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Abstract

We introduce a novel deep learning inspired formulation of the phase retrieval
problem, which asks to recover a signal y0 2 Rn from m quadratic observations,
under structural assumptions on the underlying signal. As is common in many
imaging problems, previous methodologies have considered natural signals as
being sparse with respect to a known basis, resulting in the decision to enforce a
generic sparsity prior. However, these methods for phase retrieval have encountered
possibly fundamental limitations, as no computationally efficient algorithm for
sparse phase retrieval has been proven to succeed with fewer than O(k2 log n)
generic measurements, which is larger than the theoretical optimum of O(k log n).
In this paper, we propose a new framework for phase retrieval by modeling natural
signals as being in the range of a deep generative neural network G : Rk ! Rn.
We introduce an empirical risk formulation that has favorable global geometry for
gradient methods, as soon as m = O(kd2 log n), under the model of a d-layer
fully-connected neural network with random weights. Specifically, when suitable
deterministic conditions on the generator and measurement matrix are met, we
construct a descent direction for any point outside of a small neighborhood around
the true k-dimensional latent code and a negative multiple thereof. This formulation
for structured phase retrieval thus benefits from two effects: generative priors can
more tightly represent natural signals than sparsity priors, and this empirical risk
formulation can exploit those generative priors at an information theoretically
optimal sample complexity, unlike for a sparsity prior. We corroborate these results
with experiments showing that exploiting generative models in phase retrieval tasks
outperforms both sparse and general phase retrieval methods.

1 Introduction

We study the problem of recovering a signal y0 2 Rn given m ⌧ n phaseless observations of the
form b = |Ay0| where the measurement matrix A 2 Rm⇥n is known and | · | is understood to act
entrywise. This is known as the phase retrieval problem. In this work, we assume, as a prior, that
the signal y0 is in the range of a generative model G : Rk ! Rn so that y0 = G(x0) for some
x0 2 Rk. To recover y0, we first recover the original latent code x0 corresponding to it, from which
y0 is obtained by applying G. Hence we study the phase retrieval problem under a generative prior
which asks:

find x 2 Rk such that b = |AG(x)|.

We will refer to this formulation as Deep Phase Retrieval (DPR). The phase retrieval problem has
applications in X-ray crystallography [21, 29], optics [34], astronomical imaging [14], diffraction
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imaging [5], and microscopy [28]. In these problems, the phase information of an object is lost due to
physical limitations of scientific instruments. In crystallography, the linear measurements in practice
are typically Fourier modes because they are the far field limit of a diffraction pattern created by
emitting a quasi-monochromatic wave on the object of interest.
In many applications, the signals to be recovered are compressible or sparse with respect to a
certain basis (e.g. wavelets). Many researchers have attempted to leverage sparsity priors in phase
retrieval to yield more efficient recovery algorithms. However, these methods have been met with
potentially severe fundamental limitations. In the Gaussian measurement regime where A has i.i.d.
Gaussian entries, one would hope that recovery of a k-sparse n-dimensional signal is possible
with O(k log n) measurements. However, there is no known method to succeed with fewer than
O(k2 log n) measurements. Moreover, [26] proved that the semidefinite program PhaseLift cannot
outperform this suboptimal sample complexity by direct `1 penalization. This is in stark contrast to
the success of leveraging sparsity in linear compressed sensing to yield optimal sample complexity.
Hence enforcing sparsity as a generic prior in phase retrieval may be fundamentally limiting sample
complexity.

Our contribution. We show information theoretically optimal sample complexity2 for structured
phase retrieval under generic measurements and a novel nonlinear formulation based on empirical risk
and a generative prior. In this work, we suppose that the signal of interest is the output of a generative
model. In particular, the generative model is a d-layer, fully-connected, feed forward neural network
with Rectifying Linear Unit (ReLU) activation functions and no bias terms. Let Wi 2 Rni⇥ni�1

denote the weights in the i-th layer of our network for i = 1, . . . , d where k = n0 < n1 < · · · < nd.
Given an input x 2 Rk, the output of the the generative model G : Rk ! Rnd can be expressed as

G(x) := relu (Wd . . . relu(W2(relu(W1x))) . . . )

where relu(x) = max(x, 0) acts entrywise. We further assume that the measurement matrix A

and each weight matrix Wi have i.i.d. Gaussian entries. The Gaussian assumption of the weight
matrices is supported by empirical evidence showing neural networks, learned from data, that have
weights that obey statistics similar to Gaussians [1]. Furthermore, there has also been work done in
establishing a relationship between deep networks and Gaussian processes [25]. Nevertheless, we
will introduce deterministic conditions on the weights for which our results hold, allowing the use of
other distributions.
To recover x0, we study the following `2 empirical risk minimization problem:

min
x2Rk

f(x) :=
1

2

���|AG(x)|� |AG(x0)|
���
2
. (1)

Due to the non-convexity of the objective function, there is no a priori guarantee that gradient descent
schemes can solve (1) as many local minima may exist. In spite of this, our main result illustrates
that the objective function exhibits favorable geometry for gradient methods. Moreover, our result
holds with information theoretically optimal sample complexity:
Theorem 1 (Informal). If we have a sufficient number of measurements m = ⌦(kd log(n1 . . . nd))
and our network is sufficiently expansive at each layer ni = ⌦(ni�1 log ni�1), then there exists a
descent direction vx,x0 2 Rk for any non-zero x 2 Rk outside of two small neighborhoods centered
at the true solution x0 and a negative multiple �⇢dx0 with high probability. In addition, the origin is
a local maximum of f . Here ⇢d > 0 depends on the number of layers d and ⇢d ! 1 as d!1.

Our main result asserts that the objective function does not have any spurious local minima away
from neighborhoods of the true solution and a negative multiple of it. Hence if one were to solve (1)
via gradient descent and the algorithm converged, the final iterate would be close to the true solution
or a negative multiple thereof. The proof of this result is a concentration argument. We first prove the
sufficiency of two deterministic conditions on the weights Wi and measurement matrix A. We then
show that Gaussian Wi and A satisfy these conditions with high probability. Finally, using these two
conditions, we argue that the specified descent direction vx,x0 concentrates around a vector hx,x0

that is continuous for non-zero x 2 Rk and vanishes only when x ⇡ x0 or x ⇡ �⇢dx0.
Rather than working against potentially fundamental limitations of polynomial time algorithms, we
examine more sophisticated priors using generative models. Our results illustrate that these priors are,

2with respect to the dimensionality of the latent code given to the generative network
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in reality, less limiting in terms of sample complexity, both by providing more compressibility and by
being able to be more tightly enforced.

Prior methodologies for general phase retrieval. In the Gaussian measurement regime, most of
the techniques to solve phase retrieval problems can be classified as convex or non-convex methods.
In terms of convex techniques, lifting-based methods transform the signal recovery problem into a
rank-one matrix recovery problem by lifting the signal into the space of positive semidefinite matrices.
These semidefinite programming (SDP) approaches, such as PhaseLift [9], can provably recover
any n-dimensional signal with O(n log n) measurements. A refinement on this analysis by [7] for
PhaseLift showed that recovery is in fact possible with O(n) measurements. Other convex methods
include PhaseCut [33], an SDP approach, and linear programming algorithms such as PhaseMax,
which has been shown to achieve O(n) sample complexity [17].
Non-convex methods encompass alternating minimization approaches such as the original Gerchberg-
Saxton [16] and Fienup [15] algorithms and direct optimization algorithms such as Wirtinger Flow
[8]. These latter methods directly tackle the least squares objective function

min
y2Rn

1

2

���|Ay|2 � |Ay0|2
���
2
. (2)

In the seminal work, [8] show that through an initialization via the spectral method, a gradient
descent scheme can solve (2) where the gradient is understood in the sense of Wirtinger calculus with
O(n log n) measurements. Expanding on this, a later study on the minimization of (2) in [31] showed
that with O(n log3 n) measurements, the energy landscape of the objective function exhibited global
benign geometry which would allow it to be solved efficiently by gradient descent schemes without
special initialization. There also exist amplitude flow methods that solve the following non-smooth
variation of (2):

min
y2Rn

1

2

���|Ay|� |Ay0|
���
2
. (3)

These methods have found success with O(n) measurements [13] and have been shown to empirically
perform better than intensity-based methods using the squared formulation in (2) [37].

Sparse phase retrieval. Many of the successful methodologies for general phase retrieval have
been adapted to try to solve sparse phase retrieval problems. In terms of non-convex optimization,
Wirtinger Flow type methods such as Thresholded Wirtinger Flow [6] create a sparse initializer via
the spectral method and perform thresholded gradient descent updates to generate sparse iterates
to solve (2). Another non-convex method, SPARTA [35], estimates the support of the signal for
its initialization and performs hard thresholded gradient updates to the amplitude-based objective
function (3). Both of these methods require O(k2 log n) measurements for a generic k-sparse
n-dimensional signal to succeed, which is more than the theoretical optimum O(k log n).
While lifting-based methods such as PhaseLift have been proven unable to beat the suboptimal sample
complexity O(k2 log n), there has been some progress towards breaking this barrier. In [19], the
authors show that with an initializer that sufficiently correlates with the true solution, a linear program
can recover the sparse signal from O(k log n

k ) measurements. However, the best known initialization
methods require at least O(k2 log n) measurements [6]. Outside of the Gaussian measurement regime,
there have been other results showing that if one were able to design their own measurement matrices,
then the optimal sample complexity could be reached [22]. For example, [2] showed that assuming
the measurement vectors were chosen from an incoherent subspace, then recovery is possible with
O(k log n

k ) measurements. However, these results would be difficult to generalize to the experimental
setting as their design architectures are often unrealistic. Moreover, the Gaussian measurement regime
more closely models the experimental Fourier diffraction measurements observed in, for example,
X-ray crystallography. As Fourier models are the ultimate goal, results towards lowering this sample
complexity in the Gaussian measurement regime must be made or new modes of regularization must
be explored in order for phase retrieval to advance.

Related work. There has been recent empirical evidence supporting applying a deep learning based
approach to holographic imaging, a phase retrieval problem. The authors in [18] show that a neural
network with ReLU activation functions can learn to perform holographic image reconstruction. In
particular, they show that compared to current approaches, this neural network based method requires
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less measurements to succeed and is computationally more efficient, needing only one hologram to
reconstruct the necessary images.
Furthermore, there have been a number of recent advancements in leveraging generative priors over
sparsity priors in compressed sensing. In [4], the authors considered the least squares objective

min
x2Rk

1

2

���AG(x)�AG(x0)
���
2
. (4)

They provided empirical evidence showing that 5-10X fewer measurements were needed to succeed
in recovery compared to standard sparsity-based approaches such as Lasso. In terms of theory, they
showed that if A satisfied a restricted eigenvalue condition and if one were able to solve (4), then
the solution would be close to optimal. The authors in [20] analyze the same optimization problem
in [4] but exhibit global guarantees regarding the non-convex objective function. Under particular
conditions about the expansivity of each neural network layer and randomness assumptions on their
weights, they show that the energy landscape of the objective function does not have any spurious
local minima. Furthermore, there is always a descent direction outside of two small neighborhoods
of the global minimum and a negative scalar multiple of it. The success of leveraging generative
priors in compressed sensing along with the sample complexity bottlenecks in sparse phase retrieval
have influenced this work to consider enforcing a generative prior in phase retrieval to surpass sparse
phase retrieval’s current theoretical and practical limitations.

Notation. Let (·)> denote the real transpose. Let [n] = {1, . . . , n}. Let B(x, r) denote the
Euclidean ball centered at x with radius r. Let k · k denote the `2 norm for vectors and spectral norm
for matrices. For any non-zero x 2 Rn, let x̂ = x/kxk. Let ⇧1

i=dWi = WdWd�1 . . .W1. Let In be
the n⇥ n identity matrix. Let Sk�1 denote the unit sphere in Rk. We write c = ⌦(�) when c > C�

for some positive constant C. Similarly, we write c = O(�) when c 6 C� for some positive constant
C. When we say that a constant depends polynomially on ✏

�1, this means that it is at least C✏
�k

for some positive C and positive integer k. For notational convenience, we write a = b+O1(✏) if
ka� bk 6 ✏ where k · k denotes | · | for scalars, `2 norm for vectors, and spectral norm for matrices.
Define sgn : R ! R to be sgn(x) = x/|x| for non-zero x 2 R and sgn(x) = 0 otherwise. For a
vector v 2 Rn, diag(sgn(v)) is sgn(vi) in the i-th diagonal entry and diag(v > 0) is 1 in the i-th
diagonal entry if vi > 0 and 0 otherwise.

2 Algorithm

While our main result illustrates that the objective function exhibits favorable geometry for optimiza-
tion, it does not guarantee recovery of the signal as gradient descent algorithms could, in principle,
converge to the negative multiple of our true solution. Hence we propose a gradient descent scheme
to recover the desired solution by escaping this region. First, consider Figure 1 which illustrates the
behavior of our objective function in expectation, i.e. when the number of measurements m!1.
We observe two important attributes of the objective function’s landscape: (1) there exist two minima,
the true solution x0 and a negative multiple��x0 for some � > 0 and (2) if z ⇡ x0 while w ⇡ ��x0,
we have that f(z) < f(w), i.e. the objective function value is lower near the true solution than near
its negative multiple. This is due to the fact that the true solution is in fact the global optimum.
Based on these attributes, we will introduce a gradient descent scheme to converge to the global
minimum. First, we define some useful quantities. For any x 2 Rk and matrix W 2 Rn⇥k, define
W+,x := diag(Wx > 0)W. That is, W+,x keeps the rows of W that have a positive dot product with
x and zeroes out the rows that do not. We will extend the definition of W+,x to each layer of weights
Wi in our neural network. For W1 2 Rn1⇥k and x 2 Rk, define W1,+,x := diag(W1x > 0)W1. For
each layer i 2 [d], define

Wi,+,x := diag(WiWi�1,+,x . . .W2,+,xW1,+,xx > 0)Wi.

Wi,+,x keeps the rows of Wi that are active when the input to the generative model is x. Then, for
any x 2 Rk, the output of our generative model can be written as G(x) = (⇧1

i=dWi,+,x)x. For any
z 2 Rn, define Az := diag(sgn(Az))A. Note that |AG(x)| = AG(x)G(x) for any x 2 Rk.
Since a gradient descent scheme could in principle be attracted to the negative multiple, we exploit
the geometry of the objective function’s landscape to escape this region. First, choose a random initial
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Figure 1: Surface (left) and contour plot (right) of objective function with m!1 and true solution
x0 = [1, 0]> 2 R2.

iterate for gradient descent x1 6= 0. At each iteration i = 1, 2, . . . , compute the descent direction

vxi,x0 := (⇧1
i=dWi,+,xi)

>
A

>
G(xi)

(|AG(xi)|� |AG(x0)|) .

This is the gradient of our objective function f where f is differentiable. Once computed, we then
take a step in the direction of �vxi,x0 . However, prior to taking this step, we compare the objective
function value for xi and its negation �xi. If f(�xi) < f(xi), then we set xi to its negation,
compute the descent direction and update the iterate. The intuition for this algorithm relies on the
landscape illustrated in Figure 1: since the true solution x0 is the global minimum, the objective
function value near x0 is smaller than near �⇢dx0. Hence if we begin to converge towards �⇢dx0,
this algorithm will escape this region by choosing a point with lower objective function value, which
will be in a neighborhood of x0. Algorithm 1 formally outlines this process.

Algorithm 1 Deep Phase Retrieval (DPR) Gradient method
Require: Weights Wi, measurement matrix A, observations |AG(x0)|, and step size ↵ > 0

1: Choose an arbitrary initial point x1 2 Rk \ {0}
2: for i = 1, 2, . . . do
3: if f(�xi) < f(xi) then
4: xi  �xi;
5: end if
6: Compute vxi,x0 = (⇧1

i=dWi,+,xi)
>
A

>
G(xi)

(|AG(xi)|� |AG(x0)|);
7: xi+1 = xi � ↵vxi,x0 ;
8: end for

Remark. We note that while the function is not differentiable, the descent direction is well-
defined for all x 2 Rk due to the definitions of Wi,+,x and AG(x). When the objective function
is differentiable, vx,x0 agrees with the true gradient. Otherwise, the descent direction only takes
components of the formula for which the inputs to each ReLU are nonnegative.

3 Main Theoretical Analysis

We now formally present our main result. While the objective function is not smooth, its one-
sided directional derivatives exist everywhere due to the continuity and piecewise linearity of G.
Let Dvf(x) denote the unnormalized one-sided directional derivative of f at x in the direction v:
Dvf(x) = limt!0+

f(x+tv)�f(x)
t .

Theorem 2. Fix ✏ > 0 such that K1d
8
✏
1/4 6 1 and let d > 2. Suppose G is such that Wi 2 Rni⇥ni�1

has i.i.d. N (0, 1/ni) entries for i = 1, . . . , d. Suppose that A 2 Rm⇥nd has i.i.d. N (0, 1/m)
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entries independent from {Wi}. Then if m > C✏dk log(n1n2 . . . nd) and ni > C✏ni�1 log ni�1 for
i = 1, . . . , d, then with probability at least 1�

Pd
i=1 �nie

�c✏ni�1 � �m
4k+1

e
�c✏m, the following

holds: for all non-zero x, x0 2 Rk, there exists vx,x0 2 Rk such that the one-sided directional
derivatives of f satisfy

D�vx,x0
f(x) < 0, 8x /2 B(x0,K2d

3
✏
1/4kx0k) [ B(�⇢dx0,K2d

14
✏
1/4kx0k) [ {0},

Dxf(0) < 0, 8x 6= 0,

where ⇢d > 0 converges to 1 as d!1 and K1 and K2 are universal constants. Here C✏ depends
polynomially on ✏

�1, c✏ depends on ✏, and � is a universal constant.

See Section 3.1 for the definition of the descent direction vx,x0 . We note that while we assume the
weights to have i.i.d. Gaussian entries, we make no assumption about the independence between
layers. The result will be shown by proving the sufficiency of two deterministic conditions on the
weights Wi of our generative network and the measurement matrix A.

Weight Distribution Condition. The first condition quantifies the Gaussianity and spatial arrange-
ment of the neurons in each layer. We say that W 2 Rn⇥k satisfies the Weight Distribution Condition
(WDC) with constant ✏ > 0 if for any non-zero x, y 2 Rk:

��W>
+,xW+,y �Qx,y

�� 6 ✏ where Qx,y :=
⇡ � ✓x,y

2⇡
Ik +

sin ✓x,y
2⇡

Mx̂$ŷ.

Here ✓x,y = \(x, y) and Mx̂$ŷ
3 is the matrix that sends x̂ 7! ŷ, ŷ 7! x̂, and z 7! 0 for any z 2

span({x, y})?. If Wij ⇠ N (0, 1/n), then an elementary calculation gives E
⇥
W

>
+,xW+,y

⇤
= Qx,y.

[20] proved that Gaussian W satisfies the WDC with high probability (Lemma 1 in the Appendix).

Range Restricted Concentration Property. The second condition is similar in the sense that it
quantifies whether the measurement matrix behaves like a Gaussian when acting on the difference of
pairs of vectors given by the output of the generative model. We say that A 2 Rm⇥n satisfies the
Range Restricted Concentration Property (RRCP) with constant ✏ > 0 if for all non-zero x, y 2 Rk,
the matrices AG(x) and AG(y) satisfy the following for all x1, x2, x3, x4 2 Rk:

|h(A>
G(x)AG(y) � �G(x),G(y))(G(x1)�G(x2)),G(x3)�G(x4)i|

6 31✏kG(x1)�G(x2)kkG(x3)�G(x4)k
where

�z,w :=
⇡ � 2✓z,w

⇡
In +

2 sin ✓z,w
⇡

Mẑ$ŵ.

If Aij ⇠ N (0, 1/m), then for any z, w 2 Rn, a similar calculation for Gaussian W gives
E
⇥
A

>
z Aw

⇤
= �z,w. In our work, we establish that Gaussian A satisfies the RRCP with high

probability. Please see Section 6 in the Appendix for a complete proof.
We emphasize that these two conditions are deterministic, meaning that other distributions could be
considered. We now state our main deterministic result.
Theorem 3. Fix ✏ > 0 such that K1d

8
✏
1/4 6 1 and let d > 2. Suppose that G is such that

Wi 2 Rni⇥ni�1 satisfies the WDC with constant ✏ for all i = 1, . . . , d. Suppose A 2 Rm⇥nd satisfies
the RRCP with constant ✏. Then the same conclusion as Theorem 2 holds.

3.1 Proof sketch for Theorem 2

Before we outline the proof of Theorem 2, we specify the descent direction vx,x0 . For any x 2 Rk

where f is differentiable, we have that

rf(x) = (⇧1
i=dWi,+,x)

>
A

>
G(x)AG(x)(⇧

1
i=dWi,+,x)x� (⇧1

i=dWi,+,x)
>
A

>
G(x)AG(x0)(⇧

1
i=dWi,+,x0)x0.

3A formula for this matrix is as follows: consider a rotation matrix R that sends x̂ 7! e1 and ŷ 7!

cos ✓0e1 + sin ✓0e2 where ✓0 = \(x, y). Then Mx̂$ŷ = R>

2

4
cos ✓0 sin ✓0 0
sin ✓0 � cos ✓0 0
0 0 0k�2

3

5R where 0k�2

is the k � 2⇥ k � 2 matrix of zeros. Note that if ✓0 = 0 or ⇡, Mx̂$ŷ = x̂x̂> or �x̂x̂>, respectively.
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This is precisely the descent direction specified in Algorithm 1, expanded with our notation. When f

is not differentiable at x, choose a direction w such that f is differentiable at x+ �w for sufficiently
small � > 0. Such a direction w exists by the piecewise linearity of the generative model G. In fact,
not only is the function piecewise linear, each of the pieces is the intersection of a finite number
of half spaces. Thus, with probability 1 any randomly chosen direction w moves strictly into one
piece, allowing for differentiability at x+ �w for sufficiently small �. We note that any such w can
be chosen arbitrarily. Hence we define our descent direction vx,x0 as

vx,x0 =

⇢
rf(x) f differentiable at x 2 Rk

lim�!0+ rf(x+ �w) otherwise.
The following is a sketch of the proof of Theorem 2:

• By the WDC and RRCP, we have that the descent direction vx,x0 concentrates uniformly
for all non-zero x, x0 2 Rk around a particular vector vx,x0 defined by equation (5) in the
Appendix.

• The WDC establishes that vx,x0 concentrates uniformly for all non-zero x, x0 2 Rk around
a continuous vector hx,x0 defined by equation (7) in the Appendix.

• A direct analysis shows that hx,x0 is only small in norm for x ⇡ x0 and x ⇡ �⇢dx0. See
Section 5.3 for a complete proof. Since vx,x0 ⇡ vx,x0 ⇡ hx,x0 , vx,x0 is also only small in
norm in neighborhoods around x0 and �⇢dx0, establishing Theorem 3.

• Gaussian Wi and A satisfy the WDC and RRCP with high probability (Lemma 1 and
Proposition 2 in the Appendix).

Theorem 2 is a combination of Lemma 1, Proposition 2, and Theorem 3. The full proofs of these
results can be found in the Appendix.

Remark. In comparison to the results in [20], considerable technical advances were needed in our
case, including establishing concentration of AG(x) over the range of G. The quantity AG(x) acts
like a spatially dependent sensing matrix, requiring a condition similar to the Restricted Isometry
Property that must hold simultaneously over a finite number of subspaces given by the range(G).

4 Experiments

In this section, we investigate the use of enforcing generative priors in phase retrieval tasks. We
compared our results with the sparse truncated amplitude flow algorithm (SPARTA) [35] and three
popular general phase retrieval methods: Fienup [15], Gerchberg Saxton [16], and Wirtinger Flow [8].
A MATLAB implementation of the SPARTA algorithm was made publicly available by the authors
at https://gangwg.github.io/SPARTA/. We implemented the last three algorithms using the
MATLAB phase retrieval library PhasePack [10]. While these methods are not intended for sparse
recovery, we include them to serve as baselines.

4.1 Experiments for Gaussian signals

We first consider synthetic experiments using Gaussian measurements on Gaussian signals. In
particular, we considered a two layer network given by G(x) = relu(W2relu(W1x)) where each
Wi has i.i.d. N (0, 1) entries for i = 1, 2. We set k = 10, n1 = 500, and n2 = 1000. We let
the entries of A 2 Rm⇥n2 and x0 2 Rk be i.i.d. N (0, 1). We ran Algorithm 1 for 25 random
instances of (A,W1,W2, x0). A reconstruction x

? is considered successful if the relative error
kG(x?)�G(x0)k/kG(x0)k 6 10�3. We also compared our results with SPARTA. In this setting,
we chose a k = 10-sparse y0 2 Rn2 , where the nonzero coefficients are i.i.d. N (0, 1). As before, we
ran SPARTA with 25 random instances of (A, y0) and considered a reconstruction y

? successful if
ky? � y0k/ky0k 6 10�3. We also experimented with sparsity levels k = 3, 5. Figure 2 displays the
percentage of successful trials for different ratios m/n where n = n2 = 1000 and m is the number
of measurements.

4.2 Experiments for MNIST and CelebA

We next consider image recovery tasks, where we use two different generative models for the MNIST
and CelebA datasets. In each task, the goal is to recover an image y0 2 Rn given |Ay0| where
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Figure 2: Empirical success rate with ratios m/n where DPR’s latent code dimension is k = 10,
SPARTA’s sparsity level ranges from k = 3, 5, and 10, and n = 1000. DPR achieves nearly the
same empirical success rate of recovering a 10-dimensional latent code as SPARTA in recovering a
3-sparse 1000-dimensional signal.

A 2 Rm⇥n has i.i.d. N (0, 1/m) entries. We found an estimate image G(x?) in the range of
our generator via gradient descent, using the Adam optimizer [23]. Empirically, we noticed that
Algorithm 1 would typically only negate the latent code (Lines 3–4) at the initial iterate, if necessary.
Hence we use a modified version of Algorithm 1 in these image experiments: we ran two sessions of
gradient descent for a random initial iterate x1 and its negation �x1 and chose the most successful
reconstruction.
In the first image experiment, we used a pretrained Variational Autoencoder (VAE) from [4] that
was trained on the MNIST dataset [24]. This dataset consists of 60, 000 images of handwritten
digits. Each image is of size 28 ⇥ 28, resulting in vectorized images of size 784. As described in
[4], the recognition network is of size 784� 500� 500� 20 while the generator network is of size
20� 500� 500� 784. The latent code space dimension is k = 20.

Figure 3: Top left: Example reconstructions with 200 measurements. Top right: Example reconstruc-
tions with 500 measurements. Bottom: A comparison of DPR’s reconstruction error versus each
algorithm for different numbers of measurements.
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For SPARTA, we performed sparse recovery by transforming the images using the 2-D Discrete
Cosine Transform (DCT). We allowed 10 random restarts for each algorithm, including the sparse
and general phase retrieval methods. The results in Figure 3 demonstrate the success of our algorithm
with very few measurements. For 200 measurements, we can achieve reasonable recovery. SPARTA
can achieve good recovery with 500 measurements while the other algorithms cannot. In addition,
our algorithm exhibits recovery with 500 measurements compared to the alternatives requiring 1000
and 1500 measurements, which is where they begin to succeed. The performance for the general
phase retrieval methods is to be expected as they are known to succeed only when m = ⌦(n) where
n = 784.
We note that while our algorithm succeeds with fewer measurements than the other methods, our
performance, as measured by per-pixel reconstruction error, saturates as the number of measurements
increases since our reconstruction accuracy is ultimately bounded by the generative model’s represen-
tational error. As generative models improve, their representational errors will decrease. Nonetheless,
as can be seen in the reconstructed digits, the recoveries are semantically correct (the correct digit is
legibly recovered) even though the reconstruction error does not decay to zero. In applications, such
as MRI and molecular structure estimation via X-ray crystallography, semantic error measures would
be more informative estimates of recovery performance than per-pixel error measures.
In the second experiment, we used a pretrained Deep Convolutional Generative Adversarial Network
(DCGAN) from [4] that was trained on the CelebA dataset [27]. This dataset consists of 200, 000
facial images of celebrities. The RGB images were cropped to be of size 64 ⇥ 64, resulting in
vectorized images of dimension 64⇥ 64⇥ 3 = 12288. The latent code space dimension is k = 100.
We allowed 2 random restarts. We ran numerical experiments with the other methods and they did not
succeed at measurement levels below 5000. The general phase retrieval methods began reconstructing
the images when m = ⌦(n) where n = 12288. The following figure showcases our results on
reconstructing 10 images from the DCGAN’s test set with 500 measurements.

Original

DPR with DCGAN

Figure 4: 10 reconstructed images from celebA’s test set using DPR with 500 measurements.
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