosmological constants 9 0.739 0.848 0.859 0.984 0.999

mean gap 0.810 0.800 0.801 0.857 0.882
median gap 0.834 0.811 0.850 0.937 0.943

local optimizer) from the sampled point with highest value. Each experiment, was repeated 20
times with five random initial examples, which were the same for all Bayesian optimization methods.
RANDOM 2× results were averaged across 1000 repetitions.

Benchmark functions for global optimization. Our first set of experiments are test functions
commonly used as benchmarks for optimization [20]. We adopted a similar setup as previous works
[5] but included more test functions. The goal is to find the global minimum of each test function
given a limited number of function evaluations. We provide more information about the chosen
functions in the supplementary material. The maximum number of function evaluations was limited
to 10 times the dimensionality of the function domain being optimized. We report the gap measure
[7], defined as f(xfirst)−f(xbest)

f(xfirst)−f(xOPT)
, where f(xfirst) is the minimum function value among the first initial

random points, f(xbest) is the best value found by the method, and f(xOPT) is the optimum.

Table 1 (top) shows the results for different functions and methods. For each test function, we perform
a one-sided Wilcoxon signed rank test at the 5% significance level with each method and the one that
had the highest average performance. All results that are not significantly different than the highest
are marked in bold. First, note that RANDOM 2× performs poorly in these synthetic constructed
“hard” functions. Then, observe that the overall performance of all multi-model methods is higher
than the single GP baseline, with ABO leading these algorithms with respect to the mean and median
gap performance over all functions. In fact, ABO’s performance is comparable to the best method for
11 out of 15 functions.

8

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

Fraction of Total Number of Function Evaluations

G
ap

M
ea

su
re

ABO
MCMC
R 2×
BOM
SE
R 1×

Figure 3: Average gap across the eight real-world objective functions vs. fraction of total number of
function evaluations. Here, we display the performance of random search (R 1×) for reference.

Real-world optimization functions. To further investigate the importance of model search, we
consider a second set of functions used in recent publications. Our goal was to select a diverse and
challenging set of functions which might better demonstrate the performance of these algorithms in a
real application. More information about these functions is given in the supplementary material.

We show the gap measure for the second set of experiments in Table 1 (bottom) and perform the same
statistical test as before. For computing the gap measure in these experiments, when the true global
minimum is unknown, we used the minimum observed value across all experiments as a proxy for
the optimal value. In Figure 3 we show the average gap measure across all eight test functions as a
function of the total number of functions evaluations allowed. In Figure 2, we show the averaged
minimum observed function value and standard error of all methods for 6 out of the 8 functions (see
supplementary material for the other two functions).

With more practical objective functions, the importance of model search becomes more clear. ABO
either outperforms the other methods (4 out of the 8 datasets) or achieves the lowest objective
function. Figure 3 also shows that ABO quickly advances on the search for the global minimum — on
average, the gap measure is higher than 0.8 after at half of the budget. Interestingly, RANDOM 2×
also performs well for 2 out of these 8 datasets, those are the problems in which all methods have a
similar performance, suggesting that these functions are easier to optimize than the others.

Naturally, training more models and performing an extra search to dynamically select models require
more computation than running a standard single Bayesian optimization. In our implementation, not
optimized for speed, the median wall clock across all test functions for updating and searching the five
new models was 65 and 41 seconds, respectively, for MCMC and ABO. Note that the model update is
what dominates this procedure for both methods, with MCMC tending to select more complex models
than ABO. In practice, one could perform this step in parallel with the expensive objective function
evaluation, requiring no additional overhead besides the cost of optimizing the model-marginal
acquisition function, which can also be adjusted by the user.

7 Conclusion

We introduced a novel automated Bayesian optimization approach that uses multiple models to
represent its belief about an objective function and subsequently decide where to query next. Our
method automatically and efficiently searches for better models as more data is gathered. Empirical
results show that the proposed algorithm often outperforms the baselines for several different objective
functions across multiple applications. We hope that this work can represent a step towards a fully
automated system for Bayesian optimization that can be used by a nonexpert on arbitrary objectives.

9

Acknowledgments

GM, and RG were supported by the National Science Foundation (NSF) under award number IIA–
1355406. GM was also supported by the Brazilian Federal Agency for Support and Evaluation of
Graduate Education (CAPES).

References
[1] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-

parameter optimization. In Conference on Neural Information Processing Systems (NIPS).
2011.

[2] David Duvenaud, James R. Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahra-
mani. Structure discovery in nonparametric regression through compositional kernel search. In
International Conference on Machine Learning (ICML), 2013.

[3] Jacob R. Gardner, Gustavo Malkomes, Roman Garnett, Kilian Q. Weinberger, Dennis Barbour,
and John P. Cunningham. Bayesian active model selection with an application to automated
audiometry. In Conference on Neural Information Processing Systems (NIPS), 2015.

[4] Jacob R. Gardner, Chuan Guo, Kilian Q. Weinberger, Roman Garnett, and Roger Grosse.
Discovering and exploiting additive structure for Bayesian optimization. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

[5] Javier González, Michael A. Osborne, and Neil D. Lawrence. GLASSES: relieving the myopia
of Bayesian optimisation. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2016.

[6] Roger Grosse, Ruslan Salakhutdinov, William Freeman, and Joshua Tenenbaum. Exploiting
compositionality to explore a large space of model structures. In Conference on Uncertainty in
Artificial Intelligence (UAI), 2012.

[7] Deng Huang, Theodore T. Allen, William I. Notz, and Ning Zeng. Global optimization of
stochastic black-box systems via sequential kriging meta-models. Journal of Global optimiza-
tion, 34:441–466, 2006.

[8] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13:455–492, 1998.

[9] Harold J. Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. Journal of Basic Engineering, 86:97–106, 1964.

[10] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018. URL http://jmlr.org/papers/v18/16-558.
html.

[11] Gustavo Malkomes, Charles Schaff, and Roman Garnett. Bayesian optimization for automated
model selection. In Conference on Neural Information Processing Systems (NIPS), 2016.

[12] Jonas Močkus. On Bayesian methods for seeking the extremum, pages 400–404. Springer, 1974.

[13] Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[14] Michael A. Osborne, David Duvenaud, Roman Garnett, Carl E. Rasmussen, Stephen J. Roberts,
and Zoubin Ghahramani. Active learning of model evidence using Bayesian quadrature. In
Conference on Neural Information Processing Systems (NIPS), 2012.

[15] Adrian E Raftery. Approximate Bayes Factors and Accounting for Model Uncertainty in
Generalised Linear Models. Biometrika, 83(2):251–266, 1996.

[16] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

10

http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html

[17] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking
the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104:
148–175, 2016.

[18] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Conference on Neural Information Processing Systems (NIPS), 2012.

[19] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. In International Conference
on Machine Learning (ICML), 2010.

[20] Sonja Surjanovic and Derek Bingham. Optimization test functions and datasets, 2017. URL
http://www.sfu.ca/~ssurjano/optimization.html.

11

http://www.sfu.ca/~ssurjano/optimization.html

