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Abstract

Existing strategies for finite-armed stochastic bandits mostly depend on a param-
eter of scale that must be known in advance. Sometimes this is in the form of a
bound on the payoffs, or the knowledge of a variance or subgaussian parameter.
The notable exceptions are the analysis of Gaussian bandits with unknown mean
and variance by Cowan et al. [2015] and of uniform distributions with unknown
support [Cowan and Katehakis, 2015]. The results derived in these specialised
cases are generalised here to the non-parametric setup, where the learner knows
only a bound on the kurtosis of the noise, which is a scale free measure of the
extremity of outliers.

1 Introduction

SpaceBandits is a fictional company that specialises in optimising the power output of satellite-
mounted solar panels. The data science team wants to use a bandit algorithm to adjust the knobs
on a legacy satellite, but they don’t remember the units of the sensors, and have limited knowledge
about the noise distribution of the panel output or sensors. The SpaceBandits data science team
searches the literature for an algorithm that does not depend on the scale or location of the means of
the arms, and find this simple paper, in NIPS 2017.

It turns out that logarithmic regret is possible for finite-armed bandits with no assumptions on the
noise of the payoffs except for a known finite bound on the kurtosis, which corresponds to knowing
the likelihood/magnitude of outliers [DeCarlo, 1997]. Importantly, the kurtosis is independent of
the location of the mean and scale of the central tendency (the variance). This generalises the ideas
of Cowan et al. [2015] beyond the Gaussian case with unknown mean and variance to the non-
parametric setting.

The setup is as follows. Let k ≥ 2 be the number of bandits (or arms). In each round 1 ≤ t ≤ n
the player should choose an action At ∈ {1, . . . , k} and subsequently receives a reward Xt ∼ νAt ,
where ν1, . . . , νk are a set of distributions that are not known in advance. Let µi be the mean payoff
of the ith arm and µ∗ = maxi µi and ∆i = µ∗−µi. The regret measures the expected deficit of the
player relative to the optimal choice of distribution:

Rn = E

[
n∑
t=1

∆At

]
. (1)

The table below summarises many of the known results on the optimal achievable asymptotic regret
under different assumptions on (νi)i. A reference for each of the upper bounds is given in Table 1,
while the lower bounds are mostly due to Lai and Robbins [1985] and Burnetas and Katehakis
[1996]. An omission from the table is when the distributions are known to lie in a single-parameter
exponential family (which does not fit well with the columns). Details are by Cappé et al. [2013].
∗Now at DeepMind, London.
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Assumption Known Unknown limn→∞Rn/ log(n)

1 Bernoulli
Lai and Robbins [1985]

Supp(νi) ⊆ {0, 1} µi ∈ [0, 1]
∑

i:∆i>0

1

d(µi, µ∗)

2 Bounded
Honda and Takemura [2010]

Supp(νi) ⊆ [0, 1] distribution it’s complicated

3 Discrete
Burnetas and Katehakis [1996]

Supp(νi) ⊆ A
|A| <∞

distribution it’s complicated

4 Semi-bounded
Honda and Takemura [2015]

Supp(νi) ⊆ (−∞, 1] distribution it’s complicated

5 Gaussian (known var.)
Katehakis and Robbins [1995]

νi = N (µi, σ
2
i ) µi ∈ R

∑
i:∆i>0

2σ2
i

∆i

6 Uniform
Cowan and Katehakis [2015]

νi = U(ai, bi) ai, bi
∑

i:∆i>0

∆i

log
(

1 + 2∆i
bi−ai

)
7 Subgaussian

Bubeck and Cesa-Bianchi [2012]
logMνi(λ) ≤ λ2σ2

i
2
∀λ distribution

∑
i:∆i>0

2σ2
i

∆i

8 Known variance
Bubeck et al. [2013]

V[νi] ≤ σ2
i distribution O

 ∑
i:∆i>0

σ2
i

∆i


9 Gaussian

Cowan et al. [2015]
νi = N (µi, σ

2) µi ∈ R, σ2
i > 0

∑
i:∆i>0

2∆i

log (1 + ∆2
i /σ

2
i )

d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) and Mν(λ) = EX∼ν exp((X − µ)λ) with µ the
mean of ν is the centered moment generating function. All asymptotic results are optimal except for the
grey cells.

Table 1: Typical distributional assumptions and asymptotic regret

With the exception of rows 6 and 9 in Table 1, all entries essentially depend on some kind of scale
parameter. Missing is an entry for a non-parametric assumption that is scale free. This paper fills
that gap with the following assumption and regret guarantee.

Assumption 1. There exists a known κ◦ ∈ R such that for all 1 ≤ i ≤ k, the kurtosis of X ∼ νi is
at most Kurt[X] = E[(X −E[X])4]/V[X]2 ≤ κ◦.

Theorem 2. If Assumption 1 holds, then the algorithm described in §2 satisfies

lim sup
n→∞

Rn
log(n)

≤ C
∑

i:∆i>0

∆i

(
κ◦ − 1 +

σ2
i

∆2
i

)
,

where σ2
i is the variance of νi and C > 0 is a universal constant.

What are the implications of this result? The first point is that the algorithm in §2 is scale and
translation invariant in the sense that its behaviour does not change if the payoffs are multiplied by
a positive constant or shifted. The regret also depends appropriately on the scale so that multiplying
the rewards of all arms by a positive constant factor also multiplies the regret by this factor. As far
as I know, this is the first scale free bandit algorithm for a non-parametric class. The assumption
on the boundedness of the kurtosis is much less restrictive than assuming an exact Gaussian model
(which has kurtosis 3) or uniform (kurtosis 9/5). See Table 2 for other examples.

As mentioned, the kurtosis is a measure of the likelihood/existence of outliers of a distribution,
and it makes intuitive sense that a bandit strategy might depend on some kind of assumption on
this quantity. How else to know whether or not to cease exploring an unpromising action? The
assumption can also be justified from a mathematical perspective. If the variance of an arm is not
assumed known, then calculating confidence intervals requires an estimate of the variance from the
data. Let X,X1, X2, . . . , Xn be a sequence of i.i.d. centered random variables with variance σ2 and
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kurtosis κ. A reasonable estimate of σ2 is

σ̂2 =
1

n

n∑
t=1

X2
t . (2)

Clearly this estimator is unbiased and has variance

V[σ̂2] =
E[X4]−E[X2]2

n
=
σ4 (κ− 1)

n
.

Distribution Parameters Kurtosis

Gaussian µ ∈ R, σ2 > 0 3

Bernoulli µ ∈ [0, 1] 1−3µ(1−µ)
µ(1−µ)

Exponential λ > 0 9

Laplace µ ∈ R, b > 0 9

Uniform a < b ∈ R 9/5

Table 2: Kurtosis

Therefore, if we are to expect good estima-
tion of σ2, then the kurtosis should be fi-
nite. Note that if σ2 is estimated by (2), then
the central limit theorem combined with fi-
nite kurtosis is enough for an estimation er-
ror of O(σ2((κ− 1)/n)1/2) asymptotically.
For bandits, however, finite-time bounds are
required, which are not available using (2)
without additional moment assumptions (for
example, on the moment generating func-
tion). An example demonstrating the neces-
sity of the limit in the standard central limit
theorem is as follows. Suppose that X1, . . . , Xn are Bernoulli with bias p = 1/n, then for large n
the distribution of the sum is closely approximated by a Poisson distribution with parameter 1, which
is very different to a Gaussian. Finite kurtosis alone is enough if the classical empirical estimator is
replaced by a robust estimator such as the median-of-means estimator [Alon et al., 1996] or Catoni’s
estimator [Catoni, 2012]. Of course, if the kurtosis were not known, then you could try and estimate
it with assumptions on the eighth moment, and so on. Is there any justification to stop here? The
main reason is that this seems like a useful place to stop. Large classes of distributions have known
bounds on their kurtosis (see table) and the independence of scale is a satisfying property.

Contributions The main contribution is the new assumption, algorithm, and the proof of Theorem
2 (see §2). The upper bound is also complemented by an asymptotic lower bound (§3) that applies
to all strategies with sub-polynomial regret and all bandit problems with bounded kurtosis.

Additional notation Let Ti(t) =
∑t
s=1 1 {As = i} be the number of times arm i has been played

after round t. For measures P,Q on the same probability space, KL(P,Q) is the relative entropy
between P and Q and χ2(P,Q) is the χ2 distance. The following lemma is well known.
Lemma 3. Let X1, X2 be independent random variables with Xi having variance σ2

i and kurtosis
κi <∞ and skewness γi = E[(Xi −E[Xi])

3/σ3
i ], then:

(a) Kurt[X1 +X2] = 3 +
σ4

1(κ1 − 3) + σ4
2(κ2 − 3)

(σ2
1 + σ2

2)
2 (b) γ1 ≤

√
κ1 − 1 .

2 Algorithm and upper bound

Like the robust upper confidence bound algorithm by Bubeck et al. [2013], the new algorithm makes
use of the robust median-of-means estimator.

Median-of-means estimator Let Y1, Y2, . . . , Yn be a sequence of independent and identically
distributed random variables. The median-of-means estimator first partitions the data into m blocks
of equal size (up to rounding errors). The empirical mean of each block is then computed and the
estimate is the median of the means of each of the blocks. The number of blocks depends on the
desired confidence level and should be O(log(1/δ)). The median-of-means estimator at confidence
level δ ∈ (0, 1) is denoted by M̂Mδ((Yt)

n
t=1).

Lemma 4 (Bubeck et al. 2013). Let Y1, Y2, . . . , Yn be a sequence of independent and identically
distributed random variables with mean µ and variance σ2 <∞.

P

(∣∣∣M̂Mδ ((Yt)
n
t=1)− µ

∣∣∣ ≥ C1

√
σ2

n
log

(
C2

δ

))
≤ δ ,
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where C1 =
√

12 · 16 and C2 = exp(1/8) are universal constants.

Upper confidence bounds The new algorithm is a generalisation of UCB, but with optimistic
estimates of the mean and variance using confidence bounds about the median-of-means estimator.
Let δ ∈ (0, 1) and Y1, Y2, . . . , Yt be a sequence of independent and identically distributed random
variables with mean µ, variance σ2 and kurtosis κ < κ◦. Furthermore, let

µ̃((Ys)
t
s=1, δ) = sup

{
θ ∈ R : θ ≤ M̂Mδ

(
(Ys)

t
s=1

)
+ C1

√
σ̃2
t ((Ys)ts=1, θ, δ)

t
log

(
C2

δ

)}
.

where σ̃2((Ys)
t
s=1, θ, δ) =

M̂Mδ

((
(Ys − θ)2

)t
s=1

)
max

{
0, 1− C1

√
κ◦−1
t log

(
C2

δ

)} .

Note that µ̃((Ys)
t
s=1, δ) may be (positive) infinity if t is insufficiently large. The computation of

µ̃(·) seems non-trivial and is discussed in the summary at the end of the paper where a roughly
equivalent and efficiently computable alternative is given. The following two lemmas show that µ̃ is
indeed optimistic with high probability, and also that it concentrates with reasonable speed around
the true mean.
Lemma 5. P

(
µ̃((Ys)

t
s=1, δ) ≤ µ

)
≤ 2δ .

Proof. By Lemma 4 and the fact that V[(Ys − µ)2] = σ4(κ − 1) ≤ σ4(κ◦ − 1) it holds with
probability at least 1− δ that σ̃2((Ys)

t
s=1, µ, δ) ≥ σ2. Another application of Lemma 4 along with

a union bound ensures that with probability at least 1− 2δ,

M̂Mδ((Ys)
t
s=1) ≤ C1

√
σ2

t
log

(
C2

δ

)
≤ C1

√
σ̃2
t ((Ys)ts=1, µ, δ)

t
log

(
C2

δ

)
.

Therefore with probability at least 1 − 2δ the true mean µ is in the set of which µ̃ is the supremum
and in this case µ̃((Ys)

t
s=1, δ) ≥ µ as required.

Lemma 6. Let δt be monotone decreasing and µ̃t = µ̃((Ys)
t
s=1, δt). Then there exists a universal

constant C3 > 0 such that for any ε > 0,
n∑
t=1

P (µ̃t ≥ µ+ ε) ≤ C3 max

{
κ◦ − 1,

σ2

ε2

}
log

(
C2

δn

)
+ 2

n∑
t=1

δt .

Proof. First, by Lemma 4

n∑
t=1

P

(∣∣∣M̂Mδt

(
(Ys)

t
s=1

)
− µ

∣∣∣ ≥ C1

√
σ2

t
log

(
C2

δt

))
≤

n∑
t=1

δt . (3)

Similarly,

n∑
t=1

P

(∣∣∣M̂Mδt

((
(Ys − µ)2

)t
s=1

)
− σ2

∣∣∣ ≥ C1σ
2

√
κ◦ − 1

t
log

(
C2

δ

))
≤

n∑
t=1

δt . (4)

Suppose that t is a round where all of the following hold:

(a)
∣∣∣M̂Mδt

(
(Ys)

t
s=1

)
− µ

∣∣∣ < C1

√
σ2

t
log

(
C2

δt

)
.

(b)
∣∣∣M̂Mδt

((
(Ys − µ)2

)t
s=1

)
− σ2

∣∣∣ < C1σ
2

√
κ◦ − 1

t
log

(
C2

δt

)
.

(c) t ≥ 16C2
1 (κ◦ − 1) log

(
C2

δt

)
.
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Abbreviating σ̃2
t = σ̃2((Ys)

t
s=1, µ̃t, δt) and µ̂t = M̂Mδt

(
(Ys)

t
s=1

)
,

σ̃2
t =

M̂Mδt

((
(Ys − µ̃s)2

)t
s=1

)
1− C1

√
κ◦−1
t log

(
C2

δt

) ≤ 2 M̂Mδt

((
(Ys − µ̃t)2

)t
s=1

)

≤ 4 M̂Mδt

((
(Ys − µ)2

)t
s=1

)
+ 4(µ̃t − µ)2

≤ 4 M̂Mδt

((
(Ys − µ)2

)t
s=1

)
+ 8(µ̃t − µ̂t)2 + 8(µ̂t − µ)2

< 4σ2 + 4C1σ
2

√
κ◦ − 1

t
log

(
C2

δt

)
+

8C2
1 (σ2 + σ̃2

t )(κ◦ − 1)

t
log

(
C2

δt

)
≤ 11

2
σ2 +

σ̃2
t

2
,

where the first inequality follows from (c), the second since (x− y)2 ≤ 2x2 + 2y2 and the fact that

M̂Mδ((aYs + b)ts=1) = a M̂Mδ((Ys)
t
s=1) + b .

The third inequality again uses (x − y)2 ≤ 2x2 + 2y2, while the last uses the definition of µ̃t and
(a,b). Therefore σ̃2

t ≤ 11σ2, which means that if (a,b,c) and additionally

(d) t ≥ 19C2
1σ

2

ε2
log

(
1

δn

)
.

Then |µ̃t − µ| ≤ |µ̃t − µ̂t|+ |µ̂t − µ| < C1

√
σ̃2
t

t
log

(
C2

δn

)
+ C1

√
σ2

t
log

(
C2

δn

)

≤ C1

√
11σ2

t
log

(
C2

δn

)
+ C1

√
σ2

t
log

(
C2

δn

)
≤ ε .

Combining this with (3) and (4) and choosing C3 = 19C2
1 completes the result.

Algorithm and Proof of Theorem 2 Let δt = 1/(t2 log(1+t)) and µ̃i(t) = µ̃((Xs)s∈[t],As=i, δt).
In each round the algorithm chooses At = arg maxi∈[k] µ̃i(t− 1), where ties are broken arbitrarily.

Proof of Theorem 2. Assume without loss of generality that µ1 = µ∗. Then suboptimal arm i is
only played in round t if either µ̃1(t− 1) ≤ µ1 or µ̃i(t− 1) ≥ µ1. Therefore

E[Ti(n)] ≤
n∑
t=1

P (µ̃1(t− 1) ≤ µ1) +

n∑
t=1

P (µ̃i(t− 1) ≥ µ1 and At = i) (5)

The two sums are bounded using Lemmas 5 and 6 respectively:

n∑
t=1

P (µ̃1(t− 1) ≤ µ1) ≤
n∑
t=1

t∑
u=1

P (µ̃1(t− 1) ≤ µ1 and T1(t− 1) = u)

≤ 2

n∑
t=1

t∑
u=1

δt = 2

n∑
t=1

tδt = o(log(n)) . (By Lem. 5)

n∑
t=1

P (µ̃i(t− 1) ≥ µ1 and At = i) ≤
n∑
t=1

P (µ̃i(t− 1)− µi ≥ ∆i)

≤ C3 max

{
κ◦ − 1,

σ2
i

∆2
i

}
log

(
C2

δn

)
+ 2

n∑
t=1

δt = o(log(n)) . (By Lem. 6)

And the result follows by substituting the above bounds into Eq. (5) and then into the regret decom-
positionRn =

∑k
i=1 ∆iE[Ti(n)].
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3 Lower bound

Let Hκ◦ = {ν : ν has kurtosis less than κ◦} be the class of all distributions with kurtosis bounded
by κ◦. Following the nomenclature of Lai and Robbins [1985], a bandit strategy is called consistent
overH ifRn = o(np) for all p ∈ (0, 1) and bandits (νi)i with νi ∈ Hκ◦ for all i. The next theorem
shows that the upper bound derived in the previous section is nearly tight up to constant factors. Let
H be a family of distributions and let (νi)i be a bandit with νi ∈ H for all i. Burnetas and Katehakis
[1996] showed that for any consistent strategy,

for all i ∈ [k] : lim inf
n→∞

E[Ti(n)]

log(n)
≥
(
inf
{

KL(νi, ν
′
i) : ν′i ∈ H and EX∼ν′i [X] > µ∗

})−1
. (6)

In parameterised families of distributions, the optimisation problem can often be evaluated ana-
lytically (eg., Bernoulli, Gaussian with known variance, Gaussian with unknown variance, Expo-
nential). For non-parametric families the calculation is much more challenging. The following
theorem takes the first steps towards understanding this problem for the class of distributions Hκ◦
for κ◦ ≥ 7/2.

Theorem 7. Let κ◦ ≥ 7/2 and ∆ > 0 and ν ∈ Hκ◦ with mean µ, variance σ2 > 0 and kurtosis κ.
Then for appropriately chosen universal constant C,C ′ > 0,

inf {KL(ν, ν′) : ν′ ∈ Hκ and EX∼ν′ [X] > µ+ ∆} ≤ 7

5
min

{
1

κ◦
,

∆

σ

}
.

If additionally it holds that κ+ C ′∆κ1/2(κ+ 1) ≤ κ◦, then

inf {KL(ν, ν′) : ν′ ∈ Hκ and EX∼ν′ [X] > µ+ ∆} ≤ C∆2

σ2

Therefore provided that ν ∈ Hκ◦ is not too close to the boundary ofHκ◦ in the sense that its kurtosis
is not too close to κ◦, then the lower bound derived from Theorem 7 and Eq. (6) matches the upper
bound up to constant factors. This condition is probably necessary because distributions like the
Bernoulli with kurtosis close to κ◦ have barely any wiggle room to increase the mean without also
increasing the kurtosis.

Proof of Theorem 7. Let ∆ε = ∆ + ε for small ε > 0. Assume without loss of generality that ν is
centered and has variance σ2 = 1, which can always be achieved by shifting and scaling (neither
effects the kurtosis or the relative entropy). The first part of the claim is established by considering
the perturbed distribution obtained by adding a Bernoulli ‘outlier’. Let X be a random variable
sampled from ν and B be a Bernoulli with parameter p = min {∆ε, 1/κ◦}. Let Z = X + Y where
Y = ∆εB/p. Then E[Z] = ∆ε > ∆ and

Kurt[Z] = 3 +
κ− 3 + V[Y ]2(Kurt[Y ]− 3)

(1 + V[Y ])2
= 3 +

κ− 3 +
(

(1−p)∆2
ε

p

)2
1−6p(1−p)
p(1−p)(

1 +
(1−p)∆2

ε

p

)2

≤ 3 +
κ◦ − 3 +

(
(1−p)∆2

ε

p

)2
1−6p(1−p)
p(1−p)(

1 +
(1−p)∆2

ε

p

)2 ≤ κ◦ ,

where the first inequality used Lemma 3 and the final inequality follows from simple case-based
analysis, calculus and the assumption that κ◦ ≥ 7/2 (see Lemma 9 in the appendix). Let ν′ = L(Y )
be the law of Y . Then

KL(ν, ν′) =

∫
R

log
dν

dν′
dν ≤

∫
R

log
1

1− p
dν = log

1

1− p
≤ p

1− p
≤ 7

5
min

{
∆ε,

1

κ◦

}
.

Taking the limit as ε tends to 0 completes the proof of the first part of the theorem. Moving onto the
second claim and using C for a universal positive constant that changes from equation to equation.
Let a > 0 be a constant to be chosen later and A = {x : |x| ≤

√
aκ} and Ā = R − A. Define
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alternative measure ν′(E) =
∫
E

(1 + g)dν where g(x) = (α+ βx)1 {x ∈ A} for some constants α
and β chosen so that ∫

R

g(x)dν(x) = α

∫
A

dν(x) + β

∫
A

xdν(x) = 0 .∫
R

g(x)xdν(x) = α

∫
A

xdν(x) + β

∫
A

x2dν(x) = ∆ε .

Solving for α and β shows that

β =
∆ε∫

A
x2dν(x)− (

∫
A
xdν(x))

2

ν(A)

and α = −
∆ε

∫
A
xdν(x)

ν(A)
∫
A
x2dν(x)−

(∫
A
xdν(x)

)2 .
This implies that

∫
R
dν′(x) = 1 and

∫
R
xdν′(x) = ∆ε > ∆. It remains to show that ν′ is a

probability measure with kurtosis bounded by κ◦. That ν′ is a probability measure will follow from
the positivity of 1− g(·). The first step is to control each of the terms appearing in the definitions of
α and β. By Cauchy-Schwarz and Chebyshev’s inequalities, ν(Ā) = ν(x2 ≥ aκ) ≤ 1/(κa2) and∫

A

x2dν(x) = 1−
∫
Ā

x2dν(x) ≥ 1−
√
κν(Ā) ≥ 1− 1

a
.

Similarly, since ν is centered,∣∣∣∣∫
A

xdν(x)

∣∣∣∣ =

∣∣∣∣∫
Ā

xdν(x)

∣∣∣∣ ≤√σ2ν(Ā) ≤ 1

a
√
κ
.

Therefore by choosing a = 2 and using the fact that the kurtosis is always larger than 1,

|α| = ∆ε

∣∣∣∣∣
∫
A
xdν(x)

ν(A)
∫
A
x2dν(x)−

(∫
A
xdν(x)

)2
∣∣∣∣∣ ≤ ∆ε/

√
κ

a
((

1− 1
κa2

) (
1− 1

a

)
− 1

a2κ

) ≤ 4∆ε√
κ

|β| = ∆ε∫
A
x2dν(x)− (

∫
A
xdν(x))

2

ν(A)

≤ ∆ε

1− 1
a −

1

κa2(1− 1
a2κ

)

≤ 6∆ε .

Now g(x) is a linear function supported on compact set A, so

max
x∈R
|g(x)| = max

{
|g(
√
aκ)|, |g(−

√
aκ)|

}
≤ |α|+

√
aκ|β| ≤ 4∆ε√

κ
+ 6∆ε

√
2κ ≤ 1

2
,

where the last inequality follows by assuming that ∆ε ≤
√
κ/(4(2 + 3

√
2κ)) = O(κ−1/2), which

is reasonable without loss of generality, since if ∆ε is larger than this quantity, then we would prefer
the bound that depends on κ◦ derived in the first part of the proof. The relative entropy between ν
and ν′ is bounded by

KL(ν, ν′) ≤ χ2(ν, ν′) =

∫
R

(
dν(x)

dν′(x)
− 1

)2

dν′(x) =

∫
A

g(x)2

1 + g(x)
dν(x)

≤ 2

∫
A

g(x)2dν(x) ≤ 4

∫
A

α2dν(x) + 4

∫
A

β2x2dν(x) ≤ 4α2 + 4β2

≤ 4 · 16∆2
ε

κ
+ 4 · 36∆2

ε ≤ C∆2
ε .

In order to bound the kurtosis we need to evaluate the moments:∫
R

x2dν′ =

∫
R

x2dν +

∫
A

g(x)x2dν = 1 + α

∫
A

x2dν(x) + β

∫
A

x3dν(x) ≤ 1 + C∆ε

√
κ .∫

R

x2dν′ =

∫
R

x2dν +

∫
A

g(x)x2dν ≥ 1− C∆ε

√
κ .∫

R

x4dν′ =

∫
R

x4dν +

∫
A

g(x)x4dν = κ+ α

∫
A

x4dν(x) + β

∫
A

x5dν(x) ≤ κ
(
1 + C∆ε

√
κ
)
.∣∣∣∣∫

R

x3dν′(x)

∣∣∣∣ ≤
√∫

R

x2dν′(x)

∫
R

x4dν′(x) ≤
√
Cκ .
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Therefore if κ′ is the kurtosis of ν′, then

κ′ =

∫
R

(x−∆ε)
4dν′(x)(∫

R
x2dν′(x)−∆2

ε

)2 =

∫
R
x4dν′(x)− 3∆4

ε + 6∆2
ε

∫
R
x2dν′(x)− 4∆ε

∫
R
x3dν′(x)(

1−∆2
ε + α

∫
A
x2dν(x) + β

∫
A
x3dν(x)

)2
Therefore

κ′ =

∫
R
x4dν′(x)− 3∆4

ε + 6∆2
ε

∫
R
x2dν′(x)− 4∆ε

∫
R
x3dν′(x)(∫

R
x2dν′(x)−∆2

ε

)2
≤
κ
(
1 + C∆εκ

1/2
)

+ 6∆2
ε(1 + C∆εκ

1/2) + C∆εκ
1/2(

1− C∆εκ1/2 −∆2
ε

)2
≤ κ+ C∆εκ

1/2(κ+ 1)

1− C∆εκ1/2
≤ κ+ C∆εκ

1/2(κ+ 1) .

Therefore κ′ ≤ κ◦ provided ∆ε is sufficiently small, which after taking the limit as ε→ 0 completes
the proof.

4 Summary

The assumption of finite kurtosis generalises the parametric Gaussian assumption to a comparable
non-parametric setup with a similar basic structure. Of course there are several open questions.

Optimal constants The leading constants in the main results (Theorem 2 and Theorem 7) are
certainly quite loose. Deriving the optimal form of the regret is an interesting challenge, with both
lower and upper bounds appearing quite non-trivial. It may be necessary to resort to an implicit
analysis showing that (6) is (or is not) achievable when H is the class of distributions with kurtosis
bounded by some κ◦. Even then, constructing an efficient algorithm would remain a challenge.
Certainly what has been presented here is quite far from optimal. At the very least the median-of-
means estimator needs to be replaced, or the analysis improved. An excellent candidate is Catoni’s
estimator [Catoni, 2012], which is slightly more complicated than the median-of-means, but also
comes with smaller constants and could be plugged into the algorithm with very little effort. An
alternative approach is to use the theory of self-normalised processes [Peña et al., 2008], but even this
seems to lead to suboptimal constants. For the lower bound, there appears to be almost no work on
the explicit form of the lower bounds presented by Burnetas and Katehakis [1996] in interesting non-
parametric classes beyond rewards with bounded or semi-bounded support [Honda and Takemura,
2010, 2015].

Absorbing other improvements There has recently been a range of improvements to the confi-
dence level for the classical upper confidence bound algorithms that shave logarithmic terms from
the worst-case regret or improve the lower-order terms in the finite-time bounds [Audibert and
Bubeck, 2009, Lattimore, 2015]. Many of these enhancements can be incorporated into the al-
gorithm presented here, which may lead to practical and theoretical improvements.

Computation complexity The main challenge is the computation of the index, which as written
seems challenging. The easiest solution is to change the algorithm slightly by estimating

µ̂i(t) = M̂Mδt((Xs)s∈[t],As=i) σ̂2
i (t) = M̂Mδt((X

2
s )s∈[t],As=i)− µ̂i(t)

2 .

Then an upper confidence bound on µ̂i(t) is easily derived from Lemma 4 and the rest of the analysis
goes through in about the same way. Naively the computational complexity of the above is Ω(t) in
round t, which would lead to a running time over n rounds of Ω(n2). Provided the number of buckets
used between rounds t and t + 1 is the same, then the median-of-means estimator can be updated
incrementally in O(Bt) time, where Bt is the number of buckets. Now Bt = O(log(1/δt)) =
O(log(t)) so there are at most O(log(n)) changes over n rounds. Therefore the total computation is
O(nk + n log(n)).
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Comparison to Bernoulli Table 2 shows that the kurtosis for a Bernoulli random variable
with mean µ is κ = O(1/(µ(1 − µ))), which is obviously not bounded as µ tends towards
the boundaries. The optimal asymptotic regret for the Bernoulli case is limn→∞Rn/ log(n) =∑
i:∆i>0 ∆i/d(µi, µ

∗). The interesting differences occur near the boundary of the parameter space.
Suppose that µi ≈ 0 for some arm i and µ∗ > 0 is close to zero. An easy calculation shows that
d(µi, µ

∗) ≈ log(1/(1−∆i)) ≈ ∆i. Therefore

lim inf
n→∞

E[Ti(n)]

log(n)
≈ 1

log(1/(1−∆i))
≈ 1

∆i
.

Here we see an algorithm is enjoying logarithmic regret on a class with infinite kurtosis! But this
is a special case and is not possible in general. The reason is that the structure of the hypothesis
class allows strategies to (essentially) estimate the kurtosis with reasonable accuracy and anticipate
outliers more/less depending on the data observed so far. Another way of saying it is that when the
kurtosis is actually small, the algorithms can learn this fact by examining the empirical mean.

A Technical calculations

This section completes some of the calculations required in the proof of Theorem 7.

Lemma 8. Let κ◦ ≥ 7/2 and f(x) = 3 + (κ◦ − 3 + x)/(1 + x)2. Then f(x) ≤ κ◦ for all x ≥ 0.

Proof. Clearly f(0) = κ◦ and for κ◦ ≥ 7/2 and x ≥ 0,

f ′(x) =
1

(1 + x)2

(
1− 2(κ◦ − 3 + x)

1 + x

)
≤ 0 .

Therefore f(x) = κ◦ +
∫ x

0
f ′(y)dy ≤ κ◦.

Lemma 9. If κ◦ ≥ 7/2 and p = min {∆, 1/κ◦}, then

3 +
κ◦ − 3 +

(
(1−p)∆2

p

)2
1−6p(1−p)
p(1−p)(

1 + (1−p)∆2

p

)2 ≤ κ◦ .

Proof. Suppose that p = ∆. Then since κ◦ ≥ 7/2 ≥ 1, p ≤ 1. Therefore

3 +
κ◦ − 3 +

(
(1−p)∆2

p

)2
1−6p(1−p)
p(1−p)(

1 + (1−p)∆2

p

)2 = 3 +
κ◦ − 3 + ∆(1−∆)(1− 6∆(1−∆))

(1 + ∆(1−∆))
2

≤ 3 +
κ◦ − 3 + ∆(1−∆)

(1 + ∆(1−∆))
2

≤ κ◦ ,

where the last inequality follows from Lemma 8. Now suppose that p = 1/κ◦. Then

3 +
κ◦ − 3 +

(
(1−p)∆2

p

)2
1−6p(1−p)
p(1−p)(

1 + (1−p)∆2

p

)2 ≤ 3 +
κ◦ − 3 +

(
(1−p)∆2

p

)2
1−6p(1−p)
p(1−p)

1 +
(

(1−p)∆2

p

)2

≤ max

{
κ◦,

κ◦

1− 1
κ◦

− 3

}
≤ κ◦ ,

where the first inequality follows since (a+b)2 ≥ a2 +b2 for a, b ≥ 0. The second since the average
is less than the maximum. The third since κ◦ ≥ 7/2 > 4/3.
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