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Abstract

Extrapolation methods use the last few iterates of an optimization algorithm to
produce a better estimate of the optimum. They were shown to achieve optimal
convergence rates in a deterministic setting using simple gradient iterates. Here,
we study extrapolation methods in a stochastic setting, where the iterates are
produced by either a simple or an accelerated stochastic gradient algorithm. We
first derive convergence bounds for arbitrary, potentially biased perturbations, then
produce asymptotic bounds using the ratio between the variance of the noise and
the accuracy of the current point. Finally, we apply this acceleration technique
to stochastic algorithms such as SGD, SAGA, SVRG and Katyusha in different
settings, and show significant performance gains.

1 Introduction

We focus on the problem

min
x∈Rd

f(x) (1)

where f is a L-smooth and µ-strongly convex function with respect to the Euclidean norm, i.e.,

µ

2
‖y − x‖2 ≤ f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
‖y − x‖2.

We consider a stochastic first-order oracle, which gives a noisy estimate of the gradient of f(x), with

∇εf(x) = ∇f(x) + ε, (2)

where ε is a noise term with bounded variance. This is the case for example when f is a sum of
strongly convex functions, and we only have access to the gradient of one randomly selected function.
Stochastic optimization (2) is typically challenging as classical algorithms are not convergent (for
example, gradient descent or Nesterov’s accelerated gradient). Even the averaged version of stochastic
gradient descent with constant step size does not converge to the solution of (1), but to another point
whose proximity to the real minimizer depends of the step size [Nedić and Bertsekas, 2001; Moulines
and Bach, 2011].

When f is a finite sum of N functions, then algorithms such as SAG [Schmidt et al., 2013], SAGA
[Defazio et al., 2014], SDCA [Shalev-Shwartz and Zhang, 2013] and SVRG [Johnson and Zhang,
2013] accelerate convergence using a variance reduction technique akin to control variate in Monte-
Carlo methods. Their rate of convergence depends on 1 − µ/L and thus does not exhibit an
accelerated rate on par with the deterministic setting (in 1−

√
µ/L). Recently a generic acceleration

algorithm called Catalyst [Lin et al., 2015], based on the proximal point method improved this rate
of convergence, but the practical performances highly depends on the input parameters. On the
other hand, recent papers, for example [Shalev-Shwartz and Zhang, 2014] (Accelerated SDCA) and
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[Allen-Zhu, 2016] (Katyusha), propose algorithms with accelerated convergence rates, if the strong
convexity parameter is given.

When f is a quadratic function then averaged SGD converges, but the rate of decay of initial conditions
is very slow. Recently, some results have focused on accelerated versions of SGD for quadratic
optimization, showing that with a two step recursion it is possible to enjoy both the optimal rate for
the bias and variance terms [Flammarion and Bach, 2015], given an estimate of the ratio between the
distance to the solution and the variance of ε.

A novel generic acceleration technique was recently proposed by Scieur et al. [2016] in the determin-
istic setting. This uses iterates from a slow algorithm to extrapolate estimates of the solution with
asymptotically optimal convergence rate. Moreover, this rate is reached without prior knowledge of
the strong convexity constant, whose online estimation is still a challenge (even in the deterministic
case [Fercoq and Qu, 2016]) but required if one wants to obtain optimal rates of convergence.

Convergence bounds are derived by Scieur et al. [2016], tracking the difference between the determin-
istic first-order oracle of (1) and iterates from a linearized model. The main contribution of this paper
is to extend the analysis to arbitrary perturbations, including stochastic ones, and to present numerical
results when this acceleration method is used to speed up stochastic optimization algorithms.

In Section 2 we recall the extrapolation algorithm, and quickly summarize its main convergence
bounds in Section 3. In Section 4, we consider a stochastic oracle and analyze its asymptotic
convergence in Section 5. Finally, in Section 6 we describe numerical experiments which confirm the
theoretical bounds and show the practical efficiency of this acceleration.

2 Regularized Nonlinear Acceleration

Consider the optimization problem
min
x∈Rd

f(x)

where f is a L−smooth and µ−strongly convex function [Nesterov, 2013]. Applying the fixed-step
gradient method to this problem yields the following iterates

x̃t+1 = x̃t −
1

L
∇f(x̃t). (3)

Let x∗ be the unique optimal point, this algorithm is proved to converge with

‖x̃t − x∗‖ ≤ (1− κ)t‖x̃0 − x∗‖ (4)

where ‖ · ‖ stands for the `2 norm and κ = µ/L ∈ [0, 1[ is the (inverse of the) condition number of f
[Nesterov, 2013]. Using a two-step recurrence, the accelerated gradient descent by Nesterov [2013]
achieves the improved convergence rate

‖x̃t − x∗‖ ≤ O
(

(1−
√
κ)t‖x̃0 − x∗‖

)
. (5)

Indeed, (5) converges faster than (4) but the accelerated algorithm requires the knowledge of µ and L.
Extrapolation techniques however obtain a similar convergence rate, but do not need estimates of the
parameters µ and L. The idea is based on the comparison between the process followed by x̃i with a
linearized model around the optimum (obtained by the first-order approximation of∇f(x)), written

xt+1 = xt −
1

L

(
∇f(x∗)︸ ︷︷ ︸

=0

+∇2f(x∗)(xt − x∗)
)
, x0 = x̃0.

which can be rewritten as

xt+1 − x∗ = (I−∇2f(x∗)/L)(xt − x∗), x0 = x̃0. (6)

A better estimate of the optimum in (6) can be obtained by forming a linear combination of the
iterates (see [Anderson, 1965; Cabay and Jackson, 1976; Mešina, 1977]), with∥∥∥∥∥

t∑
i=0

cixi − x∗
∥∥∥∥∥� ‖xt − x∗‖,
2



for some specific ci (either data driven, or derived from Chebyshev polynomials). These procedures
were limited to quadratic functions only, i.e. when x̃i = xi but this was recently extended to generic
convex problems by Scieur et al. [2016] and we briefly recall these results below.

To simplify the notations, we write
x̃t+1 = g(x̃t) (7)

to be one step of algorithm g. We have that g is differentiable, Lipchitz-continuous with constant
(1 − κ) < 1, g(x∗) = x∗ and g′(x∗) is symmetric. For example, the gradient method (3) matches
exactly this definition with g(x) = x − ∇f(x)/L. Running k steps of (7) produces a sequence
{x̃0, ..., x̃k}, which we extrapolate using Algorithm 1 from Scieur et al. [2016].

Algorithm 1 Regularized Nonlinear Acceleration (RNA)

Input: Iterates x̃0, x̃1, ..., x̃k+1 ∈ Rd produced by (7), and a regularization parameter λ > 0.
1: Compute R̃ = [r̃0, ..., r̃k], where r̃i = x̃i+1 − x̃i is the ith residue.
2: Solve

c̃λ = argmin
cT 1=1

‖R̃c‖2 + λ‖c‖2,

or equivalently solve (R̃T R̃+ λI)z = 1 then set c̃λ = z/1T z.
Output: Approximation of x∗ computed as

∑k
i=0 c̃

λ
i x̃i

For a good choice of λ, the output of Algorithm (1) is a much better estimate of the optimum than
x̃k+1 (or any other points of the sequence). Using a simple grid search on a few values of λ is usually
sufficient to improve convergence (see [Scieur et al., 2016] for more details).

3 Convergence of Regularized Nonlinear Acceleration

We quickly summarize the argument behind the convergence of Algorithm (1). The theoretical bound
compares x̃i to the iterates produced by the linearized model

xt+1 = x∗ +∇g(x∗)(xt − x∗), x0 = x̃0. (8)

This sequence is useful to extend the convergence results to the nonlinear case, using sensivity
analysis. We write cλ the coefficients computed by Algorithm (1) from the “linearized” sequence
{x0, ..., xk+1} and the error term can be decomposed into three parts,∥∥∥∥∥

k∑
i=0

c̃λi x̃i − x∗
∥∥∥∥∥ ≤

∥∥∥∥∥
k∑
i=0

cλi xi − x∗
∥∥∥∥∥︸ ︷︷ ︸

Acceleration

+

∥∥∥∥∥
k∑
i=0

(
c̃λi − cλi

)
(xi − x∗)

∥∥∥∥∥︸ ︷︷ ︸
Stability

+

∥∥∥∥∥
k∑
i=0

c̃λi

(
x̃i − xi

)∥∥∥∥∥︸ ︷︷ ︸
Nonlinearity

. (9)

Scieur et al. [2016] show that convergence is guaranteed as long as the errors (x̃i − x∗) and (xi − x̃i)
converge to zero fast enough, which ensures a good rate of decay for the regularization parameter
λ, leading to an asymptotic rate equivalent to the accelerated rate in (5). In this section, we will use
results from Scieur et al. [2016] to bound each individual term, but in this paper we improve the final
convergence result.

The stability term (in c̃λ − cλ) is bounded using the perturbation matrix

P , RTR− R̃T R̃, (10)

where R and R̃ are the matrices of residuals,

R , [r0...rk] rt = xt+1 − xt, (11)

R̃ , [r̃0...r̃k] r̃t = x̃t+1 − x̃t. (12)

The proofs of the following propositions were obtained by Scieur et al. [2016].
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Proposition 3.1 (Stability). Let ∆cλ = c̃λ − cλ be the gap between the coefficients computed
by Algorithm (1) using the sequences {x̃i} and {xi} with regularization parameter λ. Let P =

RTR− R̃T R̃ be defined in (10), (11) and (12). Then

‖∆cλ‖ ≤ ‖P‖
λ ‖c

λ‖. (13)

This implies that the stability term is bounded by

‖
∑k
i=0 ∆cλi (xi − x∗)‖ ≤ ‖P‖

λ ‖c
λ‖O(‖x0 − x∗‖). (14)

The term Nonlinearity is bounded by the norm of the coefficients c̃λ (controlled thanks to the
regularization parameter) times the norm of the noise matrix

E = [x0 − x̃0, x1 − x̃1, ..., xk − x̃k]. (15)

Proposition 3.2 (Nonlinearity). Let c̃λ be computed by Algorithm 1 using the sequence
{x̃0, ..., x̃k+1} with regularization parameter λ and R̃ be defined in (12). The norm of c̃λ is
bounded by

‖c̃λ‖ ≤
√
‖R̃‖2+λ
(k+1)λ ≤

1√
k+1

√
1 + ‖R̃‖2

λ . (16)

This bounds the nonlinearity term because∥∥∥∑k
i=0 c̃

λ
i (x̃i − xi)

∥∥∥ ≤√1 + ‖R̃‖2
λ

‖E‖√
k+1

, (17)

where E is defined in (15).

These two propositions show that the regularization in Algorithm 1 limits the impact of the noise: the
higher λ is, the smaller these terms are. It remains to control the acceleration term. For small λ, this
term decreases as fast as the accelerated rate (5), as shown in the following proposition.
Proposition 3.3 (Acceleration). Let Pk be the subspace of real polynomials of degree at most k and
Sκ(k, α) be the solution of the Regularized Chebychev Polynomial problem,

Sκ(k, α) , min
p∈Pk

max
x∈[0,1−κ]

p2(x) + α‖p‖2 s.t. p(1) = 1. (18)

Let λ̄ , λ
‖x0−x∗‖2 be the normalized value of λ. The acceleration term is bounded by∥∥∥∑k

i=0 c
λ
i xi − x∗

∥∥∥ ≤ 1
κ

√
Sκ(k, λ̄)‖x0 − x∗‖2 − λ‖cλ‖2. (19)

We also get the following corollary, which will be useful for the asymptotic analysis of the rate of
convergence of Algorithm 1.
Corollary 3.4. If λ→ 0, the bound (19) becomes∥∥∥∑k

i=0 c
λ
i xi − x∗

∥∥∥ ≤ 1
κ

(
1−
√
κ

1+
√
κ

)k
‖x0 − x∗‖.

Proof. When λ = 0, (19) becomes 1
κ

√
Sκ(k, 0)‖x0−x∗‖. The exact value of

√
Sκ(k, 0) is obtained

by using the coefficients of a re-scaled Chebyshev polynomial, derived by Golub and Varga [1961];
Scieur et al. [2016], and is equal to 1−

√
κ

1+
√
κ

.

These last results controlling stability, nonlinearity and acceleration are proved by Scieur et al. [2016].
We now refine the final step of Scieur et al. [2016] to produce a global bound on the error that will
allow us to extend these results to the stochastic setting in the next sections.
Theorem 3.5. If Algorithm 1 is applied to the sequence x̃i with regularization parameter λ, it
converges with rate∥∥∥∥∥

k∑
i=0

c̃λi x̃i

∥∥∥∥∥ ≤ ‖x0 − x∗‖S 1
2
κ (k, λ̄)

√
1

κ2
+
O(‖x− x∗‖2)‖P‖2

λ3
+
‖E‖√
k + 1

√
1 +
‖R̃‖2
λ

. (20)
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Proof. The proof is inspired by Scieur et al. [2016] and is straightforward. We can bound (9) using
(14) (Stability), (17) (Nonlinearity) and (19) (Acceleration). It remains to maximize over the value
of ‖cλ‖ using the result of Proposition A.2.

This last bound is not very explicit, in particular because of the regularized Chebyshev term Sκ(k, λ̄).
The solution is well known when λ̄ = 0 since it corresponds exactly to the rescaled Chebyshev
polynomial [Golub and Varga, 1961], but as far as we know there is no known result about its
regularized version, thus making the "finite-step" version hard to analyze. However, an asymptotic
analysis simplifies it considerably. The next new proposition shows that when x0 is close to x∗, then
extrapolation converges as fast as in (5) in some cases.

Proposition 3.6. Assume ‖R̃‖ = O(‖x0−x∗‖), ‖E‖ = O(‖x0−x∗‖2) and ‖P‖ = O(‖x0−x∗‖3).
If we chose λ = O(‖x0 − x∗‖s) with s ∈ [2, 83 ] then the bound (20) becomes

lim
‖x0−x∗‖→0

‖
∑k
i=0 c̃

λ
i x̃i‖

‖x0 − x∗‖
≤ 1

κ

(
1−
√
κ

1 +
√
κ

)k
.

Proof. (Sketch) The proof is based on the fact that λ decreases slowly enough to ensure that the
Stability and Nonlinearity terms vanish over time, but fast enough to have λ̄ = λ

‖x0−x∗‖2 → 0.
Then it remains to bound Sκ(k, 0) with Corollary 3.4. The complete proof can be found in the
Supplementary materials.

Note: The assumptions are satisfied if we apply the gradient method on a twice differentiable,
smooth and strongly convex function with Lipchitz-continuous Hessian [Scieur et al., 2016].

The efficiency of Algorithm 1 is thus ensured by two conditions. First, we need to be able to bound
‖R̃‖, ‖P‖ and ‖E‖ by decreasing quantities. Second, we have to find a proper rate of decay for λ
and λ̄ such that the stability and nonlinearity terms go to zero when perturbations also go to zero. If
these two conditions are met, then the accelerated rate in Proposition 3.6 holds.

4 Nonlinear and Noisy Updates

In (7) we defined g(x) to be non linear, which generates a sequence x̃i. We now consider noisy
iterates

x̃t+1 = g(x̃t) + ηt+1, (21)

where ηt is a stochastic noise. To simplify notations, we write (21) as

x̃t+1 = x∗ +G(x̃t − x∗) + εt+1, (22)

where εt is a stochastic noise (potentially correlated with the iterates xi) with bounded mean νt,
‖νt‖ ≤ ν and bounded covariance Σt � (σ2/d)I. We also assume 0I � G � (1 − κ)I and G is
symmetric. For example, (22) can be linked to (21) if we set εt = ηt + O(‖x̃t − x∗‖2), which
corresponds to the combination of the noise ηt+1 with the Taylor remainder of g(x) around x∗, i.e.,

x̃t+1 = g(x̃t) + ηt+1 = g(x∗)︸ ︷︷ ︸
=x∗

+∇g(x∗)︸ ︷︷ ︸
=G

(x̃t − x∗) +O(‖x̃t − x∗‖) + ηt+1︸ ︷︷ ︸
=εt+1

.

The recursion (22) is also valid when we apply the stochastic gradient method with fixed step size h
to the quadratic problem

minx
1
2‖Ax− b‖

2.

This corresponds to (22) with G = I− hATA and mean ν = 0. For the theoretical results, we will
compare x̃t with their noiseless counterpart to control convergence,

xt+1 = x∗ +G(xt − x∗), x0 = x̃0. (23)
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5 Convergence Analysis when Accelerating Stochastic Algorithms

We will control convergence in expectation. Bound (9) now becomes

E

[∥∥∥ k∑
i=0

c̃λi x̃i − x∗
∥∥∥] ≤ ∥∥∥ k∑

i=0

cλi xi − x∗
∥∥∥+O(‖x0 − x∗‖)E

[
‖∆cλ‖

]
+ E

[
‖c̃λ‖‖E‖

]
. (24)

We now need to enforce bounds (14), (17) and (19) in expectation. The proofs of the two next
propositions are in the supplementary material. For simplicity, we will omit all constants in what
follows.
Proposition 5.1. Consider the sequences xi and x̃i generated by (21) and (23). Then,

E[‖R̃‖] ≤ O(‖x0 − x∗‖) +O(ν + σ), (25)
E[‖E‖] ≤ O(ν + σ), (26)

E[‖P‖] ≤ O((σ + ν)‖x0 − x∗‖) +O((ν + σ)2). (27)

We define the following stochastic condition number

τ ,
ν + σ

‖x0 − x∗‖
.

The Proposition 5.2 gives the result when injecting these bounds in (24).
Proposition 5.2. The accuracy of extrapolation Algorithm 1 applied to the sequence {x̃0, ..., x̃k}
generated by (21) is bounded by

E
[
‖
∑k
i=0 c̃

λ
i x̃i − x∗‖

]
‖x0 − x∗‖

≤

(
Sκ(k, λ̄)

√
1

κ2
+
O(τ2(1 + τ)2)

λ̄3
+O

(√
τ2 +

τ2(1 + τ2)

λ̄

))
. (28)

Consider a situation where τ is small, e.g. when using stochastic gradient descent with fixed step-size,
with x0 far from x∗. The following proposition details the dependence between λ̄ and τ ensuring the
upper convergence bound remains stable when τ goes to zero.
Proposition 5.3. When τ → 0, if λ̄ = Θ(τs) with s ∈]0, 23 [, we have the accelerated rate

E
[
‖
∑k
i=0 c̃

λ
i x̃i − x∗‖

]
≤ 1

κ

(
1−
√
κ

1+
√
κ

)k
‖x0 − x∗‖. (29)

Moreover, if λ→∞, we recover the averaged gradient,

E
[
‖
∑k
i=0 c̃

λ
i x̃i − x∗‖

]
= E

[∥∥∥ 1
k+1

∑k
i=0 x̃i − x∗

∥∥∥] .
Proof. Let λ̄ = Θ(τs), using (28) we have

E
[∥∥∥∑k

i=0 c̃
λ
i x̃i − x∗

∥∥∥] ≤ ‖x0 − x∗‖Sκ(k, τ s)
√

1
κ2O(τ2−3s(1 + τ)2)

+‖x0 − x∗‖O(
√
τ2 + τ2−3s(1 + τ2)).

Because s ∈]0, 23 [, means 2 − 3s > 0, thus limτ→0 τ
2−3s = 0. The limits when τ → 0 is thus

exactly (29). If λ→∞, we have also

lim
λ→∞

c̃λ = lim
λ→∞

argminc:1T c=1 ‖R̃c‖+ λ‖c‖2 = argminc:1T c=1 ‖c‖2 = 1
k+1

which yields the desired result.

Proposition 5.3 shows that Algorithm 1 is thus asymptotically optimal provided λ is well chosen
because it recovers the accelerated rate for smooth and strongly convex functions when the perturba-
tions goes to zero. Moreover, we recover Proposition 3.6 when εt is the Taylor remainder, i.e. with
ν = O(‖x0 − x∗‖2) and σ = 0, which matches the deterministic results.

Algorithm 1 is particularly efficient when combined with a restart scheme [Scieur et al., 2016].
From a theoretical point of view, the acceleration peak arises for small values of k. Empirically, the
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improvement is usually more important at the beginning, i.e. when k is small. Finally, the algorithmic
complexity is O(k2d), which is linear in the problem dimension when k remains bounded.

The benefits of extrapolation are limited in a regime where the noise dominates. However, when
τ is relatively small then we can expect a significant speedup. This condition is satisfied in many
cases, for example at the initial phase of the stochastic gradient descent or when optimizing a sum of
functions with variance reduction techniques, such as SAGA or SVRG.

6 Numerical Experiments

6.1 Stochastic gradient descent

We want to solve the least-squares problem

min
x∈Rd

F (x) =
1

2
‖Ax− b‖2,

where ATA satisfies µI � (ATA) � LI. To solve this problem, we have access to the stochastic
first-order oracle

∇εF (x) = ∇F (x) + ε,

where ε is a zero-mean noise of covariance matrix Σ � σ2

d I. We will compare several methods.

• SGD. Fixed step-size, xt+1 = xt − 1
L∇εF (xt).

• Averaged SGD. Iterate xk is the mean of the k first iterations of SGD.
• AccSGD. The optimal two-step algorithm in Flammarion and Bach [2015], with optimal

parameters (this implies ‖x0 − x∗‖ and σ are known exactly).
• RNA+SGD. The regularized nonlinear acceleration Algorithm 1 applied to a sequence of k

iterates of SGD, with k = 10 and λ = ‖R̃T R̃‖/10−6.

By Proposition 5.2, we know that RNA+SGD will not converge to arbitrary precision because the
noise is additive with a non-vanishing variance. However, Proposition 5.3 predicts an improvement
of the convergence at the beginning of the process. We illustrate this behavior in Figure 1. We
clearly see that at the beginning, the performance of RNA+SGD is comparable to that of the optimal
accelerated algorithm. However, because of the restart strategy, in the regime where the level of
noise becomes more important the acceleration becomes less effective and finally the convergence
stalls, as for SGD. Of course, for practical purposes, the first regime is the most important because it
effectively minimizes the generalization error [Défossez and Bach, 2015; Jain et al., 2016].

6.2 Finite sums of functions

We focus on the composite problem minx∈Rd F (x) =
∑N
i=1

1
N fi(x) + µ

2 ‖x‖
2, where fi are convex

and L-smooth functions and µ is the regularization parameter. We will use classical methods for
minimizing F (x) such as SGD (with fixed step size), SAGA [Defazio et al., 2014], SVRG [Johnson
and Zhang, 2013], and also the accelerated algorithm Katyusha [Allen-Zhu, 2016]. We will compare
their performance with and without the (potential) acceleration provided by Algorithm 1 with restart
after k data passes. The parameter λ is found by a grid search of size k, the size of the input sequence,
but it adds only one data pass at each extrapolation. Actually, the grid search can be faster if we
approximate F (x) with fewer samples, but we choose to present Algorithm 1 in its simplest version.
We set k = 10 for all the experiments.

In order to balance the complexity of the extrapolation algorithm and the optimization method we wait
several data queries before adding the current point (the “snapshot”) of the method to the sequence.
Indeed, the extrapolation algorithm has a complexity of O(k2d) +O(N) (computing the coefficients
c̃λ and the grid search over λ). If we wait at least O(N) updates, then the extrapolation method is of
the same order of complexity as the optimization algorithm.

• SGD. We add the current point after N data queries (i.e. one epoch) and k snapshots of
SGD cost kN data queries.

7
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Figure 1: Comparison of performance between SGD, averaged SGD, Accelerated SGD [Flammarion
and Bach, 2015] and RNA+SGD. We tested the performance on a matrix ATA of size d = 500, with
(top) random eigenvalues between κ and 1 and (bottom) decaying eigenvalues from 1 to 1/d. We
start at ‖x0 − x∗‖ = 104, where x0 and x∗ are generated randomly.

• SAGA. We compute the gradient table exactly, then we add a new point after N queries,
and k snapshots of SAGA cost (k + 1)N queries. Since we optimize a sum of quadratic or
logistic losses, we used the version of SAGA which stores O(N) scalars.

• SVRG. We compute the gradient exactly, then perform N queries (the inner-loop of SVRG),
and k snapshots of SVRG cost 2kN queries.

• Katyusha. We compute the gradient exactly, then perform 4N gradient calls (the inner-loop
of Katyusha), and k snapshots of Katyusha cost 3kN queries.

We compare these various methods for solving least-squares regression and logistic regression
on several datasets (Table 1), with several condition numbers κ: well (κ = 100/N ), moderately
(κ = 1/N ) and badly (κ = 1/100N ) conditioned. In this section, we present the numerical results
on Sid (Sido0 dataset, where N = 12678 and d = 4932) with bad conditioning, see Figure 2. The
other experiments are highlighted in the supplementary material.

In Figure 2, we clearly see that both SGD and RNA+SGD do not converge. This is mainly due to
the fact that we do not average the points. In any case, except for quadratic problems, the averaged
version of SGD does not converge to the minimum of F with arbitrary precision.

We also notice that Algorithm 1 is unable to accelerate Katyusha. This issue was already raised
by Scieur et al. [2016]: when the algorithm has a momentum term (like Nesterov’s method), the
underlying dynamical system is harder to extrapolate, in particular because the matrix presents in the
linearized version of such systems is not symmetric.

Because the iterates of SAGA and SVRG have low variance, their accelerated version converges
faster to the optimum, and their performance are then comparable to Katyusha. In our experiments,
Katyusha was faster than RNA+SAGA only once, when solving a least square problem on Sido0
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Figure 2: Optimization of quadratic loss (Top) and logistic loss (Bottom) with several algorithms,
using the Sid dataset with bad conditioning. The experiments are done in Matlab. Left: Error vs
epoch number. Right: Error vs time.

with a bad condition number. Recall however that the acceleration Algorithm 1 does not require the
specification of the strong convexity parameter, unlike Katyusha.
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