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Abstract

We propose a new primal-dual homotopy smoothing algorithm for a linearly
constrained convex program, where neither the primal nor the dual function has
to be smooth or strongly convex. The best known iteration complexity solving
such a non-smooth problem is O(¢~!). In this paper, we show that by leveraging
a local error bound condition on the dual function, the proposed algorithm can
achieve a better primal convergence time of O (5’2/ 2+ Jog, (671)) , where 8 €
(0, 1] is a local error bound parameter. As an example application of the general
algorithm, we show that the distributed geometric median problem, which can be
formulated as a constrained convex program, has its dual function non-smooth but
satisfying the aforementioned local error bound condition with 8 = 1/2, therefore
enjoying a convergence time of O (¢~%/°log,(¢~!)). This result improves upon
the O(e~!) convergence time bound achieved by existing distributed optimization
algorithms. Simulation experiments also demonstrate the performance of our
proposed algorithm.

1 Introduction

We consider the following linearly constrained convex optimization problem:

min f(x) (1)
st. Ax—b=0, xe X, 2

where X C R? is a compact convex set, f : R? — R is a convex function, A € RV*? b ¢ RV,
Such an optimization problem has been studied in numerous works under various application scenarios
such as machine learning (Yurtsever et al. (2015)), signal processing (Ling and Tian (2010)) and
communication networks (Yu and Neely (2017a)). The goal of this work is to design new algorithms
for (1-2) achieving an € approximation with better convergence time than O(1/¢).
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1.1 Optimization algorithms related to constrained convex program

Since enforcing the constraint Ax — b = 0 generally requires a significant amount of computation in
large scale systems, the majority of the scalable algorithms solving problem (1-2) are of primal-dual
type. Generally, the efficiency of these algorithms depends on two key properties of the dual function
of (1-2), namely, the Lipschitz gradient and strong convexity. When the dual function of (1-2) is
smooth, primal-dual type algorithms with Nesterov’s acceleration on the dual of (1)-(2) can achieve a
convergence time of O(1/4/2) (e.g. Yurtsever et al. (2015); Tran-Dinh et al. (2018))!. When the dual
function has both the Lipschitz continuous gradient and the strongly convex property, algorithms
such as dual subgradient and ADMM enjoy a linear convergence O(log(1/¢)) (e.g. Yu and Neely
(2018); Deng and Yin (2016)). However, when neither of the properties is assumed, the basic dual-
subgradient type algorithm gives a relatively worse O(1/¢2) convergence time (e.g. Wei et al. (2015);
Wei and Neely (2018)), while its improved variants yield a convergence time of O(1/¢) (e.g. Lan
and Monteiro (2013); Deng et al. (2017); Yu and Neely (2017b); Yurtsever et al. (2018); Gidel et al.
(2018)).

More recently, several works seek to achieve a better convergence time than O(1/¢) under weaker
assumptions than Lipschitz gradient and strong convexity of the dual function. Specifically, building
upon the recent progress on the gradient type methods for optimization with Holder continuous
gradient (e.g. Nesterov (2015a,b)), the work Yurtsever et al. (2015) develops a primal-dual gradient

method solving (1-2), which achieves a convergence time of O(1/ T ), where v is the modulus of
Hélder continuity on the gradient of the dual function of the formulation (1-2).” On the other hand,
the work Yu and Neely (2018) shows that when the dual function has Lipschitz continuous gradient
and satisfies a locally quadratic property (i.e. a local error bound with § = 1/2, see Definition 2.1 for
details), which is weaker than strong convexity, one can still obtain a linear convergence with a dual
subgradient algorithm. A similar result has also been proved for ADMM in Han et al. (2015).

In the current work, we aim to address the following question: Can one design a scalable algorithm
with lower complexity than O(1/¢) solving (1-2), when both the primal and the dual functions are
possibly non-smooth? More specifically, we look at a class of problems with dual functions satisfying
only a local error bound, and show that indeed one is able to obtain a faster primal convergence via a
primal-dual homotopy smoothing method under a local error bound condition on the dual function.

Homotopy methods were first developed in the statistics literature in relation to the model selection
problem for LASSO, where, instead of computing a single solution for LASSO, one computes a
complete solution path by varying the regularization parameter from large to small (e.g. Osborne
et al. (2000); Xiao and Zhang (201 3)).3 On the other hand, the smoothing technique for minimizing a
non-smooth convex function of the following form was first considered in Nesterov (2005):

U(x) = g(x) + h(x), x € 3)

where 2; C R is a closed convex set, h(x) is a convex smooth function, and g(x) can be explicitly
written as

9(x) = max (Ax, u) — ¢(u), “)

where for any two vectors a,b € RY, (a,b) = a’b, Q; C R?is a closed convex set, and ¢(u) is a
convex function. By adding a strongly concave proximal function of u with a smoothing parameter
w > 0 into the definition of g(x), one can obtain a smoothed approximation of ¥(x) with smooth
modulus p. Then, Nesterov (2005) employs the accelerated gradient method on the smoothed
approximation (which delivers a O(1/4/¢) convergence time for the approximation), and sets the
parameter to be ;1 = O(g), which gives an overall convergence time of O(1/¢). An important
follow-up question is that whether or not such a smoothing technique can also be applied to solve

'Our convergence time to achieve within & of optimality is in terms of number of (unconstrained) maximiza-
tion steps arg maxxex (AT (Ax — b) — f(x) — £||x — X||*] where constants \, A, Z, ;1 are known. This is a
standard measure of convergence time for Lagrangian-type algorithms that turn a constrained problem into a
sequence of unconstrained problems.

The gradient of function g(-) is Holder continuous with modulus v € (0, 1] on a set X if |[Vg(x) —
Vy(y)ll < Lu|lx —y|”, Vx,y € X, where || - || is the vector 2-norm and L, is a constant depending on v.

* The word “homotopy”, which was adopted in Osborne et al. (2000), refers to the fact that the mapping
from regularization parameters to the set of solutions of the LASSO problem is a continuous piece-wise linear
function.



(1-2) with the same primal convergence time. This question is answered in subsequent works Necoara
and Suykens (2008); Li et al. (2016); Tran-Dinh et al. (2018), where they show that indeed one can
also obtain an O(1/¢) primal convergence time for the problem (1-2) via smoothing.

Combining the homotopy method with a smoothing technique to solve problems of the form (3) has
been considered by a series of works including Yang and Lin (2015), Xu et al. (2016) and Xu et al.
(2017). Specifically, the works Yang and Lin (2015) and Xu et al. (2016) consider a multi-stage
algorithm which starts from a large smoothing parameter x and then decreases this parameter over
time. They show that when the function ¥ (x) satisfies a local error bound with parameter 5 € (0, 1],
such a combination gives an improved convergence time of O(log(1/¢)/e!~#) minimizing the
unconstrained problem (3). The work Xu et al. (2017) shows that the homotopy method can also be
combined with ADMM to achieve a faster convergence solving problems of the form

min f(x) + Y(Ax —b),

where €25 is a closed convex set, f, are both convex functions with f(x) + ¥)(Ax — b) satisfying
the local error bound, and the proximal operator of ¢ (-) can be easily computed. However, due to
the restrictions on the function 1 in the paper, it cannot be extended to handle problems of the form
(1-2).4

Contributions: In the current work, we show a multi-stage homotopy smoothing method enjoys a
primal convergence time O (5*2/ (2+8) logz(s’l)) solving (1-2) when the dual function satisfies a
local error bound condition with 3 € (0, 1]. Our convergence time to achieve within € of optimality
is in terms of number of (unconstrained) maximization steps arg max,c x[\T (Ax — b) — f(x) —
£]|x — X||?], where constants \, A, X, u are known, which is a standard measure of convergence
time for Lagrangian-type algorithms that turn a constrained problem into a sequence of unconstrained
problems. The algorithm essentially restarts a weighted primal averaging process at each stage
using the last Lagrange multiplier computed. This result improves upon the earlier O(1/¢) result by
(Necoara and Suykens (2008); Li et al. (2016)) and at the same time extends the scope of homotopy
smoothing method to solve a new class of problems involving constraints (1-2). It is worth mentioning
that a similar restarted smoothing strategy is proposed in a recent work Tran-Dinh et al. (2018) to
solve problems including (1-2), where they show that, empirically, restarting the algorithm from the
Lagrange multiplier computed from the last stage improves the convergence time. Here, we give one
theoretical justification of such an improvement.

1.2 The distributed geometric median problem

The geometric median problem, also known as the Fermat-Weber problem, has a long history (e.g.
see Weiszfeld and Plastria (2009) for more details). Given a set of n points by, by, ---, b, € R?,
we aim to find one point x* € R? 50 as to minimize the sum of the Euclidean distance, i.e.

n
x* € argminZHx—biH, (5)
xeR4 ;T4

which is a non-smooth convex optimization problem. It can be shown that the solution to this
problem is unique as long as by, by, --- . b, € R? are not co-linear. Linear convergence time
algorithms solving (5) have also been developed in several works (e.g. Xue and Ye (1997), Parrilo
and Sturmfels (2003), Cohen et al. (2016)). Our motivation of studying this problem is driven by
its recent application in distributed statistical estimation, in which data are assumed to be randomly
spreaded to multiple connected computational agents that produce intermediate estimators, and then,
these intermediate estimators are aggregated in order to compute some statistics of the whole data set.
Arguably one of the most widely used aggregation procedures is computing the geometric median of
the local estimators (see, for example, Duchi et al. (2014), Minsker et al. (2014), Minsker and Strawn
(2017), Yin et al. (2018)). It can be shown that the geometric median is robust against arbitrary
corruptions of local estimators in the sense that the final estimator is stable as long as at least half of
the nodes in the system perform as expected.

*The result in Xu et al. (2017) heavily depends on the assumption that the subgradient of ¢(-) is defined
everywhere over the set €21 and uniformly bound by some constant p, which excludes the choice of indicator
functions necessary to deal with constraints in the ADMM framework.



Contributions: As an example application of our general algorithm, we look at the problem of
computing the solution to (5) in a distributed scenario over a network of n agents without any
central controller, where each agent holds a local vector b;. Remarkably, we show theoretically that
such a problem, when formulated as (1-2), has its dual function non-smooth but locally quadratic.
Therefore, applying our proposed primal-dual homotopy smoothing method gives a convergence
time of O (5_4/ ®log, (5_1)). This result improves upon the performance bounds of the previously
known decentralized optimization algorithms (e.g. PG-EXTRA Shi et al. (2015) and decentralized
ADMM Shi et al. (2014)), which do not take into account the special structure of the problem and
only obtain a convergence time of O (1/¢). Simulation experiments also demonstrate the superior
ergodic convergence time of our algorithm compared to other algorithms.

2 Primal-dual Homotopy Smoothing

2.1 Preliminaries

The Lagrange dual function of (1-2) is defined as follows:?
F(\) = max {—{(\,Ax—Db) — f(x)}, (6)

where A € R¥ is the dual variable, X is a compact convex set and the minimum of the dual function
is F'* := miny g~ F()). For any closed set £ C R? and x € R?, define the distance function of x
to the set K as
dist(x, ) := min |[|x —
(x,K) == min x = .

where ||x|| := 4_ 22. For a convex function (), the J-sublevel set Ss is defined as
i=1"1

S;:={NeRY: F(\) - F* < 6}. (7

Furthermore, for any matrix A € RV*d we use amax(ATA) to denote the largest eigenvalue of
ATA. Let
A = {X\ eRY: F(\*) < F()), YA eRY} (8)

be the set of optimal Lagrange multipliers. Note that if the constraint Ax = b is feasible, then
A* € A* implies \* + v € A* for any v that satisfies ATv = 0. The following definition introduces
the notion of local error bound.

Definition 2.1. Let F'()\) be a convex function over A € RN . Suppose A* is non-empty. The function
F(X) is said to satisfy the local error bound with parameter 3 € (0,1] if 36 > 0 such that for any
A€ 35,

dist(\, A*) < C5(F(\) — F*)P, )
where Cy is a positive constant possibly depending on §. In particular, when 8 = 1/2, F(\) is said
to be locally quadratic and when 8 = 1, it is said to be locally linear.

Remark 2.1. Indeed, a wide range of popular optimization problems satisfy the local error bound
condition. The work Tseng (2010) shows that if X is a polyhedron, f(-) has Lipschitz continuous
gradient and is strongly convex, then the dual function of (1-2) is locally linear. The work Burke and
Tseng (1996) shows that when the objective is linear and X is a convex cone, the dual function is
also locally linear. The values of 8 have also been computed for several other problems (e.g. Pang
(1997); Yang and Lin (2015)).

Definition 2.2. Given an accuracy level € > 0, a vector xog € X is said to achieve an € approximate
solution regarding problem (1-2) if

f(xo) = f* < O(¢), ||Axo — bl < O(e),
where [* is the optimal primal objective of (1-2).

Throughout the paper, we adopt the following assumptions:

3Usually, the Lagrange dual is defined as minxex (), Ax — b) 4 f(x). Here, we flip the sign and take the
maximum for no reason other than being consistent with the form (4).



Assumption 2.1. (a) The feasible set {x € X : Ax —b = 0} is nonempty and non-singleton.
(b) The set X is bounded, i.e. supy ¢y ||[x —y|| < D, for some positive constant D. Furthermore,
the function f(x) is also bounded, i.e. maxxcx |f(x)| < M, for some positive constant M.

(¢) The dual function defined in (6) satisfies the local error bound for some parameter 8 € (0, 1] and
some level 6 > 0.

(d) Let Pa be the projection operator onto the column space of A. There exists a unique vector
v* € RN such that for any \* € A*, PaX* = v*, ie. A* = {)\* RN . PaAN = 1/*}.

Note that assumption (a) and (b) are very mild and quite standard. For most applications, it is enough
to check (c) and (d). We will show, for example, in Section 4 that the distributed geometric median
problem satisfies all the assumptions. Finally, we say a function g : X — R is smooth with modulus
L >0if

IVg(x) = Vg(y)ll < Llx - yll, vx,y € X.

2.2 Primal-dual homotopy smoothing algorithm

This section introduces our proposed algorithm for optimization problem (1-2) satisfying Assump-
tion 2.1. The idea of smoothing is to introduce a smoothed Lagrange dual function F),(\) that
approximates the original possibly non-smooth dual function F'(\) defined in (6).

For any constant p > 0, define
Fulo) = 60 + 5 x = %I, (10)

where X is an arbitrary fixed point in X. For simplicity of notation, we drop the dependency on x
in the definition of f,,(x). Then, by the boundedness assumption of X', we have f(x) < f,(x) <
f(x)+4£D?, Vx e X.Forany A € RY, define

FH()\)zgleai(—(A,Ax—b}—f“(x) (11)
as the smoothed dual function. The fact that F),(\) is indeed smooth with modulus z follows from
Lemma 6.1 in the Supplement. Thus, one is able to apply an accelerated gradient descent algorithm
on this modified Lagrange dual function, which is detailed in Algorithm 1 below, starting from an
initial primal-dual pair (X, \) € R? x RV,

Algorithm 1 Primal-Dual Smoothing: PDS (X, X, fby T)

Let)\():)\_l :Xandﬁozﬁ_lzl.
Fort=0toT — 1do

e Compute a tentative dual multiplier: Xt =\ + Gt(H[_ll = 1M — Aeo1),

Compute the primal update: x(\;) = argmax, .y — <Xt, Ax — b> — f(x) = &|x — x|

Compute the dual update: \ry; = e+ M(Ax(xt) —b).
V0 +407—07
Mttt

Update the stepsize: 0;1 =

end for N
Output: X7 = é tT;Ol e%x()\t) and A7, where S = ZTfl L

t=0 0"

Our proposed algorithm runs Algorithm 1 in multiple stages, which is detailed in Algorithm 2 below.

3 Convergence Time Results

We start by defining the set of optimal Lagrange multipliers for the smoothed problem:®
A= {X e RY D F (M) < Fu(A), YA eRYY (12)

By Assumption 2.1(a) and Farkas’ Lemma, this is non-empty.



Algorithm 2 Homotopy Method:

Let ¢¢ be a fixed constant and € < ¢ be the desired accuracy. Set pp = %, A0 =, x0 ¢ X, the
number of stages K > [log,(g0/€)] + 1, and the time horizon during each stage T > 1.
For k =1to K do

o Let uy = pg—1/2.
e Run the primal-dual smoothing algorithm (A*), x*)) = PDS ()\(k_l) XED T).

end for

Output: x5,

Our convergence time analysis involves two steps. The first step is to derive a primal convergence
time bound for Algorithm 1, which involves the location information of the initial Lagrange multiplier
at the beginning of this stage. The details are given in Supplement 6.2.

Theorem 3.1. Suppose Assumption 2.1(a)(b) holds. For any T' > 1 and any initial vector (X, X) €
R? x RN, we have the following performance bound regarding Algorithm 1,

~ Omax(ATA) |[~, ~|2  pD?
o)~ f* < [PAX - A%y — b+ 2B A T 3T P )
2/J/ST 2
_ 20max(ATA) [+, ~ PN
_ < _
| Ay b < (‘)\ )\H+dzst(/\u,A)), (14)

- 1 T—-1 x(r) _T-1 1 . L
VX7 =g Do ST =20 g, and A}, is any point in

X=X -

where \* € argminy« s«
A}, defined in (12).

An inductive argument shows that 6; < 2/(¢ + 2) V¢t > 0. Thus, Theorem 3.1 already gives an
O(1/¢) convergence time by setting ;1 = € and T' = 1/e. Note that this is the best trade-off we
can get from Theorem 3.1 when simply bounding the terms ||X* - X|| and dist(\j,, A*) by constants.
To see how this bound leads to an improved convergence time when running in multiple rounds,
suppose the computation from the last round gives a X that is close enough to the optimal set A*,
then, N — XH would be small. When the local error bound condition holds, one can show that

dist(A;, A*) < O(p?). As a consequence, one is able to choose y smaller than ¢ and get a better
trade-off. Formally, we have the following overall performance bound. The proof is given in
Supplement 6.3.

Theorem 3.2. Suppose Assumption 2.1 holds, ¢ > max{2M,1}, 0 < ¢ < min{d6/2,2M, 1},
T> 2DCs+/Tmax (AT A)(2M)5/2

2/ . The proposed homotopy method achieves the following objective
and constraint violation bound:

FEI) — g

IN

C2(2M)?8 C2(2M)?8 3

_ 24(1+ Cy)
AXE) _p|| <« 22T 0
1A% I'= C2(2M)P ©

2DCs/0max (AT A)(2M)P/?

with running time YICER: ([logy(eo/e)] + 1), i.e. the algorithm achieves an ¢

24 «|(1 1
( |PaX]|( +C&)+ 6 )5,

approximation with convergence time O (5_2/(2‘”‘3) logy(e71)).

4 Distributed Geometric Median

Consider the problem of computing the geometric median over a connected network (V, £), where
V ={1,2,--- ,n}is aset of n nodes, £ = {e;;}: jey is a collection of undirected edges, e;; = 1
if there exists an undirected edge between node 4 and node j, and e;; = 0 otherwise. Furthermore,
ei; = 1, Vi € {1,2,--- ,n}.Furthermore, since the graph is undirected, we always have e;; =
eji, Vi,j € {1,2,--- ,n}. Two nodes ¢ and j are said to be neighbors of each other if e;; = 1. Each
node 7 holds a local vector b; € R?, and the goal is to compute the solution to (5) without having a
central controller, i.e. each node can only communicate with its neighbors.



Computing geometric median over a network has been considered in several works previously and
various distributed algorithms have been developed such as decentralized subgradient methd (DSM,
Nedic and Ozdaglar (2009); Yuan et al. (2016)), PG-EXTRA (Shi et al. (2015)) and ADMM (Shi
et al. (2014); Deng et al. (2017)). The best known convergence time for this problem is O(1/¢). In
this section, we will show that it can be written in the form of problem (1-2), has its Lagrange dual
function locally quadratic and optimal Lagrange multiplier unique up to the null space of A, thereby
satisfying Assumption 2.1.

Throughout this section, we assume thatn > 3, by, by, ---, b, € R< are not co-linear and they

are distinct (i.e. b; # b; if ¢ # 7). We start by defining a mixing matrix W € R™" with respect to
this network. The mixing matrix will have the following properties:

1. Decentralization: The (i, j)-th entry w;; = 0 if e;; = 0.
2. Symmetry: W = W7,

3. The null space of I,x, — W satisfies NTywn — W) ={cl, ¢ € R}, where 1 is an all 1
vector in R™.

These conditions are rather mild and satisfied by most doubly stochastic mixing matrices used in
practice. Some specific examples are Markov transition matrices of max-degree chain and Metropolis-
Hastings chain (see Boyd et al. (2004) for detailed discussions). Let x; € R? be the local variable on
the node ¢. Define

X1 b1

X b Wi - Wy,
x:=| . eR™ b:=| . eR™ A= : - : € R x(nd)
where N
= {0 Bl =
—Wi;Laxd, ifi#j

and w;; is ij-th entry of the mixing matrix wW. By the aforementioned null space property of the
mixing matrix W, it is easy to see that the null space of the matrix A is
N(A) = {ueR"d: u=[ul, ],y =uy = --~:un}7 (15)

Then, because of the null space property (15), one can equivalently write problem (5) in a “distributed

fashion” as follows:

min Y [jx; — by| (16)
1=1
st. Ax=0,|x; = b;|| <D, i=1,2,--- ,n, 17)

where we set the constant D to be large enough so that the solution belongs to the set X' :=
{xeR"™: ||x; —b;|| < D,i=1,2,--- ,n}. This is in the same form as (1-2) with X := {x €
Rnd : ||X’Libl|| SD7 1= 172a”' 7”}'

4.1 Distributed implementation

In this section, we show how to implement the proposed algorithm to solve (16-17) in a distributed
way. Let A, = A}, Al -+, Al ] € R, N o= [}\‘Zl’ :\\ZQ, I XtTn] € R be the vectors
of Lagrange multipliers defined in Algorithm 1, where each A ;, Xt,i € R?. Then, each agent
i €{1,2,---,n} in the network is responsible for updating the corresponding Lagrange multipliers
At,; and X” according to Algorithm 1, which has the initial values Ag; = A_1; = XZ Note that the

first, third and fourth steps in Algorithm 1 are naturally separable regarding each agent. It remains to
check if the second step can be implemented in a distributed way.

Note that in the second step, we obtain the primal update X(/):t) =[x (Xt)T, Ce Xy, (Xt)T] € R
by solving the following problem:

n

~ ~ " _
x(A\) = ArgMAK ||, — by [ <D, i=1,2,-+ ;0 <)‘t’ AX> - Z (”Xl — bl + §||XZ - XiH2) )
i=1



where X; € R is a fixed point in the feasible set. We separate the maximization according to different
agenti € {1,2,--- ,n}:

n

~ ~ I ~
xi(Ae) =argmax, . n<p — D <>\t,j7WjiXi> = Il =il = 5l — x|
j=1
Note that according to the definition of W j;, it is equal to O if agent j is not the neighbor of agent 1.
More specifically, Let NV; be the set of neighbors of agent ¢ (including the agent ¢ itself), then, the
above maximization problem can be equivalently written as

~ I ~
argmax, .. bi<p — <)‘t,jijixi> = lIxi = bill = Sl — xi?

JEN;

~ I ~ .
SAEM by <D < 2 Wm,j,xi> — i = bill = Glx —%il* i € {12, n),
JEN;
where we used the fact that WJTz = W ;. Solving this problem only requires the local information
from each agent. Completing the squares gives
2

~ -~ 1 ~

Xi()\t) = argmaXth_blHSD — g X — | X5 — — Z Wji)\t,j — ||XZ' - bIL” (18)
JEN

The solution to such a subproblem has a closed form, as is shown in the following lemma (the proof

is given in Supplement 6.4):

Lemmad4.1. Leta; = X; — i Zjex\/i Wji:\\t,j, then, the solution to (18) has the following closed
form:

b, if |Ib; —al| < 1/p,
x;(A) = bi—utbﬁ%zzn(Hbi—aiH—ﬁ) if%<||bi—ai||§%+p7
b; — HE%EHD ; otherwise.

4.2 Local error bound condition

The proof of the this theorem is given in Supplement 6.5.
Theorem 4.1. The Lagrange dual function of (16-17) is non-smooth and given by the following

F() = = (ATAB) + DY (IAf A = 1) - 1 (JATAl > 1),
i=1

where Aj; = [W1; Wy -« W7 is the i-th column block of the matrix A, I (HA[TL])\H > 1) is

the indicator function which takes 1 if ||A[7;})\H > 1 and 0 otherwise. Let A* be the set of optimal

Lagrange multipliers defined according to (8). Suppose D > 2n - max; jey ||b; — b,
6 > 0, there exists a Cs > 0 such that

dist(\, A*) < C5(F(\) — F*)Y2 vX e S;.

, then, for any

Furthermore, there exists a unique vector v* € R™ s.t. PaX* = v*, YA* € A*, i.e. Assumption
2.1(d) holds. Thus, applying the proposed method gives the convergence time O (5_4/ 5 logQ(E_l)).

S Simulation Experiments

In this section, we conduct simulation experiments on the distributed geometric median problem.
Each vector b; € R1%9 j € {1,2,---  n} is sampled from the uniform distribution in [0, 10]*%, i.e.
each entry of b; is independently sampled from uniform distribution on [0, 10]. We compare our
algorithm with DSM (Nedic and Ozdaglar (2009)), P-EXTRA (Shi et al. (2015)), Jacobian parallel
ADMM (Deng et al. (2017)) and Smoothing (Necoara and Suykens (2008)) under different network



sizes (n = 20, 50, 100). Each network is randomly generated with a particular connectivity ratio’,
and the mixing matrix is chosen to be the Metropolis-Hastings Chain (Boyd et al. (2004)), which
can be computed in a distributed manner. We use the relative error as the performance metric, which
is defined as ||X; — x*||/||xo — x*|| for each iteration ¢. The vector xo € R" is the initial primal
variable. The vector x* € R" is the optimal solution computed by CVX Grant et al. (2008). For
our proposed algorithm, X; is the restarted primal average up to the current iteration. For all other
algorithms, X; is the primal average up to the current iteration. The results are shown below. We see
in all cases, our proposed algorithm is much better than, if not comparable to, other algorithms. For
detailed simulation setups and additional simulation results, see Supplement 6.6.

Number of iterations

(a)

Figure 1: Comparison of different algorithms on networks of different sizes. (a) n = 20, connectivity
ratio=0.15. (b) n = 50, connectivity ratio=0.13. (c) n = 100, connectivity ratio=0.1.
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