
Data-Driven Clustering via Parameterized Lloyd’s
Families

Maria-Florina Balcan
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

ninamf@cs.cmu.edu

Travis Dick
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213
tdick@cs.cmu.edu

Colin White
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, PA 15213

crwhite@cs.cmu.edu

Abstract

Algorithms for clustering points in metric spaces is a long-studied area of research.
Clustering has seen a multitude of work both theoretically, in understanding the
approximation guarantees possible for many objective functions such as k-median
and k-means clustering, and experimentally, in finding the fastest algorithms and
seeding procedures for Lloyd’s algorithm. The performance of a given clustering
algorithm depends on the specific application at hand, and this may not be known
up front. For example, a “typical instance” may vary depending on the application,
and different clustering heuristics perform differently depending on the instance.
In this paper, we define an infinite family of algorithms generalizing Lloyd’s al-
gorithm, with one parameter controlling the initialization procedure, and another
parameter controlling the local search procedure. This family of algorithms in-
cludes the celebrated k-means++ algorithm, as well as the classic farthest-first
traversal algorithm. We design efficient learning algorithms which receive samples
from an application-specific distribution over clustering instances and learn a near-
optimal clustering algorithm from the class. We show the best parameters vary
significantly across datasets such as MNIST, CIFAR, and mixtures of Gaussians.
Our learned algorithms never perform worse than k-means++, and on some datasets
we see significant improvements.

1 Introduction

Clustering is a fundamental problem in machine learning with applications in many areas including
text analysis, transportation networks, social networks, and so on. The high-level goal of clustering
is to divide a dataset into natural subgroups. For example, in text analysis we may want to divide
documents based on topic, and in social networks we might want to find communities. A common
approach to clustering is to set up an objective function and then approximately find the optimal
solution according to the objective. There has been a wealth of both theoretical and empirical research
in clustering using this approach Gonzalez [1985], Charikar et al. [1999], Arya et al. [2004], Arthur
and Vassilvitskii [2007], Kaufman and Rousseeuw [2009], Ostrovsky et al. [2012], Byrka et al. [2015],
Ahmadian et al. [2017].

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

The most popular method in practice for clustering is local search, where we start with k centers and
iteratively make incremental improvements until a local optimum is reached. For example, Lloyd’s
method (sometimes called k-means) Lloyd [1982] and k-medoids Friedman et al. [2001], Cohen et al.
[2016] are two popular local search algorithms. There are multiple decisions an algorithm designer
must make when using a local search algorithm. First, the algorithm designer must decide how to seed
local search, e.g., how the algorithm chooses the k initial centers. There is a large body of work on
seeding algorithms, since the initial choice of centers can have a large effect on both the quality of the
outputted clustering and the time it takes for the algorithm to converge Higgs et al. [1997], Pena et al.
[1999], Arai and Barakbah [2007]. The best seeding method often depends on the specific application
at hand. For example, a “typical problem instance” in one setting may have significantly different
properties from that in another, causing some seeding methods to perform better than others. Second,
the algorithm designer must decide on an objective function for the local search phase (k-means,
k-median, etc.) For some applications, there is an obvious choice. For instance, if the application is
Wi-Fi hotspot location, then the explicit goal is to minimize the k-center objective function. For many
other applications such as clustering communities in a social network, the goal is to find clusters
which are close to an unknown target clustering, and we may use an objective function for local
search in the hopes that approximately minimizing the chosen objective will produce clusterings
which are close to matching the target clustering (in terms of the number of misclassified points). As
before, the best objective function for local search may depend on the specific application.

In this paper, we show positive theoretical and empirical results for learning the best initialization and
local search procedures over a large family of algorithms. We take a transfer learning approach where
we assume there is an unknown distribution over problem instances corresponding to our application,
and the goal is to use experience from the early instances to perform well on the later instances. For
example, if our application is clustering facilities in a city, we would look at a sample of cities with
existing optimally-placed facilities, and use this information to find the empirically best seeding/local
search pair from an infinite family, and we use this pair to cluster facilities in new cities.

(α, β)-Lloyds++ We define an infinite family of algorithms generalizing Lloyd’s method, with two
parameters α and β. Our algorithms have two phases, a seeding phase to find k initial centers
(parameterized by α), and a local search phase which uses Lloyd’s method to converge to a local
optimum (parameterized by β). In the seeding phase, each point v is sampled with probability propor-
tional to dmin(v, C)α, where C is the set of centers chosen so far and dmin(v, C) = minc∈C d(v, c).
Then Lloyd’s method is used to converge to a local minima for the `β objective. By ranging
α ∈ [0,∞)∪ {∞} and β ∈ [1,∞)∪ {∞}, we define our infinite family of algorithms which we call
(α, β)-Lloyds++. Setting α = β = 2 corresponds to the k-means++ algorithm Arthur and Vassilvit-
skii [2007]. The seeding phase is a spectrum between random seeding (α = 0), and farthest-first
traversal Gonzalez [1985], Dasgupta and Long [2005] (α = ∞), and the Lloyd’s step is able to
optimize over common objectives including k-median (β = 1), k-means (β = 2), and k-center
(β =∞). We design efficient learning algorithms which receive samples from an application-specific
distribution over clustering instances and learn a near-optimal clustering algorithm from our family.

Theoretical analysis In Section 4, we prove that O
(

1
ε2 min(T, k) log n

)
samples are sufficient to

guarantee the empirically optimal parameters (α̂, β̂) have expected cost at most ε higher than the
optimal parameters (α∗, β∗) over the distribution, with high probability over the random sample,
where n is the size of the clustering instances and T is the maximum number of Lloyd’s iterations.
The key challenge is that for any clustering instance, the cost of the outputted clustering is not even
a continuous function in α or β since a slight tweak in the parameters may lead to a completely
different run of the algorithm. We overcome this obstacle by showing a strong bound on the expected
number of discontinuities of the cost function, which requires a delicate reasoning about the structure
of the “decision points” in the execution of the algorithm; in other words, for a given clustering
instance, we must reason about the total number of outcomes the algorithm can produce over the full
range of parameters. This allows us to use Rademacher complexity, a distribution-specific technique
for achieving uniform convergence.

Next, we complement our sample complexity result with a computational efficiency result. Specif-
ically, we give a novel meta-algorithm which efficiently finds a near-optimal value α̂ with high
probability. The high-level idea of our algorithm is to run depth-first-search over the “execution tree”
of the algorithm, where a node in the tree represents a state of the algorithm, and edges represent a
decision point. A key step in our meta-algorithm is to iteratively solve for the decision points of the
algorithm, which itself is nontrivial since the equations governing the decision points do not have

2

a closed-form solution. We show the equations have a certain structure which allows us to binary
search through the range of parameters to find the decision points.

Experiments We give a thorough experimental analysis of our family of algorithms by evaluating their
performance on a number of different real-world and synthetic datasets including MNIST, Cifar10,
CNAE-9, and mixtures of Gaussians. In each case, we create clustering instances by choosing subsets
of the labels. For example, we look at an instance of MNIST with digits {0, 1, 2, 3, 4}, and also an
instance with digits {5, 6, 7, 8, 9}. We show the the optimal parameters transfer from one instance
to the other. Among datasets, there is no single parameter setting that is nearly optimal, and for
some datasets, the best algorithm from the (α, β)-Lloyds++ family performs significantly better than
known algorithms such as k-means++ and farthest-first traversal.

2 Related Work

Lloyd’s method for clustering The iterative local search method for clustering, known as Lloyd’s
algorithm or sometimes called k-means, is one of the most popular algorithms for k-means clustering
Lloyd [1982], and improvements are still being found Max [1960], MacQueen et al. [1967], Dempster
et al. [1977], Pelleg and Moore [1999], Kanungo et al. [2002], Kaufman and Rousseeuw [2009].
Many different initialization approaches have been proposed Higgs et al. [1997], Pena et al. [1999],
Arai and Barakbah [2007]. When using d2-sampling to find the initial k centers, the algorithm is
known as k-means++, and the approximation guarantee is provably O(log k) Arthur and Vassilvitskii
[2007].

Learning to Learn A recent paper shows positive results for learning linkage-based algorithms
with pruning over a distribution over clustering instances Balcan et al. [2017], although there is
no empirical study done. There are several related models for learning the best representation and
transfer learning for clustering. Ashtiani and Ben-David [2015] show how to learn an instance-specific
embedding for a clustering instance, such that k-means does well over the embedding. There has
also been work on related questions for transfer learning on unlabeled data and unsupervised tasks
Raina et al. [2007], Yang et al. [2009], Jiang and Chung [2012]. To our knowledge, there is no prior
work on learning the best clustering objective for a specific distribution over problem instances, given
labeled clustering instances for training.

3 Preliminaries

Clustering A clustering instance V consists of a point set V of size n, a distance metric d (such
as Euclidean distance in Rd), and a desired number of clusters 1 ≤ k ≤ n. A clustering C =
{C1, . . . , Ck} is a k-partitioning of V . Often in practice, clustering is carried out by approximately
minimizing an objective function (which maps each clustering to a nonzero value). Common objective
functions such as k-median and k-means come from the `p family, where each cluster Ci is assigned

a center ci and cost(C) =
(∑

i

∑
v∈Ci d(v, ci)

p
) 1
p (k-median and k-means correspond to p = 1 and

p = 2, respectively). There are two distinct goals for clustering depending on the application. For
some applications such as computing facility locations, the algorithm designer’s only goal is to find
the best centers, and the actual partition {C1, . . . , Ck} is not needed. For many other applications
such as clustering documents by subject, clustering proteins by function, or discovering underlying
communities in a social network, there exists an unknown “target” clustering C∗ = {C∗1 , . . . , C∗k},
and the goal is to output a clustering C which is close to C∗. Formally, we define C and C′ to be
ε-close if there exists a permutation σ such that

∑k
i=1 |Ci \ C ′σ(i)| ≤ εn. For these applications, the

algorithm designer chooses an objective function while hoping that minimizing the objective function
will lead to a clustering that is close to the target clustering. In this paper, we will focus on the cost
function set to the distance to the target clustering, however, our analysis holds for an abstract cost
function cost which can be set to an objective function or any other well-defined measure of cost.

Algorithm Configuration In this work, we assume that there exists an unknown, application-specific
distribution D over a set of clustering instances such that for each instance V , |V | ≤ n. We suppose
there is a cost function that measures the quality of a clustering of each instance. As discussed in
the previous paragraph, we can set the cost function to be the expected Hamming distance of the
returned clustering to the target clustering, the cost of an `p objective, or any other function. The

3

learner’s goal is to find the parameters α and β that approximately minimize the expected cost with
respect to the distribution D. Our main technical results bound the intrinsic complexity of the class
of (α, β)-Lloyds++ clustering algorithms, which leads to generalization guarantees through standard
Rademacher complexity Bartlett and Mendelson [2002], Koltchinskii [2001]. This implies that the
empirically optimal parameters are also nearly optimal in expectation.

4 (α, β)-Lloyds++

In this section, we define an infinite family of algorithms generalizing Lloyd’s algorithm, with one
parameter controlling the the initialization procedure, and another parameter controlling the local
search procedure. Our main results bound the intrinsic complexity of this family of algorithms
(Theorems 4 and 5) and lead to sample complexity results guaranteeing the empirically optimal
parameters over a sample are close to the optimal parameters over the unknown distribution. We
measure optimality in terms of agreement with the target clustering. We also show theoretically that
no parameters are optimal over all clustering applications (Theorem 2). Finally, we give an efficient
algorithm for learning the best initialization parameter (Theorem 7).

Our family of algorithms is parameterized by choices of α ∈ [0,∞) ∪ {∞} and β ∈ [1,∞) ∪ {∞}.
Each choice of (α, β) corresponds to one local search algorithm. A summary of the algorithm is as
follows (see Algorithm 1). The algorithm has two phases. The goal of the first phase is to output
k initial centers. Each center is iteratively chosen by picking a point with probability proportional
to the minimum distance to all centers picked so far, raised to the power of α. The second phase is
an iterative two step procedure similar to Lloyd’s method, where the first step is to create a Voronoi
partitioning of the points induced by the initial set of centers, and then a new set of centers is chosen
by computing the `β mean of each Voronoi tile.

Algorithm 1 (α, β)-Lloyds++ Clustering
Input: Instance V = (V, d, k), parameter α.
Phase 1: Choosing initial centers with dα-sampling
1. Initialize C = ∅ and draw a vector ~Z = {z1, . . . , zk} from [0, 1]k uniformly at random.
2. For each t = 1, . . . , k:

(a) Partition [0, 1] into n intervals, where there is an interval Ivi for each vi with size equal to
the probability of choosing vi during dα-sampling in round t (see Figure 1).

(b) Denote ct as the point such that zt ∈ Ict , and add ct to C.
Phase 2: Lloyd’s algorithm
5. Set C ′ = ∅. Let {C1, . . . , Ck} denote the Voronoi tiling of V induced by centers C.
6. Compute argminx∈V

∑
v∈Ci d(x, v)β for all 1 ≤ i ≤ k, and add it to C ′.

7. If C ′ 6= C, set C = C ′ and goto 5.
Output: Centers C and clustering induced by C.

Our goal is to find parameters which return clusterings close to the ground-truth in expectation.
Setting α = β = 2 corresponds to the k-means++ algorithm. The seeding phase is a spectrum
between random seeding (α = 0), and farthest-first traversal (α = ∞), and the Lloyd’s algorithm
can optimize for common clustering objectives including k-median (β = 1), k-means (β = 2), and
k-center (β =∞).

We start with two structural results about the family of (α, β)-Lloyds++ clustering algorithms. The
first shows that for sufficiently large α, phase 1 of Algorithm 1 is equivalent to farthest-first traversal.
This means that it is sufficient to consider α parameters in a bounded range.

Farthest-first traversal Gonzalez [1985] starts by choosing a random center, and then iteratively
choosing the point farthest to all centers chosen so far, until there are k centers. We assume that ties
are broken uniformly at random.

Lemma 1. Given a clustering instance V and δ > 0, if α >
log(nkδ)

log s , then dα-sampling will give the
same output as farthest-first traversal with probability > 1− δ. Here, s denotes the minimum ratio
d1/d2 between two distances d1 > d2 in the point set.

4

For some datasets, 1
log s might be very large. In Section 5, we empirically observe that for all datasets

we tried, (α, β)-Lloyds++ behaves the same as farthest-first traversal for α > 20. Also, in the full
version of this paper, we show that if the dataset satisfies a stability assumption called separability
Kobren et al. [2017], Pruitt et al. [2011], then (α, β)-Lloyds++ outputs the same clustering as
farthest-first traversal with high probability when α > log n.

Next, to motivate learning the best parameters, we show that for any pair of parameters (α∗, β∗), there
exists a clustering instance such that (α∗, β∗)-Lloyds++ outperforms all other values of α, β. This
implies that dβ-sampling is not always the best choice of seeding for the `β objective. Let clusα,β(V)
denote the expected cost of the clustering outputted by (α, β)-Lloyds++, with respect to the target
clustering. Formally, clusα,β(V) = E~Z∼[0,1]k

[
clusα,β

(
V, ~Z

)]
, where clusα,β

(
V, ~Z

)
is the

cost of the clustering outputted by (α, β)-Lloyds++ with randomness ~Z] ∈ [0, 1]k (see line 1 of
Algorithm 1).

Theorem 2. For α∗ ∈ [0,∞) ∪ {∞} and β∗ ∈ [1,∞) ∪ {∞}, there exists a clustering instance V
whose target clustering is the optimal `β∗ clustering, such that clusα∗,β∗(V) < clusα,β(V) for
all (α, β) 6= (α∗, β∗).

Sample efficiency Now we give sample complexity bounds for learning the best algorithm from
the class of (α, β)-Lloyds++ algorithms. We analyze the phases of Algorithm 1 separately. For
the first phase, our main structural result is to show that for a given clustering instance and value
of β, with high probability over the randomness in Algorithm 1, the number of discontinuities
of the cost function clusα,β

(
V, ~Z

)
as we vary α ∈ [0, αh] is O(nk(log n)αh). Our analysis

crucially harnesses the randomness in the algorithm to achieve this bound. For instance, if we use a
combinatorial approach as in prior algorithm configuration work, we would only achieve a bound
of nO(k), which is the total number of sets of k centers. For completeness, we give a combinatorial
proof of O(nk+3) discontinuities in the full version of this paper.

To show the O(nk(log n)αh) upper bound, we start by giving a few definitions of concepts used in
the proof. Assume we start to run Algorithm 1 without a specific setting of α, but rather a range
[α`, αh], for some instance V and randomness ~Z. In some round t, if Algorithm 1 would choose a
center ct for every setting of α ∈ [α`, αh], then we continue normally. However, if the algorithm
would choose a different center depending on the specific value of α used from the interval [α`, αh],
then we fork the algorithm, making one copy for each possible center. In particular, we partition
[α`, αh] into a finite number of sub-intervals such that the next center is constant on each interval.
The boundaries between these intervals are “breakpoints”, since as α crosses those values, the next
center chosen by the algorithm changes. Our goal is to bound the total number of breakpoints over all
k rounds in phase 1 of Algorithm 1, which bounds the number of discontinuities of the cost of the
outputted clustering as a function of α over [α`, αh].

A crucial step in the above approach is determining when to fork and where the breakpoints are
located. Recall that in round t of Algorithm 1, each datapoint vi has an interval in [0, 1] of size dαi

Dn(α) ,
where di is the minimum distance from vi to the current set of centers, and Dj(α) = dα1 + · · ·+ dαj .

Furthermore, the interval is located between Di−1(α)
Dn(α) and Di(α)

Dn(α) (see Figure 1). WLOG, we assume
d1 ≥ · · · ≥ dn. We prove the following nice structure about these intervals.

Lemma 3. Assume that v1, . . . , vn are sorted in decreasing distance from a set C of centers. Then
for each i = 1, . . . , n, the function α 7→ Di(α)

Dn(α) is monotone increasing and continuous along [0,∞).

Furthermore, for all 1 ≤ i ≤ j ≤ n and α ∈ [0,∞), we have Di(α)
Dn(α) ≤

Dj(α)
Dn(α) .

This lemma guarantees two crucial properties. First, we know that for every (ordered) set C of t ≤ k
centers chosen by phase 1 of Algorithm 1 up to round t, there is a single interval (as opposed to a
more complicated set) of α-parameters that would give rise to C. Second, for an interval [α`, αh],
the set of possible next centers is exactly vi` , vi`+1, . . . , vih , where i` and ih are the centers sampled
when α is α` and αh, respectively (see Figure 1). Now we are ready to prove our main structural
result. Formally, we define seedα(V, ~Z) as the outputted centers from phase 1 of Algorithm 1 on
instance V with randomness ~Z.

5

Figure 1: The algorithm chooses v3 as a center (left). In the interval [α`, α`+1], the algorithm may
choose v4, v3, v2, or v1 as a center, based on the value of α (right).

Theorem 4. Given a clustering instance V , the expected number of discontinuities of seedα(V, ~Z)
as a function of α over [0, αh] isO(nk(log n)αh). Here, the expectation is over the uniformly random
draw of ~Z ∈ [0, 1]k.

Proof sketch. Consider round t of a run of Algorithm 1. Suppose at the beginning of round t, there
are L possible states of the algorithm, e.g., L sets of α such that within a set, the choice of the first
t − 1 centers is fixed. By Lemma 3, we can write these sets as [α0, α1], . . . , [αL−1, αL], where
0 = α0 < · · · < αL = αh. Given one interval, [α`, α`+1], we claim the expected number of new
breakpoints #It,` by choosing a center in round t is bounded by 4n log n(α`+1 − α`). Note that
#It,` + 1 is the number of possible choices for the next center in round t using α in [α`, α`+1].

The claim gives an upper bound on the expected number of new breakpoints, where the expectation is
only over zt (the uniformly random draw from [0, 1] used by Algorithm 1 in round t), and the bound
holds for any given configuration of d1 ≥ · · · ≥ dn. Assuming the claim, we can finish off the proof
by using linearity of expectation as follows. Let #I denote the total number of discontinuities of
seedα(V, ~Z).

EZ∈[0,1]k [#I] ≤ EZ∈[0,1]k

[
k∑
t=1

L∑
`=1

(#It,`)

]
≤

k∑
t=1

L∑
`=1

EZ∈[0,1]k [#It,`] ≤ 4nk log n · αh.

Now we will prove the claim. Given zt ∈ [0, 1], let x and y denote the minimum indices s.t.
Dx(α`)
Dn(α`)

> zt and Dy(α`+1)
Dn(α`+1) > zt, respectively. Then from Lemma 3, the number of breakpoints is

exactly x − y. Therefore, our goal is to compute Ezt∈[0,1][x − y]. One method is to sum up the
expected number of breakpoints for each interval Iv by bounding the maximum possible number of
breakpoints given that zt lands in Iv . However, this will sometimes lead to a bound that is too coarse.
For example, if α`+1 − α` = ε ≈ 0, then for each bucket Ivj , the maximum number of breakpoints
is 1, but we want to show the expected number of breakpoints is proportional to ε. To tighten up
this analysis, we will show that for each bucket, the probability (over zt) of achieving the maximum
number of breakpoints is low.

Assuming that zt lands in a bucket Ivj , we further break into cases as follows. Let i denote the
minimum index such that Di(α`+1)

Dn(α`+1) >
Dj(α`)
Dn(α`)

. Note that i is a function of j, α`, and α`+1, but it is

independent of zt. If zt is less than Di(α`+1)
Dn(α`+1) , then we have the maximum number of breakpoints

possible, since the algorithm chooses center vi−1 when α = α`+1 and it chooses center vj when
α = α`. The number of breakpoints is therefore j− i+ 1, by Lemma 3. We denote this event by Et,j ,
i.e., Et,j is the event that in round t, zt lands in Ivj and is less than Di(α`+1)

Dn(α`+1) . If zt is instead greater

than Di(α`+1)
Dn(α`+1) , then the algorithm chooses center vi when α = α`+1, so the number of breakpoints

is ≤ j − i. We denote this event by E′t,j . Note that Et,j and E′t,j are disjoint and Et,j ∪ E′t,j is the
event that zt ∈ Ivj .

6

Within an interval Ivj , the expected number of breakpoints is

P (Et,j)(j − i+ 1) + P (E′t,j)(j − i) = P (Et,j ∪ Et,j)(j − i) + P (E′t,j).

We will show that j − i and P (Et,j) are both proportional to (log n)(α`+1 − α`), which finishes off
the claim.

First we upper bound P (Et,j). Recall this is the probability that zt is in between Dj(α`)
Dn(α`)

and
Di(α`+1)
Dn(α`+1) , which we can show is at most (4 log n)(α`+1 − α`) by upper bounding the derivative∣∣∣ ∂∂α (Dj(α)

Dn(α)

)∣∣∣.
Now we upper bound j − i. Recall that j − i represents the number of intervals between Di(α`)

Dn(α`)

and Dj(α`)
Dn(α`)

, and the smallest interval in this range is
d
α`
j

Dn(α`)
. Therefore, we can bound j − i by

dividing Dj(α`)
Dn(α`)

− Di(α`)
Dn(α`)

by
d
α`
j

Dn(α`)
. We can again use the derivative of Di(α)

Dn(α) to show this value is
proportional to 4 log n(α`+1 − α`). This concludes the proof.

Now we analyze phase 2 of Algorithm 1. Since phase 2 does not have randomness, we use combina-
torial techniques. We define lloydsβ(V, C, T) as the cost of the outputted clustering from phase 2
of Algorithm 1 on instance V with initial centers C, and a maximum of T iterations.

Theorem 5. Given T ∈ N, a clustering instance V , and a fixed set C of initial centers, the number
of discontinuities of lloydsβ(V, C, T) as a function of β on instance V is O(min(n3T , nk+3)).

Proof sketch. Given V and a set of initial centers C, we bound the number of discontinuities
introduced in the Lloyd’s step of Algorithm 1. First, we give a bound of nk+3 which holds for
any value of T . Recall that Lloyd’s algorithm is a two-step procedure, and note that the Voronoi
partitioning step is independent of β. Let {C1, . . . , Ck} denote the Voronoi partition of V induced by
C. Given one of these clustersCi, the next center is computed by minc∈Ci

∑
v∈Ci d(c, v)β . Given any

c1, c2 ∈ Ci, the decision for whether c1 is a better center than c2 is governed by
∑
v∈Ci d(c1, v)β <∑

v∈Ci d(c2, v)β . By a consequence of Rolle’s theorem, this equation has at most 2n+ 1 roots. This
equation depends on the set C of centers, and the two points c1 and c2, therefore, there are

(
n
k

)
·
(
n
2

)
equations each with 2n+ 1 roots. We conclude that there are nk+3 total intervals of β such that the
outcome of Lloyd’s method is fixed.

Next we give a different analysis which bounds the number of discontinuities by n3T , where T is the
maximum number of Lloyd’s iterations. By the same analysis as the previous paragraph, if we only
consider one round, then the total number of equations which govern the output of a Lloyd’s iteration
is
(
n
2

)
, since the set of centers C is fixed. These equations have 2n+ 1 roots, so the total number of

intervals in one round is O(n3). Therefore, over T rounds, the number of intervals is O(n3T).

By combining Theorem 4 with Theorem 5, and using standard learning theory results, we can bound
the sample complexity needed to learn near-optimal parameters α, β for an unknown distribution
D over clustering instances. Recall that clusα,β(V) denotes the expected cost of the clustering
outputted by (α, β)-Lloyds++, with respect to the target clustering, and let H denote the maximum
value of clusα,β(V).

Theorem 6. Given αh and a sample of size m = O
((

H
ε

)2 (
min(T, k) log n+ log 1

δ + logαh
))

from
(
D × [0, 1]k

)m
, with probability at least 1− δ over the choice of the sample, for all α ∈ [0, αh]

and β ∈ [1,∞) ∪ {∞},
∣∣∣ 1
m

∑m
i=1 clusα,β

(
V (i), ~Z(i)

)
− E
V∼D

[clusα,β (V)]
∣∣∣ < ε.

Note that a corollary of Theorem 6 and Lemma 1 is a uniform convergence bound for all α ∈
[0,∞) ∪ {∞}, however, the algorithm designer may decide to set αh <∞.

Computational efficiency In this section, we present an algorithm for tuning α whose running
time scales with the true number of discontinuities over the sample. Combined with Theorem 4, this
gives a bound on the expected running time of tuning α.

7

Algorithm 2 Dynamic algorithm configuration

Input: Instance V = (V, d, k), randomness ~Z, αh, ε > 0
1. Initialize Q to be an empty queue, then push the root node (〈〉, [0, αh]) onto Q.
2. While Q is non-empty

(a) Pop node (C,A) from Q with centers C and alpha interval A.
(b) For each point ui that can be chosen as the next center, compute Ai = {α ∈ A :

ui is the sampled center} up to error ε and set Ci = C ∪ {ui}.
(c) For each i, if |Ci| < k, push (Ci, Ai) onto Q. Otherwise, output (Ci, Ai).

The high-level idea of our algorithm is to directly enumerate the set of centers that can possibly
be output by dα-sampling for a given clustering instance V and pre-sampled randomness ~Z. We
know from the previous section how to count the number of new breakpoints at any given state in the
algorithm, however, efficiently solving for the breakpoints poses a new challenge. From the previous
section, we know the breakpoints in α occur when Di(α)

Dn(α) = zt. This is an exponential equation with
n terms, and there is no closed-form solution for α. Although an arbitrary equation of this form may
have up to n solutions, our key observation is that if d1 ≥ · · · ≥ dn, then Di(α)

Dn(α) must be monotone
decreasing (from Lemma 3), therefore, it suffices to binary search over α to find the unique solution
to this equation. We cannot find the exact value of the breakpoint from binary search (and even
if there was a closed-form solution for the breakpoint, it might not be rational), however we can
find the value to within additive error ε for all ε > 0. We show that the expected cost function is
(Hnk log n)-Lipschitz in α, therefore, it suffices to run O

(
log Hnk

ε

)
rounds of binary search to find

a solution whose expected cost is within ε of the optimal cost. This motivates Algorithm 2.
Theorem 7. Given parameters αh > 0, ε > 0, β ≥ 1, and a sample S of size m =

O
((

H
ε

)2 (
min(T, k) log n+ log 1

δ + logαh
))

from
(
D × [0, 1]k

)m
, run Algorithm 2 on each sam-

ple and collect all break-points (i.e., boundaries of the intervals Ai). With probability at least 1− δ,
the break-point ᾱ with lowest empirical cost satisfies |clusᾱ,β(S)−min0≤α≤αh clusα,β(S)| < ε.
The total running time to find the best break point is O

(
mn2k2αh log

(
nH
ε

)
log n

)
.

Proof sketch. First we argue that one of the break-points output by Algorithm 2 on the sample is
approximately optimal. If we exactly solved for the break-points, then every value of α ∈ [0, αh]
would produce exactly the same clusterings on the sample one of the break-points, so some break-
point must be empirically optimal. By Theorem 6 this break-point is also approximately optimal in
expectation. Since the algorithm approximately calculates the break-points to within additive error
ε, we are guaranteed that all true break-points are within distance ε of one output by the algorithm.
In the full version of the paper, we show that the expected cost function is (Hn2k log n)-Lipschitz.
Therefore, the best approximate break-point has approximately optimal expected cost.

Now we analyze the runtime of Algorithm 2. Let (C,A) be any node in the algorithm, with centers
C and alpha interval A = [α`, αh]. Sorting the points in V according to their distance to C has
complexity O(n log n). Finding the points sampled by dα-sampling with α set to α` and αh costs
O(n) time. Finally, computing the alpha interval Ai for each child node of (C,A) costs O(n log nH

ε)

time, since we need to perform log nkH logn
ε iterations of binary search on α 7→ Di(α)

Dn(α) and each
evaluation of the function costs O(n) time. We charge this O(n log nH

ε) time to the corresponding
child node. If we let #I denote the total number of α-intervals for V , then each layer of the execution
tree has at most #I nodes, and the depth is k, giving a total running time of O(#I · kn log nH

ε).
With Theorem 4 this gives us an expected runtime of O

(
mn2k2αh(log n)

(
log nH

ε

))
.

Since we showed that dα-sampling is Lipschitz as a function of α, it is also possible to find the best
α parameter with sub-optimality at most ε by finding the best point from a discretization of [0, αh]
with step-size s = ε/(Hn2k log n). The running time of this algorithm is O(n3k2H log n/ε), which
is significantly slower than the efficient algorithm presented in this section. Intuitively, Algorithm 2
is able to binary search to find each breakpoint in time O(log nH

ε), whereas a discretization-based
algorithm must check all values of alpha uniformly, so the runtime of the discretization-based
algorithm increases by a multiplicative factor of O

(
nH
ε ·

(
log nH

ε

)−1
)

.

8

5 Experiments

In this section, we empirically evaluate the effect of the α parameter on clustering cost for real-
world and synthetic clustering domains. In the full version of this paper we provide full details and
additional experiments exploring the effect of β and the number of possible clusterings as we vary α.

Experiment Setup. Our experiments evaluate the (α, β)-Lloyds++ family of algorithms on distribu-
tions over clustering instances derived from multi-class classification datasets. For each classification
dataset, we sample a clustering instance by choosing a random subset of k labels, sampling N
examples belonging to each of the k chosen labels. The clustering instance then consists of the
kN points, and the target clustering is given by the ground-truth labels. This sampling distribution
covers many related clustering tasks (i.e., clustering different subsets of the same labels). We always
measure distance between points using the `2 distance and set β = 2. We measure clustering cost in
terms of the majority cost, which is the fraction of points whose label disagrees with the majority
label in their cluster. The majority cost takes values in [0, 1] and is zero iff the output clustering
matches the target clustering perfectly. We generate m = 50, 000 samples from each distribution and
divide them into equal-sized training and test sets. We then use Algorithm 2 to evaluate the average
majority cost for all values of α on the train and test sets. Figure 2 shows the average majority cost
for all values of α on both training and testing sets.

We ran experiments on datasets including MNIST, CIFAR10, CNAE9, and a synthetic Gaussian Grid
dataset. For MNIST and CIFAR10 we set k = 5, and N = 100, while for CNAE9 and the Gaussian
Grid we set k = 4 and N = 120. For MNIST, we used more samples (m = 250, 000).

We find that the optimal value of α varies significantly between tasks, showing that tuning α on a
per-task basis can lead to improved performance. Moreover, we find strong agreement in the average
cost of each value of α across the independent training and testing samples of clustering instances, as
predicted by our sample complexity results.

0 5 10 15 20
0.3650

0.3675

0.3700

0.3725

0.3750

M
aj

or
ity

 C
os

t test
train

(a) MNIST

0 5 10 15 20
0.46

0.47

0.48

0.49

0.50

M
aj

or
ity

 C
os

t test
train

(b) CIFAR-10

0 5 10 15 20
0.4

0.5

0.6

0.7

M
aj

or
ity

 C
os

t

test
train

(c) CNAE-9

0 5 10 15 20
0.000

0.025

0.050

0.075

0.100

0.125

M
aj

or
ity

 C
os

t test
train

(d) Gaussian Grid

Figure 2: Majority cost for (α, β)-Lloyds++ as a function of α for β = 2.

6 Conclusion

We define an infinite family of algorithms generalizing Lloyd’s method, with one parameter control-
ling the the initialization procedure, and another parameter controlling the local search procedure.
This family of algorithms includes the celebrated k-means++ algorithm, as well as the classic
farthest-first traversal algorithm. We provide a sample efficient and computationally efficient algo-
rithm to learn a near-optimal parameter over an unknown distribution of clustering instances, by
developing techniques to bound the expected number of discontinuities in the cost as a function of the
parameter. We give a thorough empirical analysis, showing that the value of the optimal parameters
transfer to related clustering instances. We show the optimal parameters vary among different types
of datasets, and the optimal parameters often significantly improves the error compared to existing
algorithms such as k-means++ and farthest-first traversal.

7 Acknowledgments

This work was supported in part by NSF grants CCF-1535967, IIS-1618714, an Amazon Research
Award, a Microsoft Research Faculty Fellowship, a National Defense Science & Engineering Graduate
(NDSEG) fellowship, and by the generosity of Eric and Wendy Schmidt by recommendation of the
Schmidt Futures program.

9

References
Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-means

and euclidean k-median by primal-dual algorithms. In Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS), 2017.

Kohei Arai and Ali Ridho Barakbah. Hierarchical k-means: an algorithm for centroids initialization
for k-means. Reports of the Faculty of Science and Engineering, 36(1):25–31, 2007.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings
of the Annual Symposium on Discrete Algorithms (SODA), pages 1027–1035, 2007.

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on
Computing, 33(3):544–562, 2004.

Hassan Ashtiani and Shai Ben-David. Representation learning for clustering: a statistical framework.
In Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence, pages 82–91,
2015.

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-theoretic
foundations of algorithm configuration for combinatorial partitioning problems. In Proceedings of
the Annual Conference on Learning Theory (COLT), pages 213–274, 2017.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An improved
approximation for k-median, and positive correlation in budgeted optimization. In Proceedings of
the Annual Symposium on Discrete Algorithms (SODA), pages 737–756, 2015.

Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor approximation
algorithm for the k-median problem. In Proceedings of the Annual Symposium on Theory of
Computing (STOC), pages 1–10, 1999.

Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric median
in nearly linear time. In Proceedings of the Annual Symposium on Theory of Computing (STOC),
pages 9–21. ACM, 2016.

Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clustering. Journal of
Computer and System Sciences, 70(4):555–569, 2005.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society, pages 1–38, 1977.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics New York, NY, USA:, 2001.

Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science, 38:293–306, 1985.

Richard E Higgs, Kerry G Bemis, Ian A Watson, and James H Wikel. Experimental designs for
selecting molecules from large chemical databases. Journal of chemical information and computer
sciences, 37(5):861–870, 1997.

Wenhao Jiang and Fu-lai Chung. Transfer spectral clustering. In Proceedings of the Annual
Conference on Knowledge Discovery and Data Mining (KDD), pages 789–803, 2012.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and An-
gela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation. transactions
on pattern analysis and machine intelligence, 24(7):881–892, 2002.

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster analysis,
volume 344. John Wiley & Sons, 2009.

10

Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. An online hierar-
chical algorithm for extreme clustering. In Proceedings of the Annual Conference on Knowledge
Discovery and Data Mining (KDD), 2017.

Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions
on Information Theory, 47(5):1902–1914, 2001.

Stuart Lloyd. Least squares quantization in pcm. transactions on information theory, 28(2):129–137,
1982.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA,
USA, 1967.

Joel Max. Quantizing for minimum distortion. IRE Transactions on Information Theory, 6(1):7–12,
1960.

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of
lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):28, 2012.

Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with geometric reasoning. In
Proceedings of the Annual Conference on Knowledge Discovery and Data Mining (KDD), pages
277–281, 1999.

José M Pena, Jose Antonio Lozano, and Pedro Larranaga. An empirical comparison of four ini-
tialization methods for the k-means algorithm. Pattern recognition letters, 20(10):1027–1040,
1999.

Kim D Pruitt, Tatiana Tatusova, Garth R Brown, and Donna R Maglott. Ncbi reference sequences
(refseq): current status, new features and genome annotation policy. Nucleic acids research, 40
(D1):D130–D135, 2011.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught learning:
transfer learning from unlabeled data. In Proceedings of the International Conference on Machine
Learning (ICML), pages 759–766, 2007.

Qiang Yang, Yuqiang Chen, Gui-Rong Xue, Wenyuan Dai, and Yong Yu. Heterogeneous transfer
learning for image clustering via the social web. In Proceedings of the Conference on Natural
Language Processing, pages 1–9, 2009.

11

