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Abstract

The variational autoencoder (VAE) is a popular model for density estimation and
representation learning. Canonically, the variational principle suggests to prefer
an expressive inference model so that the variational approximation is accurate.
However, it is often overlooked that an overly-expressive inference model can be
detrimental to the test set performance of both the amortized posterior approximator
and, more importantly, the generative density estimator. In this paper, we leverage
the fact that VAEs rely on amortized inference and propose techniques for amortized

inference regularization (AIR) that control the smoothness of the inference model.
We demonstrate that, by applying AIR, it is possible to improve VAE generalization
on both inference and generative performance. Our paper challenges the belief that
amortized inference is simply a mechanism for approximating maximum likelihood
training and illustrates that regularization of the amortization family provides a
new direction for understanding and improving generalization in VAEs.

1 Introduction

Variational autoencoders are a class of generative models with widespread applications in density
estimation, semi-supervised learning, and representation learning [1, 2, 3, 4]. A popular approach for
the training of such models is to maximize the log-likelihood of the training data. However, maximum
likelihood is often intractable due to the presence of latent variables. Variational Bayes resolves this
issue by constructing a tractable lower bound of the log-likelihood and maximizing the lower bound
instead. Classically, Variational Bayes introduces per-sample approximate proposal distributions that
need to be optimized using a process called variational inference. However, per-sample optimization
incurs a high computational cost. A key contribution of the variational autoencoding framework is the
observation that the cost of variational inference can be amortized by using an amortized inference
model that learns an efficient mapping from samples to proposal distributions. This perspective
portrays amortized inference as a tool for efficiently approximating maximum likelihood training.
Many techniques have since been proposed to expand the expressivity of the amortized inference
model in order to better approximate maximum likelihood training [5, 6, 7, 8].

In this paper, we challenge the conventional role that amortized inference plays in variational
autoencoders. For datasets where the generative model is prone to overfitting, we show that having
an amortized inference model actually provides a new and effective way to regularize maximum
likelihood training. Rather than making the amortized inference model more expressive, we propose
instead to restrict the capacity of the amortization family. Through amortized inference regularization
(AIR), we show that it is possible to reduce the inference gap and increase the log-likelihood
performance on the test set. We propose several techniques for AIR and provide extensive theoretical
and empirical analyses of our proposed techniques when applied to the variational autoencoder and the
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importance-weighted autoencoder. By rethinking the role of the amortized inference model, amortized
inference regularization provides a new direction for studying and improving the generalization
performance of latent variable models.

2 Background and Notation

2.1 Variational Inference and the Evidence Lower Bound

Consider a joint distribution p✓(x, z) parameterized by ✓, where x 2 X is observed and z 2 Z
is latent. Given a uniform distribution p̂(x) over the dataset D = {x(i)}, maximum likelihood
estimation performs model selection using the objective

max
✓

Ep̂(x) ln p✓(x) = max
✓

Ep̂(x) ln

Z

z

p✓(x, z)dz. (1)

However, marginalization of the latent variable is often intractable; to address this issue, it is common
to employ the variational principle to maximize the following lower bound

max
✓

Ep̂(x)


ln p✓(x)�min

q2Q
D(q(z) k p✓(z | x))

�
= max

✓

Ep̂(x)


max
q2Q

Eq(z) ln
p✓(x, z)

q(z)

�
, (2)

where D is the Kullback-Leibler divergence and Q is a variational family. This lower bound,
commonly called the evidence lower bound (ELBO), converts log-likelihood estimation into a
tractable optimization problem. Since the lower bound holds for any q, the variational family Q can
be chosen to ensure that q(z) is easily computable, and the lower bound is optimized to select the
best proposal distribution q⇤

x
(z) for each x 2 D.

2.2 Amortization and Variational Autoencoders

[1, 9] proposed to construct p(x | z) using a parametric function g✓ 2 G(P) : Z ! P , where P
is some family of distributions over x, and G is a family of functions indexed by parameters ✓. To
expedite training, they observed that it is possible to amortize the computational cost of variational
inference by framing the per-sample optimization process as a regression problem; rather than solving
for the optimal proposal q⇤

x
(z) directly, they instead use a recognition model f� 2 F(Q) : X ! Q to

predict q⇤
x
(z). The functions (f�, g✓) can be concisely represented as conditional distributions, where

p✓(x | z) = g✓(z)(x) (3)
q�(z | x) = f�(x)(z). (4)

The use of amortized inference yields the variational autoencoder, which is trained to maximize the
variational autoencoder objective

max
✓,�

Ep̂(x)


Eq�(z|x) ln

p(z)p✓(x | z)
q�(z | x)

�
= max

f2F(Q),g2G(P)
Ep̂(x)


Ez⇠f(x) ln

p(z)g(z)(x)

f(x)(z)

�
. (5)

We omit the dependency of (p(z), g) on ✓ and f on � for notational simplicity. In addition to the
typical presentation of the variational autoencoder objective (LHS), we also show an alternative
formulation (RHS) that reveals the influence of the model capacities F ,G and distribution family
capacities Q,P on the objective function. In this paper, we use (q�, f) interchangeably, depending on
the choice of emphasis. To highlight the relationship between the ELBO in Eq. (2) and the standard
variational autoencoder objective in Eq. (5), we shall also refer to the latter as the amortized ELBO.

2.3 Amortized Inference Suboptimality

For a fixed generative model, the optimal unamortized and amortized inference models are

q⇤
x
= argmax

q2Q
Eq(z)


ln

p✓(x, z)

q(z)

�
, for each x 2 D (6)

f⇤ = argmax
f2F

Ep̂(x)


Ez⇠f(x) ln

p✓(x, z)

f(x)(z)

�
. (7)
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A notable consequence of using an amortization family to approximate variational inference is that
Eq. (5) is a lower bound of Eq. (2). This naturally raises the question of whether the learned inference
model can accurately approximate the mapping x 7! q⇤

x
(z). To address this question, [10] defined

the inference, approximation, and amortization gaps as

�inf(p̂) = Ep̂(x)D(f⇤(x) k p✓(z | x)) (8)
�ap(p̂) = Ep̂(x)D(q⇤

x
(z) k p✓(z | x)) (9)

�am(p̂) = �inf(p̂)��ap(p̂), (10)

Studies have found that the inference gap is non-negligible [11] and primarily attributable to the
presence of a large amortization gap [10].

The amortization gap raises two critical considerations. On the one hand, we wish to reduce the
training amortization gap �am(p̂train). If the family F is too low in capacity, then it is unable to
approximate x 7! q⇤

x
and will thus increase the amortization gap. Motivated by this perspective, [5,

12] proposed to reduce the training amortization gap by performing stochastic variational inference on
top of amortized inference. In this paper, we take the opposing perspective that an over-expressive F
hurts generalization (see Appendix A) and that restricting the capacity of F is a form of regularization
that can prevent both the inference and generative models from overfitting to the training set.

3 Amortized Inference Regularization in Variational Autoencoders

Many methods have been proposed to expand the variational and amortization families in order
to better approximate maximum likelihood training [5, 6, 7, 8, 13, 14]. We argue, however, that
achieving a better approximation to maximum likelihood training is not necessarily the best training
objective, even if the end goal is test set density estimation. In general, it may be beneficial to
regularize the maximum likelihood training objective.

Importantly, we observe that the evidence lower bound in Eq. (2) admits a natural interpretation as
implicitly regularizing maximum likelihood training

max
✓

�
log-likelihoodz }| {

Ep̂(x) [ln p✓(x)]�
regularizer R(✓;Q)z }| {

Ep̂(x) min
q2Q

D(q(z) k p✓(z | x))
�
. (11)

This formulation exposes the ELBO as a data-dependent regularized maximum likelihood objective.
For infinite capacity Q, R(✓ ; Q) is zero for all ✓ 2 ⇥, and the objective reduces to maximum
likelihood. When Q is the set of Gaussian distributions (as is the case in the standard VAE), then
R(✓ ;Q) is zero only if p✓(z | x) is Gaussian for all x 2 D. In other words, a Gaussian variational
family regularizes the true posterior p✓(z | x) toward being Gaussian [10]. Careful selection of the
variational family to encourage p✓(z | x) to adopt certain properties (e.g. unimodality, fully-factorized
posterior, etc.) can thus be considered a special case of posterior regularization [15, 16].

Unlike traditional variational techniques, the variational autoencoder introduces an amortized infer-
ence model f 2 F and thus a new source of posterior regularization.

max
✓

�
log-likelihoodz }| {

Ep̂(x) [ln p✓(x)]�
regularizer R(✓;Q,F)z }| {

min
f2F(Q)

Ep̂(x) [D(f(x) k p✓(z | x))]
�
. (12)

In contrast to unamortized variational inference, the introduction of the amortization family F forces
the inference model to consider the global structure of how X maps to Q. We thus define amortized

inference regularization as the strategy of restricting the inference model capacity F to satisfy certain
desiderata. In this paper, we explore a special case of AIR where a candidate model f 2 F is
penalized if it is not sufficiently smooth. We propose two models that encourage inference model
smoothness and demonstrate that they can reduce the inference gap and increase log-likelihood on
the test set.

3.1 Denoising Variational Autoencoder

In this section, we propose using random perturbation training for amortized inference regularization.
The resulting model—the denoising variational autoencoder (DVAE)—modifies the variational
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autoencoder objective by injecting " noise into the inference model

max
✓

�
Ep̂(x) [ln p✓(x)]� min

f2F(Q)
Ep̂(x)E" [D(f(x+ ") k p✓(z | x))]

�
. (13)

Note that the noise term only appears in the regularizer term. We consider the case of zero-mean
isotropic Gaussian noise " ⇠ N (0,�I) and denote the denoising regularizer as R(✓ ; �). At this
point, we note that the DVAE was first described in [17]. However, our treatment of DVAE differs
from [17]’s in both theoretical analysis and underlying motivation. We found that [17] incorrectly
stated the tightness of the DVAE variational lower bound (see Appendix B). In contrast, our analysis
demonstrates that the denoising objective smooths the inference model and necessarily lower bounds
the original variational autoencoder objective (see Theorem 1 and Proposition 1).

We now show that 1) the optimal DVAE amortized inference model is a kernel regression model and
that 2) the variance of the noise " controls the smoothness of the optimal inference model.
Lemma 1. For fixed (✓,�,Q) and infinite capacity F , the inference model that optimizes the DVAE

objective in Eq. (13) is the kernel regression model

f⇤
�
(x) = argmin

q2Q

nX

i=1

w�(x, x
(i)) ·D(q(z) k p✓(z | x(i))), (14)

where w�(x, x(i)) = K�(x,x
(i))P

j
K�(x,x(j))

and K�(x, y) = exp
⇣
�kx�yk

2�2

⌘
is the RBF kernel.

Lemma 1 shows that the optimal denoising inference model f⇤
�

is dependent on the noise level �.
The output of f⇤

�
(x) is the proposal distribution that minimizes the weighted Kullback-Leibler (KL)

divergence from f⇤
�
(x) to each p✓(z | x(i)), where the weighting w�(x, x(i)) depends on the distance

kx� x(i)k and the bandwidth �. When � > 0, the amortized inference model forces neighboring
points (x(i), x(j)) to have similar proposal distributions. Note that as � increases, w�(x, x(i)) ! 1

n
,

where n is the number of training samples. Controlling � thus modulates the smoothness of f⇤
�

(we
say that f⇤

�
is smooth if it maps similar inputs to similar outputs under some suitable measure of

similarity). Intuitively, the denoising regularizer R(✓ ; �) approximates the true posteriors with a
“�-smoothed” inference model and penalizes generative models whose posteriors cannot easily be
approximated by such an inference model. This intuition is formalized in Theorem 1.
Theorem 1. Let Q be a minimal exponential family with corresponding natural parameter space ⌦.

With a slight abuse of notation, consider f 2 F : X ! ⌦. Under the simplifying assumption that

p✓(z | x(i)) is contained within Q and parameterized by ⌘(i) 2 ⌦, and that F has infinite capacity,

then the optimal inference model in Lemma 1 returns f⇤
�
(x) = ⌘ 2 ⌦, where

⌘ =
nX

i=1

w�(x, x
(i)) · ⌘(i) (15)

and Lipschitz constant of f⇤
�

is bounded by O(1/�2).

We wish to address Theorem 1’s assumption that the true posteriors lie in the variational family.
Note that for sufficiently large exponential families, this assumption is likely to hold. But even in
the case where the variational family is Gaussian (a relatively small exponential family), the small
approximation gap observed in [10] suggests that it is plausible that posterior regularization would
encourage the true posteriors to be approximately Gaussian.

Given that � modulates the smoothness of the inference model, it is natural to suspect that a larger
choice of � results in a stronger regularization. To formalize this notion of regularization strength,
we introduce a way to partially order a set of regularizers {Ri(✓)}.
Definition 1. Suppose two regularizers R1(✓) and R2(✓) share the same minimum min✓ R1(✓) =
min✓ R2(✓). We say that R1 is a stronger regularizer than R2 if R1(✓) � R2(✓) for all ✓ 2 ⇥.

Note that any two regularizers can be modified via scalar addition to share the same minimum.
Furthermore, if R1 is stronger than R2, then R1 and R2 share at least one minimizer. We now apply
Definition 1 to characterize the regularization strength of R(✓ ; �) as � increases.
Definition 2. We say that F is closed under input translation if f 2 F =) fa 2 F for all a 2 X ,

where fa(x) = f(x+ a).
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Proposition 1. Consider the denoising regularizer R(✓ ; �). Suppose F is closed under input

translation and that, for any ✓ 2 ⇥, there exists f 2 F such that f(x) maps to the prior p✓(z)
all x 2 X . Furthermore, assume that there exists ✓ 2 ⇥ such that p✓(x, z) = p✓(z)p✓(x). Then

R(✓ ; �1) is stronger R(✓ ; �2) when �1 � �2; i.e., min✓ R(✓ ; �1) = min✓ R(✓ ; �2) = 0 and

R(✓ ; �1) � R(✓ ; �2) for all ✓ 2 ⇥.

Lemma 1 and Proposition 1 show that as we increase �, the optimal inference model is forced to
become smoother and the regularization strength increases. Figure 1 is consistent with this analysis,
showing the progression from under-regularized to over-regularized models as we increase �.

It is worth noting that, in addition to adjusting the denoising regularizer strength via �, it is also
possible to adjust the strength by taking a convex combination of the VAE and DVAE objectives. In
particular, we can define the partially denoising regularizer R(✓ ; �,↵) as

min
f2F(Q)

Ep̂(x)

✓
↵ · E" [D(f(x+ ") k p✓(z | x))] + (1� ↵) ·D(f(x) k p✓(z | x))

◆
(16)

Importantly, we note that R(✓ ; �,↵) is still strictly non-negative and, when combined with the
log-likelihood term, still yields a tractable variational lower bound.

3.2 Weight-Normalized Amortized Inference

In addition to DVAE, we propose an alternative method that directly restricts F to the set of smooth
functions. To do so, we consider the case where the inference model is a neural network encoder
parameterized by weight matrices {Wi} and leverage [18]’s weight normalization technique, which
proposes to reparameterize the columns wi of each weight matrix W as

wi =
vi

kvik
· si, (17)

where vi 2 Rd, si 2 R are trainable parameters. Since it is possible to modulate the smoothness of
the encoder by capping the magnitude of si, we introduce a new parameter ui 2 R and define

si = min

⇢
kvik,

✓
H

1 + exp(�ui)

◆�
. (18)

The norm kwik is thus bounded by the hyperparameter H . We denote the weight-normalized
regularizer as R(✓ ; FH), where FH is the amortization family induced by a H-weight-normalized
encoder. Under similar assumptions as Proposition 1, it is easy to see that min✓ R(✓ ; FH) = 0 for
any H � 0 and that R(✓ ; FH1) � R(✓ ; FH2) for all ✓ 2 ⇥ when H1  H2 (since FH1 ✓ FH2).
We refer to the resulting model as the weight-normalized inference VAE (WNI-VAE) and show in
Table 1 that weight-normalized amortized inference can achieve similar performance as DVAE.

3.3 Experiments

We conducted experiments on statically binarized MNIST, statically binarized OMNIGLOT, and the
Caltech 101 Silhouettes datasets. These datasets have a relatively small amount of training data and
are thus susceptible to model overfitting. For each dataset, we used the same decoder architecture
across all four models (VAE, DVAE (↵ = 0.5), DVAE (↵ = 1.0), WNI-VAE) and only modified the
encoder, and trained all models using Adam [19] (see Appendix E for more details). To approximate
the log-likelihood, we proposed to use importance-weighted stochastic variational inference (IW-SVI),
an extension of SVI [20] which we describe in detail in Appendix C. Hyperparameter tuning of
DVAE’s � and WNI-VAE’s FH is described in Table 7.

Table 1 shows the performance of VAE, DVAE, and WNI-VAE. Regularizing the inference model
consistently improved the test set log-likelihood performance. On the MNIST and Caltech 101
Silhouettes datasets, the results also show a consistent reduction of the test set inference gap when
the inference model is regularized. We observed differences in the performance of DVAE versus
WNI-VAE on the Caltech 101 Silhouettes dataset, suggesting a difference in how denoising and
weight normalization regularizes the inference model; an interesting consideration would thus be to
combine DVAE and WNI. As a whole, Table 1 demonstrates that AIR benefits the generative model.

The denoising and weight normalization regularizers have respective hyperparameters � and H that
control the regularization strength. In Figure 1, we performed an ablation analysis of how adjusting
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Table 1: Test set evaluation of VAE, DVAE, and WNI-VAE. The performance metrics are log-
likelihood ln p✓(x), the amortized ELBO L(x), and the inference gap �inf = ln p✓(x)� L(x). All
three proposed models out-perform VAE across most metrics.

MNIST OMNIGLOT CALTECH
� ln p✓(x) �inf �L(x) � ln p✓(x) �inf �L(x) � ln p✓(x) �inf �L(x)

VAE 86.93 ±0.04 8.54 ±0.14 95.48 ±0.07 110.32 ±0.16 12.03 ±0.25 122.35 ±0.33 109.14 ±0.28 28.90 ±0.42 138.05 ±0.15

DVAE (↵ = 0.5) 86.46 ±0.02 6.34 ±0.05 92.80 ±0.07 109.31 ±0.19 12.56 ±0.18 121.87 ±0.37 108.64 ±0.19 23.40 ±0.19 132.04 ±0.37

DVAE (↵ = 1.0) 86.51 ±0.02 6.83 ±0.04 93.35 ±0.06 110.12 ±0.18 12.44 ±0.16 122.56 ±0.34 108.66 ±0.23 23.94 ±0.15 132.60 ±0.15

WNI-VAE 86.42 ±0.01 6.68 ±0.01 93.10 ±0.02 109.16 ±0.12 11.39 ±0.10 120.55 ±0.20 108.94 ±0.31 28.88 ±0.29 137.82 ±0.25

Figure 1: Evaluation of the log-likelihood performance of all three proposed models as we vary
the regularization parameter value. The regularization parameter is defined in Table 7. When the
parameter value is too small, the model overfits and the test set performance degrades. When the
parameter value is too high, the model underfits.

the regularization strength impacts the test set log-likelihood. In almost all cases, we see a transition
from overfitting to underfitting as we adjust the strength of AIR. For well-chosen regularization
strength, however, it is possible to increase the test set log-likelihood performance by 0.5 ⇠ 1.0
nats—a non-trivial improvement.

3.4 How Does Amortized Inference Regularization Affect the Generator?

Table 1 shows that regularizing the inference model empirically benefits the generative model. We
now provide some initial theoretical characterization of how a smoothed amortized inference model
affects the generative model. Our analysis rests on the following proposition.
Proposition 2. Let P be an exponential family with corresponding mean parameter space M and

sufficient statistic function T (·). With a slight abuse of notation, consider g 2 G : Z ! M. Define

q(x, z) = p̂(x)q(z | x), where q(z | x) is a fixed inference model. Supposing G has infinite capacity,

then the optimal generative model in Eq. (5) returns g⇤(z) = µ 2 M, where

µ =
nX

i=1

q(x(i) | z) · T (x(i)) =
nX

i=1

 
q(z | x(i))P
j
q(z | x(j))

· T (x(i))

!
. (19)

Proposition 2 generalizes the analysis in [21] which determined the optimal generative model when P
is Gaussian. The key observation is that the optimal generative model outputs a convex combination
of {�(x(i))}, weighted by q(x(i) | z). Furthermore, the weights q(x(i) | z) are simply density ratios
of the proposal distributions {q(z | x(i))}. As we increase the smoothness of the amortized inference
model, the weight q(x(i) | z) should tend toward 1

n
for all z 2 Z . This suggests that a smoothed

inference model provides a natural way to smooth (and thus regularize) the generative model.

4 Amortized Inference Regularization in Importance-Weighted
Autoencoders

In this section, we extend AIR to importance-weighted autoencoders (IWAE-k). Although the
application is straightforward, we demonstrate a noteworthy relationship between the number of
importance samples k and the effect of AIR. To begin our analysis, we consider the IWAE-k objective

max
✓,�

Ez1...zk⇠q�(z|x)

"
ln

1

k

kX

i=1

p✓(x, zi)

q�(zi | x)

#
, (20)
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where {z1 . . . zk} are k samples from the proposal distribution q�(z | x) to be used as importance-
samples. Analysis by [22] allows us to rewrite it as a regularized maximum likelihood objective

max
✓

Ep̂(x) [ln p✓(x)]�

Rk(✓)z }| {
min

f2F(Q)
Ep̂(x)Ez2...zk⇠f(x)D̃(f̃k(x, z1 . . . zk) k p✓(z | x)), (21)

where f̃k (or equivalently q̃k) is the unnormalized distribution

f̃k(x, z2 . . . zk)(z1) =
p✓(x, z1)

1
k

P
i

p✓(x,zi)
f(x)(zi)

= q̃k(z1 | x, z2 . . . zk) (22)

and D̃(q k p) =
R
q(z) [ln q(z)� ln p(z)] dz is the Kullback-Leibler divergence extended to un-

normalized distributions. For notational simplicity, we omit the dependency of f̃k on (z2 . . . zk).
Importantly, [22] showed that the IWAE with k importance samples drawn from the amortized
inference model f is, on expectation, equivalent to a VAE with 1 importance sample drawn from the
more expressive inference model f̃k.

4.1 Importance Sampling Attenuates Amortized Inference Regularization

We now consider the interaction between importance sampling and AIR. We introduce the regularizer
Rk(✓ ; �,FH) as follows

Rk(✓ ; �,FH) = min
f2FH(Q)

Ep̂(x)E"Ez2...zk⇠f(x+")D̃(f̃k(x+ ") k p✓(z | x)), (23)

which corresponds to a regularizer where weight normalization, denoising, and importance sampling
are simultaneously applied. By adapting Theorem 1 from [8], we can show that
Proposition 3. Consider the regularizer Rk(✓ ; �,FH). Under similar assumptions as Proposition 1,

then Rk1 is stronger than Rk2 when k1  k2; i.e., min✓ Rk1(✓ ; �,FH) = min✓ Rk2(✓ ; �,FH) = 0
and Rk1(✓ ; �,FH)  Rk2(✓ ; �,FH) for all ✓ 2 ⇥.

A notable consequence of Proposition 3 is that as k increases, AIR exhibits a weaker regularizing
effect on the posterior distributions {p✓(z | x(i))}. Intuitively, this arises from the phenomenon
that although AIR is applied to f , the subsequent importance-weighting procedure can still create
a flexible f̃k. Our analysis thus predicts that AIR is less likely to cause underfitting of IWAE-k’s
generative model as k increases, which we demonstrate in Figure 2. In the limit of infinite importance
samples, we also predict AIR to have zero regularizing effect since f̃1 (under some assumptions) can
always approximate any posterior. However, for practically feasible values of k, we show in Tables 2
and 3 that AIR is a highly effective regularizer.

4.2 Experiments

Table 2: Test set evaluation of the four models when trained with 8 importance samples. L8(x)
denotes the amortized ELBO using 8 importance samples. �inf = ln p✓(x)� L8(x).

MNIST OMNIGLOT CALTECH
� ln p✓(x) �inf �L8(x) � ln p✓(x) �inf �L8(x) � ln p✓(x) �inf �L8(x)

IWAE 86.21 ±0.01 6.13 ±0.03 92.34 ±0.02 108.18 ±0.24 8.69 ±0.39 116.87 ±0.16 108.65 ±0.11 21.52 ±0.13 130.17 ±0.09

DIWAE (↵ = 0.5) 85.78 ±0.02 4.47 ±0.02 90.25 ±0.03 107.01 ±0.11 8.64 ±0.07 115.66 ±0.17 107.34 ±0.17 17.61 ±0.18 124.96 ±0.14

DIWAE (↵ = 1.0) 85.78 ±0.03 4.21 ±0.03 90.00 ±0.06 107.47 ±0.06 8.57 ±0.14 116.04 ±0.18 107.54 ±0.11 17.06 ±0.35 124.60 ±0.29

WNI-IWAE 85.81 ±0.01 4.33 ±0.03 90.14 ±0.04 107.15 ±0.08 8.78 ±0.17 115.93 ±0.10 107.98 ±0.19 22.18 ±0.33 130.16 ±0.14

Table 3: Test set evaluation of the four models when trained with 64 importance samples. �inf =
ln p✓(x)� L64(x).

MNIST OMNIGLOT CALTECH
� ln p✓(x) �inf �L64(x) � ln p✓(x) �inf �L64(x) � ln p✓(x) �inf �L64(x)

IWAE 86.06 ±0.03 4.41 ±0.10 90.48 ±0.07 107.31 ±0.14 6.66 ±0.22 113.97 ±0.10 108.89 ±0.35 16.51 ±0.32 125.40 ±0.25

DIWAE (↵ = 0.5) 85.55 ±0.02 3.01 ±0.01 88.56 ±0.02 106.02 ±0.01 6.98 ±0.06 113.00 ±0.07 106.94 ±0.11 12.28 ±0.14 119.22 ±0.11

DIWAE (↵ = 1.0) 85.55 ±0.02 3.15 ±0.02 88.70 ±0.04 106.15 ±0.03 6.70 ±0.05 112.85 ±0.07 106.96 ±0.11 12.94 ±0.22 119.87 ±0.16

WNI-IWAE 85.64 ±0.03 3.10 ±0.01 88.74 ±0.03 106.17 ±0.07 7.11 ±0.07 113.28 ±0.13 108.15 ±0.11 14.42 ±0.20 122.57 ±0.10
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Tables 2 and 3 extends the model evaluation to IWAE-8 and IWAE-64. We see that the denoising
IWAE (DIWAE) and weight-normalized inference IWAE (WNI-IWAE) consistently out-perform the
standard IWAE on test set log-likelihood evaluations. Furthermore, the regularized models frequently
reduced the inference gap as well. Our results demonstrate that AIR is a highly effective regularizer
even when a large number of importance samples are used.

Our main experimental contribution in this section is the verification that increasing the number of
importance samples results in less underfitting when the inference model is over-regularized. In
contrast to k = 1, where aggressively increasing the regularization strength can cause considerable
underfitting, Figure 2 shows that increasing the number of importance samples to k = 8 and k = 64
makes the models much more robust to mis-specified choices of regularization strength. Interestingly,
we also observed that the optimal regularization strength (determined using the validation set)
increases with k (see Table 7 for details). The robustness of importance sampling when paired with
amortized inference regularization makes AIR an effective and practical way to regularize IWAE.

Figure 2: Evaluation of the log-likelihood performance of all three proposed models as we vary
the regularization parameter (see Table 7 for definition) and number of importance samples k. To
compare across different k’s, the performance without regularization (IWAE-k baseline) is subtracted.
We see that IWAE-64 is the least likely to underfit when the regularization parameter value is high.

4.3 Are High Signal-to-Noise Ratio Gradients Necessarily Better?

We note the existence of a related work [23] that also concluded that approximating maximum
likelihood training is not necessarily better. However, [23] focused on increasing the signal-to-noise
ratio of the gradient updates and analyzed the trade-off between importance sampling and Monte
Carlo sampling under budgetary constraints. An in-depth discussion of these two works within the
context of generalization is provided in Appendix D.

5 Conclusion

In this paper, we challenged the conventional role that amortized inference plays in training deep
generative models. In addition to expediting variational inference, amortized inference introduces new
ways to regularize maximum likelihood training. We considered a special case of amortized inference
regularization (AIR) where the inference model must learn a smoothed mapping from X ! Q
and showed that the denoising variational autoencoder (DVAE) and weight-normalized inference
(WNI) are effective instantiations of AIR. Promising directions for future work include replacing
denoising with adversarial training [24] and weight normalization with spectral normalization [25].
Furthermore, we demonstrated that AIR plays a crucial role in the regularization of IWAE, and that
higher levels of regularization may be necessary due to the attenuating effects of importance sampling
on AIR. We believe that variational family expansion by Monte Carlo methods [26] may exhibit the
same attenuating effect on AIR and recommend this as an additional research direction.
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