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Abstract

We study the decentralized distributed computation of discrete approximations
for the regularized Wasserstein barycenter of a finite set of continuous probability
measures distributedly stored over a network. We assume there is a network of
agents/machines/computers, and each agent holds a private continuous probability
measure and seeks to compute the barycenter of all the measures in the network
by getting samples from its local measure and exchanging information with its
neighbors. Motivated by this problem, we develop, and analyze, a novel accelerated
primal-dual stochastic gradient method for general stochastic convex optimization
problems with linear equality constraints. Then, we apply this method to the decen-
tralized distributed optimization setting to obtain a new algorithm for the distributed
semi-discrete regularized Wasserstein barycenter problem. Moreover, we show
explicit non-asymptotic complexity for the proposed algorithm. Finally, we show
the effectiveness of our method on the distributed computation of the regularized
Wasserstein barycenter of univariate Gaussian and von Mises distributions, as well
as some applications to image aggregationm

1 Introduction

Optimal transport (OT) [30, 25] has become increasingly popular in the machine learning and
optimization community. Given a basis space (e.g., pixel grid) and a transportation cost function (e.g.,
squared Euclidean distance), the OT approach defines a distance between two objects (e.g., images),
modeled as two probability measures on the basis space, as the minimal cost of transportation of the
first measure to the second. Besides images, these probability measures or histograms can model other
real-world objects like videos, texts, etc. The optimal transport distance leads to outstanding results
in unsupervised learning [4.[7]], semi-supervised learning [42], clustering [24], text classification [27],
as well as in image retrieval, clustering and classification [38} [11}39], statistics [20,|36]], economics

"The full version of this paper can be found in the supplementary material and is also available as [13].
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and finance [5]], condensed matter physics [8]], and other applications [26]. From the computational
point of view, the optimal transport distance (or Wasserstein distance) between two histograms of
size n requires solving a linear program, which typically requires O(n? log n) arithmetic operations.
An alternative approach is based on entropic regularization of this linear program and application of
either Sinkhorn’s algorithm [I1]] or stochastic gradient descent [22]], both requiring O(n?) arithmetic
operations, which can be too costly in the large-scale context.

Given a set of objects, the optimal transport distance naturally defines their mean representative. For
example, the 2-Wasserstein barycenter [2] is an object minimizing the sum of squared 2-Wasserstein
distances to all objects in a set. Wasserstein barycenters capture the geometric structure of objects,
such as images, better than the barycenter with respect to the Euclidean or other distances [12].
If the objects in the set are randomly sampled from some distribution, theoretical results such
as central limit theorem [14] or confidence set construction [20] have been proposed, providing
the basis for the practical use of Wasserstein barycenter. However, calculating the Wasserstein
barycenter of m measures includes repeated computation of m Wasserstein distances. The entropic
regularization approach was extended for this case in [6], with the proposed algorithm having a
O(mn?) complexity, which can be very large if m and n are large. Moreover, in the large-scale
setup, storage and processing of transportation plans, required to calculate Wasserstein distances,
can be intractable for local computation. On the other hand, recent studies [34} 140, 137} 146L 31]] on
accelerated distributed convex optimization algorithms demonstrated their efficiency for convex
optimization problems over arbitrary networks with inherently distributed data, i.e., the data is
produced by a distributed network of sensors [35} 33} 32]] or the transmission of information is limited
by communication or privacy constraints, i.e., only limited amount of information can be shared
across the network.

Motivated by the limited communication issue and the computational complexity of the Wasserstein
barycenter problem for large amounts of data stored in a network of computers, we use the entropy
regularization of the Wasserstein distance and propose a decentralized algorithm to calculate an
approximation to the Wasserstein barycenter of a set of probability measures. We solve the problem
in a distributed manner on a connected and undirected network of agents oblivious to the network
topology. Each agent locally holds a possibly continuous probability distribution, can sample from
it, and seeks to cooperatively compute the barycenter of all probability measures exchanging the
information with its neighbors. We consider the semi-discrete case, which means that we fix the
discrete support for the barycenter and calculate a discrete approximation for the barycenter.

Related work. Unlike [44]], we propose a decentralized distributed algorithm for the computation of
the regularized Wasserstein barycenter of a set of continuous measures. Working with continuous
distributions requires the application of stochastic procedures like stochastic gradient method as in
[22]], where it is applied for regularized Wasserstein distance, but not for Wasserstein barycenter. This
idea was extended to the case of non-regularized barycenter in [43} [10], where parallel algorithms
were developed. The critical difference between the parallel and the decentralized setting is that, in
the former, the topology of the computational network is fixed to be a star topology and it is known
in advance by all the machines, forming a master/slave architecture. We seek to further scale up
the barycenter computation to a huge number of input measures using arbitrary network topologies.
Moreover, unlike [43]], we use entropic regularization to take advantage of the problem smoothness
and obtain faster rates of convergence for the optimization procedure. Unlike [10], we fix the support
of the barycenter, which leads to a convex optimization problem and allows us to prove complexity
bounds for our algorithm.

The well-developed approach based on Table 1: Summary of literature.
Sinkhorn’s algorithm [11, 16, [13] naturally
leads to parallel algorithms. Nevertheless, its
application to continuous distributions requires (1164 113] X X v
discretization of these distributions, leading to [22] x v X
computational intractability when one desires S‘SR I/i)i G \7 y y
good accuracy and, hence, has to use fine .

discretization with large n, which leads to the

necessity of solving an optimization problem of large dimension. Thus, this approach is not directly
applicable in our setting of continuous distributions, and it is not clear whether it is applicable in the
decentralized distributed setting with arbitrary networks.
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Recently, an alternative accelerated-gradient-based approach was shown to give better results than
the Sinkhorn’s algorithm for Wasserstein distance [[18},|19]. Moreover, accelerated gradient methods
have natural extensions for the decentralized distributed setting [40, 45} [28]]. Nevertheless, existing
distributed optimization algorithms can not be applied to the barycenter problem in our setting of
continuous distributions as these algorithms are either designed for deterministic problems or for
stochastic primal problem, whereas in our case the dual problem is a stochastic problem. Table
[T]summarizes the existing literature on Wasserstein barycenter calculation and shows our contribution.

Contributions. We propose a novel algorithm for general stochastic optimization problems with
linear constraints, namely the Accelerated Primal-Dual Stochastic Gradient Method (APDSGD).
Based on this algorithm, we introduce a distributed algorithm for the computation of a discrete
approximation for regularized Wasserstein barycenter of a set of continuous distributions stored
distributedly over a network (connected and undirected) with unknown arbitrary topology. For
our algorithm, we provide iteration and arithmetic operations complexity in terms of the problem
parameters. Finally, we demonstrate the effectiveness of our algorithm on the distributed computation
of the regularized Wasserstein barycenter of a set of von Mises distributions for various network
topologies and network sizes. Moreover, we show some initial results on the problem of image
aggregation for two datasets, namely, a subset of the MNIST digit dataset [29] and subset of the IXI
Magnetic Resonance dataset [1]].

Paper organization. In Section 2] we present the regularized Wasserstein barycenter problem for
the semi-discrete case and its distributed computation over networks. In Section 3] we introduce a
new algorithm for general stochastic optimization problems with linear constraints and analyze its
convergence rate. Section [ extends this algorithm and introduces our method for the distributed
computation of regularized Wasserstein barycenter. Section [5|shows the experimental results for the
proposed algorithm. The supplementary material contains the full version of the paper, including an
appendix with the proofs, as well as additional results of numerical experiments.

Notation. We define M1 (X) the set of positive Radon probability measures on a metric space
X, and S1(n) = {a € R | Y} ay = 1} the probability simplex. We denote by &(z) the Dirac
measure at point x, and ® the Kronecker product. We refer to Ayax (1) as the maximum eigenvalue
of a symmetric matrix . We use bold symbols for stacked vectors p = [pf,--- ,pT]T € R™,
where p1, ..., pr, € R™. In this case [p]; = p; — the i-th block of p. For a vector A € R™, we denote by
[A]; its I-th component. We refer to the Euclidean norm of a vector ||p||2 := Y-, ([pl;)? as 2-norm.

2 The Distributed Wasserstein Barycenter Problem

In this section, we present the problem of decentralized distributed computation of regularized
Wasserstein barycenters for a family of possibly continuous probability measures distributed over
a network. First, we provide the necessary background for regularized Wasserstein distance and
barycenter. Then, we give the details of the distributed formulation of the optimization problem
defining Wasserstein barycenter, which is a minimization problem with linear equality constraint. To
deal with this constraint, we make a transition to the dual problem, which, as we show, due to the
presence of continuous distributions, is a smooth stochastic optimization problem.

Regularized semi-discrete formulation of optimal transport problem. We consider entropic
regularization for the optimal transport problem and the corresponding regularized Wasserstein
distance and barycenter [11]]. Let . € M () with density ¢(y), and a discrete probability measure
v = Y i [plid(z;) with weights given by vector p € Si(n) and finite support given by points
21, ...,2n € Z from a metric space Z. The regularized Wasserstein distance in semi-discrete setting
between continuous measure y and discrete measure v is defined af]

m(u,u)ﬂgg;ﬁy){i /y Ci(y)m(y)dy+vi /y 7i(y) log (”éy)) dy}, M)

i=1

2Formally, the p-Wasserstein distance for p > 1 is (Wo(u, 1/))% if Y = Z and ¢;(y) = d°(zi,y). d being a
distance on Y. For simplicity, we refer to (I} as regularized Wasserstein distance in a general situation since our
algorithm does not rely on any specific choice of cost ¢;(y).



where ¢;(y) = ¢(z;,y) is a cost function for transportation of a unit of mass from point z; € Z to
point y € Y, £ is the uniform distribution on Y x Z, and the set of admissible coupling measures 7
is defined as

H(M,y):{ﬂeM}r()})x& Zm ) =q(y) yey/m )Yy =pi,Vi=1,. }
i=1

For a set of measures y; € ML (Z),i = 1,...,m, we fix the support z1,...,2, € Z of their
regularized Wasserstein barycenter v and wish to find it in the form v = >, [p];6(z;), where
p € S, (1). Then the regularized Wasserstein barycenter in the semi-discrete setting is defined as the

solution to the following convex optimization proble
m

min W i (D) = min ZW’V’W (pi), )
peSl(n) PL="""=Dm =
P1,---Pm €S1(n) i=1

where we used notation W.,, M(p) := W, (u, v) for fixed probability measure .

Network constraints in the distributed barycenter problem. We now describe the distributed
optimization setting for solving the second problem in (2)). We assume that each measure y; is held
by an agent ¢ on a network and this agent can sample from this measure. We model such a network
as a fixed connected undirected graph G = (V, E), where V is the set of m nodes, and F is the set
of edges. We assume that the graph G does not have self-loops. The network structure imposes
information constraints; specifically, each node 7 has access to u; only and can exchange information
only with its immediate neighbors, i.e., nodes j s.t. (i,j) € E.

We represent the communication constraints imposed by the network by introducing a single equality
constraint instead of p; = - -+ = p,,, in @). To do so, we define the Laplacian matrix W& R™*"™
ofthegraph(]suchthata)[ lij = —1if (4, j) € E,b) [W];; = deg(i)ifi =j,¢) [W];; =0
otherwise. Here deg(t) is the degree of the node ¢, i.e., the number of neighbors of the node. Finally,
define the communication matrix (also referred to as an interaction matrix) by W := W ® I,,.

Assuming that G is undirected and connected, the Laplacian matrix W is symmetric and positive
semidefinite. Furthermore, the vector 1 is the unique (up to a scaling factor) eigenvector associated
with the zero eigenvalue. W inherits the properties of W, i.e., it is symmetric and positive semidefinite.

Moreover, vWp = 0 if and only if p; = --- = p,,, where we defined stacked column vector
p=[pF, - ,pl]T € R™". Using this fact, we equivalently rewrite problem (2)) as the maximization
problem with linear equality constraint
m
max =2 Wan(i): ©

P15---Pm esl(n)7 vVWp=0 i=1

Dual formulation of the barycenter problem. Given that problem (3]) is an optimization problem
with linear constraints, we introduce a stacked vector of dual variables A = [\, ... [ AT']T ¢ Rm»

for the constraints vWWp = 0 in (3). Then, the Lagrangian dual problem for (3)) is

amin max {Z< i [VWpli) = Wy, (pz)} = min 3 W, (IVWAL), 4

i=1 =1

where [V Wp]; and [V W AJ; denote the i- th n-dimensional block of vectors vWp and v W A re-
spectively, the equality Z M, WVWp)s) = Z ([VWA]i, pi) was used, and W, (-) is the Fenchel-

i=1 i=1
Legendre transform of W, ,, (p;). The following Lemma states that each Wy , () is a smooth
function with Lipschitz-continuous gradient and can be expressed as an expectatlon of a function of
additional random argument.

Lemma 1. Given p € M’ (Y) with density q(-), the Fenchel-Legendre conjugate for W, ,(p) is

W2, (A) = Ey .,y log < Zexp ( L= Cl(y))) :

and its gradient is 1/~-Lipschitz-continuous w.r.. 2-n0rm.

3For simplicity, we assume equal weights for each W, ., (p) and do not normalize the sum dividing by m.
Our results can be directly generalized to the case of non-negative weights summing up to 1.



Denote A = VWA = [VWA]T, ..., [WVWAIL]T = [AT,..., AT]" and W2 (X) — the dual objec-
tive in the r.h.s. of (Ef[) Then, by the chain rule, the I-th n-dimensional block of VW,’Y" (A)is

(YW, = VY W2 (VWAL | =) VIV, vws (A), I=1,..,m. (5
i=1 j=1

l

It follows from (5) and Lemma([I|that the dual problem (@) is a smooth stochastic convex optimization
problem. This is in contrast to [28]], where the primal problem is a stochastic optimization problem.
Moreover, as opposed to the existing literature on stochastic convex optimization, we not only
need to solve the dual problem but also need to reconstruct an approximate solution for the primal
problem (3, which is the barycenter. In the next section, we develop a novel accelerated primal-dual
stochastic gradient method for a general smooth stochastic optimization problem, which is dual to
some optimization problem with linear equality constraints. Furthermore, in Section[d we apply our
general algorithm to the particular case of primal-dual pair of problems (3)) and (@).

3 General Primal-Dual Framework for Stochastic Optimization

In this section, we consider a general smooth stochastic convex optimization problem which is dual
to some optimization problem with linear equality constraints. Extending our works [[16} 21,19, |17,
191,13, [18]], we develop a novel algorithm for its solution and reconstruction of the primal variable
together with convergence rate analysis. Unlike prior works, we consider the stochastic primal-dual
pair of problems and one of our contributions consists in providing a primal-dual extension of the
accelerated stochastic gradient method. We believe that our algorithm can be used for problems other
than regularized Wasserstein barycenter problem and, thus, we, first, provide a general algorithm and,
then, apply it to the barycenter problem. We introduce new notation since this section is independent
of the others and is focused on a general optimization problem.

General setup. For any finite-dimensional real vector space E, we denote by E* its dual, by || - ||
anorm on F and by || - ||« the norm on E* which is dual to || - [|, i.e. [[Allx = maxj<i (A, z).
For a linear operator A : E; — Fs, the adjoint operator AT : E — E} in defined by (u, Ax) =
(ATu,z), Yu € Ej, x € E;. We say that a function f : £ — R has a L-Lipschitz-continuous
gradient w.r.t. norm || - ||« if it is continuously differentiable and its gradient satisfies Lipschitz
condition ||V f(z) = Vf(y)ll« < Ll|z —yll, Vz,y € E.

Our main goal in this section, is to provide an algorithm for a primal-dual (up to a sign) pair of
problems

. ) - ) T
() min, U@ de =), (D) i {0 +max (~f(e) - (A7) |
where () is a simple closed convex set, A : £ — H is given linear operator, b € H is given,
A = H*. We define () := (X, b) + max,eq (—f(z) — (AT, z)) = (\,b) + f*(—AT)) and as-
sume it to be smooth with L-Lipschitz-continuous gradient. Here f* is the Fenchel-Legendre
dual for f. We also assume that f*(—AT\) = EF*(—AT )\ €), where £ is random vector
and F* is the Fenchel-Legendre conjugate function to some function F(zx,¢), i.e. it satisfies
F*(—=AT)¢) = meaéc{(—AT/\,x) — F(z,8)}. F*(\ &) is assumed to be smooth and, hence
x

ViF*(\,€) = x(\€), where (), &) is the solution of the maximization problem z()\,§) =
arg meag{(/\, x) — F(z,£)}. Under these assumptions, the dual problem (D) can be accessed by a

stochastic oracle (®(\, &), VO(A, €)) satisfying Ec (X, §) = ¢(A), EcVO(A, &) = Vp(A), which
we use in our algorithm.

Accelerated primal-dual stochastic gradient method. Next, we provide an accelerated algorithm
for the primal-dual pair of problems (P) — (D). The idea is to apply accelerated stochastic gradient
method to the dual problem (D), endow it with a step in the primal space and show that the new
algorithm allows also approximating the solution to the primal problem. We additionally assume
that the variance of the stochastic approximation V® (A, £) for the gradient of ¢ can be controlled
and made as small as we desire. This can be done, for example by mini-batching the stochastic
approximation. Finally, since V®(X, &) = b — AVEF*(—AT)\ €) = b — Ax(—AT ), €), on each
iteration, to find V®(\ ¢) we find the vector z(—AT ), £) and use it for the primal iterates.



Theorem 1. Let ¢ have L-Lipschitz-continuous gradient w.r.t. 2-norm and ||X\*||o < R, where X\* is
a solution of dual problem (D). Given desired accuracy ¢, assume that, at each iteration of Algorithm
the stochastic gradient V®(\y,, &) is chosen in such a way that E¢|V® (g, &) — V() |13 <

%‘;"“. Then, for any € > 0 and N > 0, and expectation & w.r.t. all the randomness &1, . .., En, the
output T generated by the Algorithm|l|satisfies
R . 16LR? ¢ . 16LR 15
fEin)—f §W+§ and HAExN—bHQSW‘Fﬁ- (6)

In step 7 of Algorithm m we can use a batch of size M and 1; Ziw:l 2(Akg1,&)4) to update
Z+1- Then, under reasonable assumptions, & concentrates around Ez 5 [23] and, if f is Lipschitz-
continuous, we obtain that (6) holds with large probability with £ instead of Ez .

4 Solving the Barycenter Problem

In this section, we apply the general al-
gorithm APDSGD to solve the primal-
dual pair of problems (3)-{@) and ap-
proximate the regularized Wasserstein
barycenter which is a solution to (3).
First, in Lemma [2] we make several 2: for k =0,...,N—1ldo )
technical steps to take care of the as- >:  Find a1 > 0from Cit1:= Cptagpr = 2Lag,,.
sumption of Theorem (). Then, we Tht1 = g1/ Crpr.

introduce a change of dual variable so Akt = Trp1Cr + (1 — Trp1)nk

that the step 5 of Algorithm[I|becomes Ch1 = Gk — k1 VO (A1, Spt1)-

feasible for decentralized distributed Mk+1 = Tht1Gk+1 + (1 = Tog1) - .

setting. After that, we provide our al-  7* ZTk41 = Trp1Z( At 15 Epr1) + (1 — Thy1) 2k
gorithm for regularized Wasserstein 5 end for o

barycenter problem with its complex- Output: The points &, 7y .

ity analysis.

Lemma 2. The gradient of the objective function VW3 (X) in the dual problem @) is Anax(W)/v-
Lipschitz-continuous w.r.t. 2-norm. If its stochastic approximation is defined as

Algorithm 1 Accelerated Primal-Dual Stochastic Gradient
Method (APDSGD)
Input: Number of iterations N.

I: COZQ():O,?]O:CQ:AO:.’%O:O.

AN AN

[VWI(N)]; = Z VWi, VW2, (), i = 1,...,m, with
VW* ;\ G\ 5> 7 and 7 /\Jayj eXp(([S\ ]l__ Cl(YTJ))/’y) .
v ) = 37 Zp Y s X720 = > i=1 exp(([Ajle — ce(Yi)) /7)

where M is the batch size, /\j = [VW )\]J, j=1..,m, Y1 ..., Y. is a sample from the measure
pjr g =1,om. ThenByy oy oy MVW*( ) = VW3 (X) and

E 7“_7M||§W;‘( ) = YW < Amax(W)m/M, X€R™.  (8)

(7

Y ~opg,g=1,...m,r=1

Based on this lemma, we see that if, on each iteration of Algorithm |1} the mini-batch size M}, satisfies
M, > % the assumptions of Theoremhold.

For the particular problem @) the step 5 of Algorithm [I| can be written block-wise [C;1]i =
[Crli — ar1 05 VIV VW; u; ([VWAg41];), i = 1, ..., m. Unfortunately, this update can not

be made in the decentralized setting since the sparsity pattern of /W ; can be different from W
and this will require some agents to get information not only from their neighbors. To overcome this

obstacle, we change the variables and denote A = v WA, n=vWn, ¢ = VW(. Then the step 5
of Algonthmlbecomes [Crp1li = [Chli — awsn Py W”VWWL], (Aet1ly),i=1,.

Theorem 2. Under the assumptions of Section 2| Algorithm @ after N = / 16)\max(W)R2 /(&)
iterations returns an approximation py for the barycenter, which satisfies

Zw7 i ZW7 w(p)i) e |[VWEpn|2 < e/R. 9)



Amax WIR? Amax(W)mR?
ey ’ €2

The total complexity is O (mn max { }) arithmetic operations.

We underline that even if the measures
Wi, = 1,...,m are discrete with large
support size, it can be more efficient . . _ .
to apply our stochastic algorithm than Input: Each agent 1€ V is assigned its measure f;. .
a deterministic algorithm. We now ex-  1: All agents set [Mo]i = [Coli = [Aoli = [Po]i = 0 € R,
plain it in more details. If a measure /. Co = ap = 0and N

is discrete, then W* () in Lemma 2 Foreachagenti € V:
%u() 3: for k=0,..., N—1 do

[ is represented as a finite expecta- ) 9
tion, i.e., a sum of functions instead of 4 Find g1 > 0 from Crtr = Crt a1 = 2Laj,,.
an integral, and can be found explic- i1 = Wt1/Clogr.

itly. In the same way, its gradient and, 5 Set My41 = max {1, [myCr1/(ak+1€)]}

hence, VW2 () in () can be found 6 Art1li = o1 [Crli + (1 — Toeg1) [T ]

explicitly in a deterministic way. Then 7. Generate M}, 1 samples {Yr’}f\i"f ! from the measure

a determinjstic accelerated qecentral— 11; and set VW: » ([S\k-i-l]i) as in (7).
ized algorithm can be applied to ap- i

proximate the regularized barycenter. & Share VIVJ (Ara]s) with {5 [ (i, 5) € E }_
Let us assfume for sinl'];)licfit}}/1 that the ~ 9: [Cr1li = [Crli —art1 2oy Wi VW3 1 (Aktal;)
support of measure . is of the size n. _ = _
Th%ﬂ the calculation gfthe exact gradi- 10: [?’““]i = Th+1[Crpali + (1 - T 1) [ 41)i R
ent of W2 () requires O(n?) arith- - [Prgali = Teapi((Megali Yi) + (1 = 7)) [Prsalis
metic operations and the overall com- where p; (-, -) is defined in
plexity of the deterministic algorithm 12: end f(lr
Output: py.

is O (mn2 )\maX(W)RQ/’ys) For

comparison, the complexity of our randomized approach in Theorem[2]is proportional to n, but not to
n?. So, our randomized approach is superior in the regime of large n.

Algorithm 2 Distributed computation of Wasserstein
barycenter

5 Experimental Results

In this section, we present experimental results for Algorithm[2] Initially, we consider a set of agents
over a network, where each agent i can samples from a privately held random variable Y; ~ N (6;,v?),
where A(6,v?) is a univariate Gaussian distribution with mean 6 and variance v?. Moreover, we
set 0; € [—4,4] and v; € [0.1,0.6]. The objective is to compute a discrete distribution p € S1(n)
that solves (2). We assume n = 100 and the support of p is a set of 100 equally spaced points on
the segment [—5, 5]. Figure [l|shows the performance of Algorithm for four classes of networks:
complete, cycle, star, and Erdés-Rényi. Moreover, we show the behavior for different network sizes,
namely: m = 10,100, 200, 500. Particularly we use two metrics: the function value of the dual
problem and the distance to consensus, i.e., W>(X) and C(p) := |[VIWB||2. As expected, when the
network is a complete graph, the convergence to the final value and the distance to consensus decreases
rapidly. Nevertheless, the performance in graphs with degree regularity, such as the cycle graph
and the Erdés-Rényi random graph, is similar to a complete graph with much less communication
overhead. For the star graph, which has the worst case between the maximum and minimum number
of neighbors among all nodes, the algorithm performs poorly. Figure 2] shows the convergence of the
local barycenter of a set of von Mises distributions. Each agent over an Erd6s-Rényi random graph
can access private realizations from a von Mises random variable. Particularly, for the cases of von
Mises distributions, we have used the angle between two points distance function. Figure [3|shows the
computed local barycenter of 9 agents in a network of 500 nodes at different iteration numbers. Each
agent holds a local copy of a sample of the digit 2 (56 x 56 image) from the MNIST dataset [29].
All agents converge to the same image that structurally represents the aggregation of the original
500 images held over the network. Finally, Figure 4] shows a simple example of an application of
Wasserstein barycenter on medical image aggregation where we have 4 agents connected over a cycle
graph and each agent holds a magnetic resonance image (256 x 256) from the IXI dataset [1].

ﬁ Mt i ([Aks1ls, ;) instead of p; ([Axt1]s, Y1), which does not

change the statement of Theorem[2] but reduces the variance of pv in practice. Moreover, under mild assumptions,
we can obtain high-probability analogue to inequalities (9)).

“In the experiments, we use
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Figure 1: Dual function value and distance to consensus for 200, 100, 10, 500 agents, My, = 100 and v = 0.1.
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Figure 2: Wasserstein barycenter of von Mises distributions for 10 agents at different iteration numbers.
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Figure 3: Wasserstein barycenter of digit 2 from the MNIST dataset [29]. Each block shows a subset of 9
randomly selected local barycenters at different time instances.

N =1 N =100 N =1000 N = 6000 N = 10000
Figure 4: Wasserstein barycenter for a subset of images from the IXI dataset [1]]. Each block shows the local
barycenters of 4 agents at different time instances.

6 Conclusions

We propose a novel distributed algorithm for regularized Wasserstein barycenter problem for a set
of continuous measures stored distributedly over a network of agents. Our algorithm is based on
a new general algorithm for the solution of stochastic convex optimization problems with linear
constraints. In contrast to the recent literature, our algorithm can be executed over arbitrary connected
and static networks where nodes are oblivious to the network topology, which makes it suitable for
large-scale network optimization setting. Additionally, our analysis indicates that the randomization
strategy provides faster convergence rates than the deterministic procedure when the support size of
the barycenter is large. The implementation of our algorithm on real networks, requires further work,
as well as its extension to the decentralized distributed setting of Sinkhorn-type algorithms [6]] for
regularized Wasserstein barycenter and other related algorithms, e.g., Wasserstein propagation [41]].
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