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Abstract

Coupled norms have emerged as a convex method to solve coupled tensor com-
pletion. A limitation with coupled norms is that they only induce low-rankness
using the multilinear rank of coupled tensors. In this paper, we introduce a new
set of coupled norms known as coupled nuclear norms by constraining the CP
rank of coupled tensors. We propose new coupled completion models using the
coupled nuclear norms as regularizers, which can be optimized using computa-
tionally efficient optimization methods. We derive excess risk bounds for pro-
posed coupled completion models and show that proposed norms lead to better
performance. Through simulation and real-data experiments, we demonstrate that
proposed norms achieve better performance for coupled completion compared to
existing coupled norms.

1 Introduction

In this paper, we investigate convex coupled norms for coupled tensor completion. Two tensors
are considered to be coupled when they share a common mode. A well explored problem with
coupled tensors is coupled tensor completion, which studies imputation of partially observed tensors
using coupled tensors as side information (Acar et al., 2014; Bouchard et al., 2013). Coupled tensor
completion is commonly found in many real world applications such as link prediction (Ermis et al.,
2015), recommendation systems (Acar et al., 2014) and computer vision (Li et al., 2015). Moreover,
the increase in availability of data from multiple sources further makes coupled tensor completion
an important research area requiring thorough investigation.

Over the years, several methods have been proposed to solve coupled tensor completion (Acar et al.,
2014; Ermis et al., 2015). However, many of these methods are non-convex models leading to local
optimal solutions. Additionally, these non-convex models have requirements of specifying ranks
of coupled tensors, which are in many situations unknown. The recent development of coupled
norms (Wimalawarne et al., 2018) has emerged as a convex solution for coupled completion. These
coupled norms are modeled using the trace norm regularization, which eliminates the requirement
of pre-specifying ranks. In spite of favorable qualities, coupled norms only induce low-rankness
with respect to the multilinear rank of coupled tensors. This makes coupled norms sub-optimal for
completion of coupled tensors with other low rank structures.

Until recently, most of the research on convex norms that induces low-rankness of tensors has fo-
cused on constraining the multilinear rank (Tomioka and Suzuki, 2013; Wimalawarne et al., 2014).
However, recent studies (Yuan and Zhang, 2016) have shown that the tensor nuclear norm, which
is a convex relaxation to minimizing the CANDECOMP/PARAFAC (CP) rank (Carroll and Chang,
1970; Harshman, 1970; Hitchcock, 1927; Kolda and Bader, 2009) has favorable properties com-
pared low rank inducing norms that constrains the multilinear rank (Tomioka and Suzuki, 2013;
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Wimalawarne et al., 2014). More specifically, Yangetal. (2015) showed that tensor comple-
tion using the tensor nuclear norm leads to better sample complexity compared to the over-
lapped norm (Tomioka and Suzuki, 2013; Liu et al., 2013), which was experimentally verified by
Yuan and Zhang (2016). These advantages are unavailable for coupled norms since they do not
support the tensor nuclear norm nor do they constrain the CP rank of coupled tensors.

In this paper, we investigate coupled completion through constraining the CP ranks of coupled ten-
sors. We propose a set of convex coupled norms by extending the tensor nuclear norm. Additionally,
we propose novel completion models that are regularized by the proposed norms, which obtain
globally optimal solutions. We present theoretical analysis of the proposed completion models us-
ing excess risk bound analysis. Our analysis shows that the excess risk bound for two coupled
K-mode tensors, X € R*"**" and Y € R™* %™ both having same CP rank r, is bounded by
O(r2*¥  K/n(Inn)¥~1/2), We show that the obtained excess risk bounds are smaller compared
to excess risk bounds resulting from multilinear rank based coupled norms. Finally, we verify our
theoretical claims by simulation and real-data experiments.

We use the following notations throughout the paper. Given a K-mode tensor 7 € R"™1* " X"K e
specify the mode-% unfolding (Kolda and Bader, 2009) by T, € R"* *ITi2k ™3 which is obtained
by concatenating all slices along the mode-k. Given two matrices, M € R™*"2 and N € R"1 %"2,
the notation [M; N] € R™*("2+72) represents their concatenation on the common mode-1. We
indicate the outer product between vectors u; € R™, ¢ = 1,..., N using the notation ® as (u; ®
C ®@UN)iy,....in = |11 Ui, The k-mode product of a tensor 7~ € ™1 X7kX"K and a vector
v € R™ isdefined as 7 x v = Z?}c’“zl Tiv is,...in.....ix Vij, - Given that rank of the mode-% unfolding
of T is rg, the multilinear rank of 7 is defined as (rq,--- ,rk).

2 Review of Coupled Completion

We briefly review existing coupled completion methods in this section.

2.1 Non-convex Factorization Methods

Coupled completion models have been mostly investigated through factorization methods. In
essence, these methods consider explicit factorization of a coupled tensor 7 € R™:*"2X"3 and a
matrix M € R™"*™ as T = Zf;l a; ®b; ®c; having a; € R™ | b; e R"™2 ¢; e R™, i=1,....R
and M = Zf;l a; ® d; having a; € R™, d; € R™, + = 1,..., R, respectively, with a common
rank R and shared components a;,¢ = 1,..., R. Many variations of factorization models for cou-
pled completion models have been proposed based on CP decomposition with shared and unshared
components (Acar et al., 2014), Tucker decomposition (Ermis et al., 2015), and non-negative factor-
ization (Ermis et al., 2015). However, due to factorization, these coupled completion models are
non-convex that lead to local optimal solutions. Furthermore, these methods require a priori specifi-
cation of rank (R) of each tensor, as well as the number of shared components between the factorized
tensors.

2.2 Convex Coupled Norms

Coupled norms (Wimalawarne et al., 2018) are a set of convex norms designed by combining low
rank tensor and matrix norms. Given a tensor 7 € R™*"2%"3 and a matrix M € R"™ *"2 coupled
on mode a, coupled norms are defined as

T MGy 0>

where the subscripts b, ¢, d € {O,L, S, —} specify the regularization method to be applied to each
mode and the superscript a specifies the mode in which the tensor and the matrix are coupled. No-
tations O, L, and S indicate that the respective mode is regularized by using the overlapping trace
norm (Tomioka and Suzuki, 2013), latent trace norm (Tomioka and Suzuki, 2013), and scaled latent
trace norm (Wimalawarne et al., 2014), respectively, and — indicates no regularization.



An example of a coupled norm that regularizes both coupled tensors using the overlapped trace norm
is

3
1T, Mllfo,0,0y = Ty Mllee + D 1Tk ller-
k=2

The following norm is another example where we consider the 7 as a summation of latent tensors
TW, 73 and 7) and apply the scaled latent norm as
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Given two partially observed tensors ﬂ € Rmxnrexeexnk K > 3 and ’fé S

RUXPEX X0 KT > 9 coupled on their mode-a with observed indexes given by the mappings
17 and Q. , coupled completion is performed by solving

1 s, 1 X .
min 5 [Qz (7o = T)lp + 5197 (T2 = To) 5 + A0, Tella,

where || 71, T2||%, is a suitable coupled norm.

An important property with coupled norms is that the trace norm is applied with respect to each mode
unfolding of tensors. This results in inducing low-rankness only by using the multilinear rank of
coupled tensors. Furthermore, since the definitions of matrix rank and multilinear rank are different,
concatenated regularization on the coupled mode may not be optimal for sharing information among
the tensors.

3 Proposed Method: Coupled Completion via Coupled Nuclear Norms

In this section, we propose a set of convex coupled norms that overcome limitations of existing
coupled completion methods. The main tool we use to build our norms is the tensor nuclear norm
(Yuan and Zhang, 2016; Yang et al., 2015; Lim and Comon, 2014), which is defined for a tensor
T c R™ Xng X+ XNK as

oo oo
7. = inf { S oGIT =D vjur; @ugy - @uk, lukglls = 1,75 > vj41 > 0}. )
j=1 j=1
In practice, we consider that 7 has a finite rank R, which is expressed by the notation rank(7") = R.
When K = 2 and each uy; is orthogonal, the tensor nuclear norm is equivalent to the matrix nuclear
norm.

We now propose coupled norms by only using the tensor nuclear norms, thus low-rankness of both
the coupled tensors are induced using the CP rank. We name our norms coupled nuclear norms.
We introduce the following notation to define the coupled nuclear norms for two coupled tensors

W € Rmxnax-=xnx apd ) € R Xn2X Xnis gg

W, V|eep,(xn,b) (hesc)

where the superscript a indicates the coupled mode, and each tuple (A, b) and (A, ¢) indicates the
regualarization method for each tensor. We specify b, c € {F, L}, where F and L indicate that a
tensor is regularized as a whole or as a latent decomposition, respectively. Furthermore, we indicate
Ay € R and A\, € R to specify regularization parameters for nuclear norms of each tensor. The
subscript ccp is used to distinguish the proposed norms from coupled norms in (Wimalawarne et al.,
2018).

Let us now look at a few definitions of coupled nuclear norms. We start with the following norm

R
IV Vlleep, (0. 5) (aF) = {”WH* <AL VI € XW =) 721 @+ @20 ® -+ ki,
i=1

R
VZyiy1i®"‘®xm'®"'yl(/i}a ()
i=1



where the subscripts with F' lead us to consider VV and V as whole tensors without any latent decom-
position. We assume that each tensor has a rank R and all the component vectors x,;, ¢ = 1,..., R
on the coupled mode a are common to both the tensors, while the tensor nuclear norm is applied to
W and V to constrain their ranks.

A limitation in the previous norm is that it assumes both WV and V have the same rank and all
components along the coupled mode are common. In practice, this can be a strong assumption and
we need to have more freedom for ranks and the amount of sharing among tensors. To incorporate
these features into coupled nuclear norms, we propose to use latent decomposition of tensors, such
that we learn latent tensors that are coupled to other tensors as well as uncoupled. Next, we assume
a latent decomposition for W and define the following norm

i a (1) (2)
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where the subscript (A1, Ay, L) indicates that the tensor W is considered as two latent tensors and
their nuclear norms are constrained by A; and Ao. The third subscript (A3, F') indicates that V is
considered as a whole without any latent decomposition. Further, the norm considers W) to have
common factors with V due to coupling and W(?) is independent from any coupling with . Due to
the latent decomposition, the rank of W is Ry + Rs, however, only R; components of x, in VV are
shared with V.

In addition to the above coupled nuclear norms, we can further define
infya yye =y W Ve (0 F),wne,r) Where the tensor V' is considered to have a latent
decomposition, and infyya) e —w v @ =y W, VIt L) (asn 1) Where both the

tensors are considered to have latent decompositions. Furthermore, our proposed norms can be
extended to define norms for coupled tensors with more than two coupled tensors.

It is important to note that the definition of proposed norms do not adhere to all the properties of
the normed space. Rather, they can be considered them as sets constructed by tensor nuclear norms.
However, we refer to our definitions as norms since they are constructed by constraining the tensor
nuclear norms. Further, we point out that the number of different norms we need for a coupled
tensor using coupled nuclear norms are less compared to multilinear rank based coupled norms
(Wimalawarne et al., 2018).

3.1 New Coupled Completion Models

We now propose coupled completion models using coupled nuclear norms. Let us consider two
partially observed tensors X € R™*m2XXnk and ) € R™*m2% X" coupled on the mode a.
Let us also consider € : R™1Xn2XXnx _y Rm1 apd (), : R X72X " Xn5 _y R™2 a5 mapping to
observed elements of X’ and ), respectively, where my and mo are the number of observed elements.

Our objective is to impute missing elements of X and ) by performing coupled completion using
our proposed norms. Let V' and V be completed tensors that we want to obtain for X and ),
respectively. To achieve this using [V, V||¢ (\1.F)(A1,F)» W propose a completion model as

min W, Vllcep, (v py a5y

st QW) =0 (X), W) =20, 4)
and another completion model by using [[W, V|2, \, \, 1)rs,F) 8

w<1>+%i<]2ﬂ>:w,v w, V||:3LCP,()\17>\27L)(>\17F)

st QWD W@y =0, (x),
Q2(V) = (). 5)



Similarly, we can define completion models using infya) ye =y (W, VIS, ) 7)) 204
1 a
infyya e —w v v v W Vg (4 xe.0). s

A key advantage with the proposed coupled nuclear norms is that they do not have overlapping group
structures as in (Wimalawarne et al., 2018) and all tensors are regularized separately. This allows
us to use a computationally feasible method such as the Frank-Wolfe optimization (Jaggi, 2013) to
solve the proposed completion models. We provide a Frank-Wolfe based optimization method to
solve above completion models in the Section B of the Appendix.

4 Theoretical Analysis

In this section, we analyze excess risk bounds for proposed coupled completion using coupled nu-
clear norms. We consider a partially observed K-mode tensor X € R™* %™ and a partially ob-
served K'-mode tensor J) € R™*"*™ coupled on their first modes. Let us consider two sets S
and P, whose elements contain indexes of arbitrary subsets of elements of X and )/, respectively.
Following (Shamir and Shalev-Shwartz, 2014), we split S and P uniformly at random into training
and test sets; the set S as Styain and Stest such that S = Srirain U Sest, the set P as Poy,i, and
Prest such that P = Pryyain U Prest. Furthermore, following (Shamir and Shalev-Shwartz, 2014)
we consider the special case where |Styvain| = |Stest| = [S|/2 and |Pryain| = [Prest| = |P|/2.

To prove excess risk bounds, we recast each coupled nuclear norm as a hypothesis class for each
completion model. Let us again denote YV and V as completed tensors we want to learn from X
and Y, respectively. Given the coupled nuclear norm [W, V[[¢ \, #)(5. F)> We define a hypothesis

classas W = {W.V : [W,VI[¢, i, 00 5 Tank(W) = rank(V) = r} for some regularization
parameter A\, and A.. Using the hypothesis class and a A-Lipschitz continuous and b; bounded loss

function (-, -) that measures the difference between the predicted and actual values, we write the
average loss over training sets of a coupled completion model as

1
LSTrathTx-aiu (W7 V) V- =a— Z Z(Xilx"‘7iK ’ Wil”“’iK)
|STrain U PTraiIl| (1,.yi K ) ESTrai

+ Z l(yjhm’j;(”Vj1’~~‘,jx/)‘| , (6)
(J1s+-2d k7 ) EPTrain

and the average loss over test sets can be constructed similarly as Lg,.., pr... (W, V) by substituting

Srain and Pryain in (6) with Steg and Pregt, respectively.

By the transductive Rademacher complexity theory (El-Yaniv and Pechyony, 2007;
Shamir and Shalev-Shwartz, 2014), the excess risk can be upper bounded with the probabil-
ity 1 — 6 as

11+ 44/log %
LSTesc,PTest (W7 V) - LSTraimPTrain (Wa V) < 4RS,P (l oW, lo V) +b , (1)

V |STrain U PTrainl

where Rg p(l o W, 10 V), which is expressed as

1
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’ 1yl K
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where ¥ € R"X™* " and 3/ € R™*"%" gre K-mode and K’-mode tensors, respectively, and
Yi,ix = 0¢ € {—1,1} with probability 0.5 if (i1,..,ix) € S belonging to an index ¢ €
L,...,[S| or ¥i,,...ir = 0 otherwise, and ¥';, ;i , = 0|s1+¢ € {—1,1} with probability 0.5 if
(j1,.-, i) € P belonging to anindex ¢’ € 1,...,|Plor ¥';  ; , = 0 otherwise.

In the next two theorems, we show the Rademacher complexities for proposed coupled nuclear
norms ||[W, V||cep, (a1,F),(A1,F) and [W, V| cep, (01, 20,1), (15, 1) (Detailed proof of these theorems are

given in Section C of appendix.)



Theorem 1. Let us consider ||W, V||gcp’(A1’F)(A2’F) and its associated hypothesis class as W =
VY W Ve 0 m) ) Tank(W) = rank(V) = r}. Then the Rademacher complexity is
bounded as

cA

<
Rs,p(lOW,lOV) = ‘SUP‘

rBw 23K K n(Inn) K12

+ rBy2K B K (lnn) K 12

where v1 < By and v1 < By, of (2) and c is a constant.
Theorem 2. Let us consider |[W,V|[¢., o\, Lyag,r) and its hypothesis class as W =

WO WEY - infyya e o W VNl (0 w0,y FAIKOVE)) = rank(V)
1, rank(W®)) = ro}. Then the Rademacher complexity is bounded as
cA

Rsp(loW,loV) < (r1Bw, + 12 Bw, ) 225K K\ /n(Inn)K—1/2

[SUP|
+ 1o By2K K K (inn) K12

where 7%1) < Bw,, %2) < Bw,, V1 < By of (3) and c is a constant.

The Rademacher complexities in Theorems 1 and 2 show that for K > K’ and r = r; = ra, excess
risks is bounded by O(r2*% K/n(Inn)X~1/2). The excess risk bound for the coupled norm in
(Wimalawarne et al., 2018) for the coupled tensors with multilinear rank (r/, ..., r’) are bounded by

O(Vr'K[vVnE=1+ /n]). Since coupled nuclear norms are bounded by /n(Inn)*~1/2 compared

to coupled norms (Wimalawarne et al., 2018) that are bounded by v'n¥—1, coupled nuclear norms
can lead to lower excess risk when coupled tensors have large dimensions (n and K are large).
Though CP rank and multilinear rank cannot be compared directly, when the CP rank is smaller than
the mode dimensions (r < n) our theoretical analysis shows that coupled nuclear norms are more
capable of better performance compared to multilinear rank based coupled norms. Additionally, the
Rademacher complexity is divided by the total number of observed samples from both the coupled
tensors (|]SUP]|) leading to a lower Rademacher complexity compared to separate tensor completions.

S Experiments

We carried out several simulations and real world data experiments to evaluate empirical perfor-
mances of our proposed methods.

5.1 Simulation Experiments

We designed simulation experiments using coupled tensors using both the CP rank and the multilin-
ear rank. For each simulation, we created a tensor 7~ € R20%20X20 and a matrix M € R29%30 with
specified ranks and coupled them on their first modes (without losing generality) by sharing a certain
amount of singular components along the first mode. We chose these dimensions of coupled tensors
in accordance with simulation experiments in (Wimalawarne et al., 2018) for easier comparison. In
order to create a tensor 7 with CP rank of , we generated the tensoras 7 = > _; Catlq @ Vg @ W,
where u, € R?°, v, € R?’, and w, € R?° are randomly generated unit vectors and ¢, € R.
To create 7 with multilinear rank of (1,72, 73), we generated orthogonal matrices U € R20x71
V € R29%72 and W € R?°%73, and a core tensor C € R"X"2%73 with elements randomly sampled
from a Normal distribution and compute 7 = C x; U x5 V x3 W. We also created a rank R
matrix M = X SY " with orthogonal matrices X € R?°*% and Y € R**30 and a diagonal matrix
S € REXE randomly generated from R*. We coupled the 7 and M by sharing r' components be-
tween them as X (:,1 : ') = [uq,...,u,] for CP rank based tensors and X (:,1: ") = U(:,1 : 1)
for multilinear rank based tensors. In order to generate datasets for simulations, we selected training
sets of 30, 50, and 70 percentages from total number of elements of the tensor and the matrix, 10
percent as validation sets and the rest as test sets. For each simulation we repeated experiments with
10 random selections.
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Figure 1: Performances of completion of the tensor with dimensions of 20 x 20 x 20 and CP rank
of 5 and matrix with dimensions of 20 x 30 and rank of 5 both sharing 5 components.

We experimented with proposed coupled nuclear norms ' |7, M Hccp,(/\l,F),(/\l,F)’

1T, Mlcep,(ra,na,L),(00,F)s - AN [T, M lcep, (Aa,F),(As,2s,L)-  FOr visual convenience in fig-
ures, we use shortened names for |7, M ||cep,(a,,F), (00, F)s 175 Mllcep,(ra,rs,L),(As,F)» and
|7, MHCCp7(A4,F)7(A4,)\5,L) as ccp-1, ccp-2, and ccp-3, respectively. For all these norms, we used
the regularization parameters Ai,..., A5 in the range from 0.01 to 50 with intervals of 1. As
baseline methods, we performed completion of each individual tensor using the overlapped trace
norm (OTN) and the scaled latent trace norm (SLTN) and individual matrix completion using the
matrix trace norm (MTN). We also used the tensor nuclear norm as a baseline method to evaluate
individual tensor completion. Additionally, we performed coupled completion with coupled norms
(Wimalawarne et al., 2018). However, due to the difficulty in plotting all the norms in a single graph
only the result from the best coupled norm is plotted. For all the baseline methods, we selected the
optimal regularization parameters from the range of 0.01 to 5 in divisions of 0.025.

For our first experiment we created 7 by specifying a CP rank of 5 and M with rank of 5. We
coupled 7 and M by sharing all components on their first modes. Figure 1 shows that coupled
nuclear norms have outperformed individual completion of the tensor and the matrix, as well as
coupled completion by the coupled norm (O, O, O).

Next, we give a simulation experiment with coupled tensor using multilinear ranks. We constructed
T with multilinear rank of (5,5,5) and M with rank of 5 and shared all components on the
first mode. Figure 2 shows that the proposed coupled nuclear norms ||7, M||ccp, (r,,F), (A, F) and
T, M||cep,(ra,ns,1),(2o,F) have outperformed (O, O, O) for both tensor and matrix completion in-
dicating that proposed norms are versatile for coupled tensors with multilinear ranks.
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Figure 2: Performances of completion of the tensor with dimensions of 20 x 20 x 20 and multilinear
rank of (5, 5,5) and matrix with dimensions of 20 x 30 and rank of 5 both sharing 5 components.

In all the above experiments, coupled nuclear norms have performed comparable or better than
individual tensor and matrix completion. We give further simulation experiments in Section D of
the Appendix.

'Code and data are available at http://kishan-wimalawarne.com/onewebmedia/NeurIPS_2018_code.rar



5.2 Real Data Experiments

We used the UCLAF dataset as our real data experiment.

5.2.1 UCLAF Dataset

The UCLAF dataset (Zheng et al., 2010) is a commonly used benchmark dataset for coupled tensor
completion (Ermis et al., 2015; Wimalawarne et al., 2018). The UCLAF dataset contains GPS data
collected from 164 users in 168 locations performing 5 activities. These GPS data forms a user-
location-activity tensor 7~ € R64X168x5 congisting of only a few observed elements. In order to
learn the unobserved elements, tensor completion can be performed. However, the UCLAF dataset
also contains side information that can be coupled to the tensor to improve the completion procedure.
Similar to (Wimalawarne et al., 2018), we used the coupling of 7 with the user-location matrix
X € RY4x168 We ysed the same random data selection and validation processes as simulation
experiments.

Apart from the coupled nuclear norms, we
experimented with the same baseline meth-

—»-OTN ods for tensors as in the previous section.

[ ;:;SSL’(T)NO) For these experiments, we selected regular-

- TNN ization parameters from logarithmic linear

157 WL\ ____ __‘__fgfl scale from 0.01 to 5000 with 200 divisions.

W = "-"--::.;;:_. ol ccp2 [ Additionally, we compared our results with

g S B ocp-3 the SDF model (Sorber et al., 2015) by using
n T d-- h a CP rank of 2.

S | JL Figure 3 shows that the coupled nuclear

KRS % norm || - [lcep,(x,F),(F) (ccp-1) gives the

| best performance. The coupled norm

05 : ‘ ‘ ‘ - ‘ (S,0,0) which has given the best perfor-

0z 03 04 05 06 07 08 mance among multilinear rank based cou-

Fraction of training samples pled norms (Wimalawarne et al., 2018) is

Figure 3: Performances on the UCLAF data set outperformed by all the coupled nuclear

norms.
Both simulation and UCLAF data experiments indicate that coupled nuclear norms lead to better

performance compared to existing coupled norms (Wimalawarne et al., 2018).
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7 Conclusion and Future Work

We introduce coupled nuclear norms by integrating the CP rank into coupled norms. We propose
new coupled completion models regularized by coupled nuclear norms and discuss optimization
procedures to solve them. Our excess risk bounds for coupled completion show that the proposed
norms lead to better performances compared to existing multilinear rank based coupled norms. Our
theoretical analysis is validated through simulation and real world data experiments, where we show
that coupled nuclear norms can give better performance compared to existing methods. We believe
that the proposed coupled nuclear norms should be further investigated to be widely applicable in
real world problems.

Applying coupled nuclear norms to solve large scale problems is an important future research di-
rection. More specifically, developing computationally feasible optimization methods is important
since computing the coupled nuclear norms can be computationally costly. Future research in this
direction can consider developing globally optimal power methods (Anandkumar et al., 2017) to ap-
proximate coupled nuclear norms. Furthermore, theoretical analysis of coupled nuclear norms with
more than two tensors is another important future research direction.
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