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Abstract

We study a class of non-parametric density estimators under Bayesian settings.
The estimators are obtained by adaptively partitioning the sample space. Under
a suitable prior, we analyze the concentration rate of the posterior distribution,
and demonstrate that the rate does not directly depend on the dimension of the
problem in several special cases. Another advantage of this class of Bayesian
density estimators is that it can adapt to the unknown smoothness of the true
density function, thus achieving the optimal convergence rate without artificial
conditions on the density. We also validate the theoretical results on a variety of
simulated data sets.

1 Introduction

In this paper, we study the asymptotic behavior of posterior distributions of a class of Bayesian density
estimators based on adaptive partitioning. Density estimation is a building block for many other
statistical methods, such as classification, nonparametric testing, clustering, and data compression.

With univariate (or bivariate) data, the most basic non-parametric method for density estimation
is the histogram method. In this method, the sample space is partitioned into regular intervals
(or rectangles), and the density is estimated by the relative frequency of data points falling into
each interval (rectangle). However, this method is of limited utility in higher dimensional spaces
because the number of cells in a regular partition of a p-dimensional space will grow exponentially
with p, which makes the relative frequency highly variable unless the sample size is extremely
large. In this situation the histogram may be improved by adapting the partition to the data so
that larger rectangles are used in the parts of the sample space where data is sparse. Motivated
by this consideration, researchers have recently developed several multivariate density estimation
methods based on adaptive partitioning [13, 12]. For example, by generalizing the classical Pólya
Tree construction [7, 22] developed the Optional Pólya Tree (OPT) prior on the space of simple
functions. Computational issues related to OPT density estimates were discussed in [13], where
efficient algorithms were developed to compute the OPT estimate. The method performs quite well
when the dimension is moderately large (from 10 to 50).

The purpose of the current paper is to address the following questions on such Bayesian density
estimates based on partition-learning. Question 1: what is the class of density functions that can be
“well estimated” by the partition-learning based methods. Question 2: what is the rate at which the
posterior distribution is concentrated around the true density as the sample size increases. Our main
contributions lie in the following aspects:
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• We impose a suitable prior on the space of density functions defined on binary partitions, and
calculate the posterior concentration rate under the Hellinger distance with mild assumptions.
The rate is adaptive to the unknown smoothness of the true density.
• For two dimensional density functions of bounded variation, the posterior contraction rate

of our method is n−1/4(log n)3.
• For Hölder continuous (one-dimensional case) or mixture Hölder continuous (multi-

dimensional case) density functions with regularity parameter β in (0, 1], the posterior
concentration rate is n−

β
2β+p (log n)2+ p

2β , whereas the minimax rate for one-dimensional
Hölder continuous functions is (n/ log n)−β/(2β+1).

• When the true density function is sparse in the sense that the Haar wavelet coefficients satisfy
a weak-lq (q > 1/2) constraint, the posterior concentration rate is n−

q−1/2
2q (log n)2+ 1

2q−1 .
• We can use a computationally efficient algorithm to sample from the posterior distribution.

We demonstrate the theoretical results on several simulated data sets.

1.1 Related work

An important feature of our method is that it can adapt to the unknown smoothness of the true density
function. The adaptivity of Bayesian approaches has drawn great attention in recent years. In terms of
density estimation, there are mainly two categories of adaptive Bayesian nonparametric approaches.
The first category of work relies on basis expansion of the density function and typically imposes a
random series prior [15, 17]. When the prior on the coefficients of the expansion is set to be normal
[4], it is also a Gaussian process prior. In the multivariate case, most existing work [4, 17] uses
tensor-product basis. Our improvement over these methods mainly lies in the adaptive structure. In
fact, as the dimension increases the number of tensor-product basis functions can be prohibitively
large, which imposes a great challenge on computation. By introducing adaptive partition, we are
able to handle the multivariate case even when the dimension is 30 (Example 2 in Section 4).

Another line of work considers mixture priors [16, 11, 18]. Although the mixture distributions have
good approximation properties and naturally lead to adaptivity to very high smoothness levels, they
may fail to detect or characterize the local features. On the other hand, by learning a partition of the
sample space, the partition based approaches can provide an informative summary of the structure,
and allow us to examine the density at different resolutions [14, 21].

The paper is organized as follows. In Section 2 we provide more details of the density functions on
binary partitions and define the prior distribution. Section 3 summarizes the theoretical results on
posterior concentration rates. The results are further validated in Section 4 by several experiments.

2 Bayesian multivariate density estimation

We focus on density estimation problems in p-dimensional Euclidean space. Let (Ω,B) be a mea-
surable space and f0 be a compactly supported density function with respect to the Lebesgue
measure µ. Y1, Y2, · · · , Yn is a sequence of independent variables distributed according to f0. Af-
ter translation and scaling, we can always assume that the support of f0 is contained in the unit
cube in Rp. Translating this into notations, we assume that Ω = {(y1, y2, · · · , yp) : yl ∈ [0, 1]}.
F = {f is a nonnegative measurable function on Ω :

∫
Ω
fdµ = 1} denotes the collection of all the

density functions on (Ω,B, µ). Then F constitutes the parameter space in this problem. Note that F
is an infinite dimensional parameter space.

2.1 Densities on binary partitions

To address the infinite dimensionality of F , we construct a sequence of finite dimensional approx-
imating spaces Θ1,Θ2, · · · ,ΘI , · · · based on binary partitions. With growing complexity, these
spaces provide more and more accurate approximations to the initial parameter space F . Here, we
use a recursive procedure to define a binary partition with I subregions of the unit cube in Rp. Let
Ω = {(y1, y2, · · · , yp) : yl ∈ [0, 1]} be the unit cube in Rp. In the first step, we choose one of
the coordinates yl and cut Ω into two subregions along the midpoint of the range of yl. That is,
Ω = Ωl0 ∪ Ωl1, where Ωl0 = {y ∈ Ω : yl ≤ 1/2} and Ωl1 = Ω\Ωl0. In this way, we get a partition
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with two subregions. Note that the total number of possible partitions after the first step is equal to
the dimension p. Suppose after I − 1 steps of the recursion, we have obtained a partition {Ωi}Ii=1
with I subregions. In the I-th step, further partitioning of the region is defined as follows:

1. Choose a region from Ω1, · · · ,ΩI . Denote it as Ωi0 .

2. Choose one coordinate yl and divide Ωi0 into two subregions along the midpoint of the
range of yl.

Such a partition obtained by I − 1 recursive steps is called a binary partition of size I . Figure 1
displays all possible two dimensional binary partitions when I is 1, 2 and 3.

Figure 1: Binary partitions

Now, let

ΘI = {f : f =

I∑
i=1

θi
|Ωi|

1Ωi ,

I∑
i=1

θi = 1, {Ωi}Ii=1 is a binary partition of Ω.}

where |Ωi| is the volume of Ωi. Then, ΘI is the collection of the density functions supported by the
binary partitions of size I . They constitute a sequence of approximating spaces (i.e. a sieve, see
[10, 20] for background on sieve theory). Let Θ = ∪∞I=1ΘI be the space containing all the density
functions supported by the binary partitions. Then Θ is an approximation of the initial parameter
space F to certain approximation error which will be characterized later.

We take the metric on F , Θ and ΘI to be Hellinger distance, which is defined as

ρ(f, g) = (

∫
Ω

(
√
f(y)−

√
g(y))2dy)1/2, f, g ∈ F . (1)

2.2 Prior distribution

An ideal prior Π on Θ = ∪∞I=1ΘI is supposed to be capable of balancing the approximation error
and the complexity of Θ. The prior in this paper penalizes the size of the partition in the sense
that the probability mass on each ΘI is proportional to exp(−λI log I). Given a sample of size n,
we restrict our attention to Θn = ∪n/ logn

I=1 ΘI , because in practice we need enough samples within
each subregion to get a meaningful estimate of the density. This is to say, when I ≤ n/ log n,
Π(ΘI) ∝ exp(−λI log I), otherwise Π(ΘI) = 0.

If we use TI to denote the total number of possible partitions of size I , then it is not hard to see
that log TI ≤ c∗I log I , where c∗ is a constant. Within each ΘI , the prior is uniform across all
binary partitions. In other words, let {Ωi}Ii=1 be a binary partition of Ω of size I , and F({Ωi}Ii=1)
is the collection of piecewise constant density functions on this partition (i.e. F({Ωi}Ii=1) = {f =∑I
i=1

θi
|Ωi|1Ωi :

∑I
i=1 θi = 1 and θi ≥ 0, i = 1, . . . , I}), then

Π
(
F
(
{Ωi}Ii=1

))
∝ exp(−λI log I)/TI . (2)
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Given a partition {Ωi}Ii=1, the weights θi on the subregions follow a Dirichlet distribution with
parameters all equal to α (α < 1). This is to say, for x1, · · · , xI ≥ 0 and

∑I
i=1 xi = 1,

Π

(
f =

I∑
i=1

θi
|Ωi|

1Ωi : θ1 ∈ dx1, · · · , θI ∈ dxI
∣∣∣∣F ({Ωi}Ii=1

))
=

1

D(α, · · · , α)

I∏
i=1

xα−1
i , (3)

where D(δ1, · · · , δI) =
∏I
i=1 Γ(δi)/Γ(

∑I
i=1 δi).

Let Πn(·|Y1, · · · , Yn) to denote the posterior distribution. After integrating out the weights θi, we
can compute the marginal posterior probability of F

(
{Ωi}Ii=1

)
:

Πn

(
F({Ωi}Ii=1)

∣∣Y1, · · · , Yn
)
∝ Π

(
F({Ωi}Ii=1)

) ∫ ( I∏
i=1

(θi/|Ωi|)ni
)

×

(
1

D(α, · · · , α)

I∏
i=1

θα−1
i

)
dθ1 · · · dθI

∝ exp(−λI log I)

TI
· D(α+ n1, · · · , α+ nI)

D(α, · · · , α)

I∏
i=1

1

|Ωi|ni
, (4)

where ni is the number of observations in Ωi. Under the prior introduced in [13], the marginal
posterior distribution is:

Π∗n
(
F({Ωi}Ii=1)

∣∣Y1, · · · , Yn
)
∝ exp(−λI)

D(α+ n1, · · · , α+ nI)

D(α, · · · , α)

I∏
i=1

1

|Ωi|ni
, (5)

while the maximum log-likelihood achieved by histograms on the partition {Ωi}ni=1 is:

ln(F({Ωi}Ii=1)) := max
f∈F({Ωi}Ii=1)

ln(f) =

I∑
i=1

ni log

(
ni
n|Ωi|

)
. (6)

From a model selection perspective, we may treat the histograms on each binary partition as a model
of the data. When I � n, asymptotically,

log
(
Π∗n
(
F({Ωi}Ii=1)

∣∣Y1, · · · , Yn
))
� ln(F({Ωi}Ii=1))− 1

2
(I − 1) log n. (7)

This is to say, in [13], selecting the partition which maximizes the marginal posterior distribution is
equivalent to applying the Bayesian information criterion (BIC) to perform model selection. However,
if we allow I to increase with n, (7) will not hold any more. But if we use the prior introduced in this
section, in the case when I

n → ζ ∈ (0, 1) as n→∞, we still have

log
(
Πn

(
F({Ωi}Ii=1)

∣∣Y1, · · · , Yn
))
� ln(F({Ωi}Ii=1))− λI log I. (8)

From a model selection perspective, this is closer to the risk inflation criterion (RIC, [8]).

3 Posterior concentration rates

We are interested in how fast the posterior probability measure concentrates around the true the
density f0. Under the prior specified above, the posterior probability is the random measure given by

Πn(B|Y1, · · · , Yn) =

∫
B

∏n
j=1 f(Yj)dΠ(f)∫

Θ

∏n
j=1 f(Yj)dΠ(f)

.

A Bayesian estimator is said to be consistent if the posterior distribution concentrates on arbitrarily
small neighborhoods of f0, with probability tending to 1 under Pn0 (P0 is the probability measure
corresponding to the density function f0). The posterior concentration rate refers to the rate at which
these neighborhoods shrink to zero while still possessing most of the posterior mass. More explicitly,
we want to find a sequence εn → 0, such that for sufficiently large M ,

Πn ({f : ρ(f, f0) ≥Mεn}|Y1, · · · , Yn)→ 0 in Pn0 − probability.
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In [6] and [2], the authors demonstrated that it is impossible to find an estimator which works
uniformly well for every f in F . This is the case because for any estimator f̂ , there always exists
f ∈ F for which f̂ is inconsistent. Given the minimaxity of the Bayes estimator, we have to restrict
our attention to a subset of the original parameter space F . Here, we focus on the class of density
functions that can be well approximated by ΘI ’s. To be more rigorous, a density function f ∈ F is
said to be well approximated by elements in Θ, if there exits a sequence of fI ∈ ΘI , satisfying that
ρ(fI , f) = O(I−r)(r > 0). Let F0 be the collection of these density functions. We will first derive
posterior concentration rate for the elements in F0 as a function of r. For different function classes,
this approximation rate r can be calculated explicitly. In addition to this, we also assume that f0 has
finite second moment.

The following theorem gives the posterior concentration rate under the prior introduced in Section
2.2.

Theorem 3.1. Y1, · · · , Yn is a sequence of independent random variables distributed according
to f0. P0 is the probability measure corresponding to f0. Θ is the collection of p-dimensional
density functions supported by the binary partitions as defined in Section 2.1. With the modified prior
distribution, if f0 ∈ F0, then the posterior concentration rate is εn = n−

r
2r+1 (log n)2+ 1

2r .

The strategy to show this theorem is to write the posterior probability of the shrinking ball as

Π({f : ρ(f, f0) ≥Mεn}|Y1, · · · , Yn) =

∑∞
I=1

∫
{f :ρ(f,f0)≥Mεn}∩ΘI

∏n
j=1

f(Yj)
f0(Yj)

dΠ(f)∑∞
I=1

∫
ΘI

∏n
j=1

f(Yj)
f0(Yj)

dΠ(f)
. (9)

The proof employs the mechanism developed in the landmark works [9] and [19]. We first obtain
the upper bounds for the items in the numerator by dividing them into three blocks, each of which
accounts for bias, variance, and rapidly decaying prior respectively, and calculate the upper bound for
each block separately. Then we provide the prior thickness result, i.e., we bound the prior mass of a
ball around the true density from below. Due to space constraints, the details of the proof will be
provided in the appendix.

This theorem suggests the following two take-away messages: 1. The rate is adaptive to the unknown
smoothness of the true density. 2. The posterior contraction rate is n−

r
2r+1 (log n)2+ 1

2r , which does
not directly depend on the dimension p. For some density functions, r may depend on p. But in
several special cases, like the density function is spatially sparse or the density function lies in a low
dimensional subspace, we will show that the rate will not be affected by the full dimension of the
problem.

In the following three subsections, we will calculate the explicit rates for three density classes. Again,
all proofs are given in the appendix.

3.1 Spatial adaptation

First, we assume that the density concentrates spatially. Mathematically, this implies the density
function satisfies a type of sparsity. In the past two decades, sparsity has become one of the most
discussed types of structure under which we are able to overcome the curse of dimensionality. A
remarkable example is that it allows us to solve high-dimensional linear models, especially when the
system is underdetermined.

Let f be a p dimensional density function and Ψ the p-dimensional Haar basis. We will work
with g =

√
f first. Note that g ∈ L2([0, 1]p). Thus we can expand g with respect to Ψ as

g =
∑
ψ∈Ψ〈g, ψ〉ψ, ψ ∈ Ψ. We rearrange this summation by the size of wavelet coefficients. In

other words, we order the coefficients as the following

|〈g, ψ(1)〉| ≥ |〈g, ψ(2)〉| ≥ · · · ≥ |〈g, ψ(k)〉| ≥ · · · ,

then the sparsity condition imposed on the density functions is that the decay of the wavelet coeffi-
cients follows a power law,

|〈g, ψ(k)〉| ≤ Ck−q for all k ∈ N and q > 1/2, (10)

where C is a constant.

5



We call such a constraint a weak-lq constraint. The condition has been widely used to characterize
the sparsity of signals and images [1, 3]. In particular, in [5], it was shown that for two-dimensional
cases, when q > 1/2, this condition reasonably captures the sparsity of real world images.
Corollary 3.2. (Application to spatial adaptation) Suppose f0 is a p-dimensional density function
and satisfies the condition (10). If we apply our approaches to this type of density functions, the
posterior concentration rate is n−

q−1/2
2q (log n)2+ 1

2q−1 .

3.2 Density functions of bounded variation

Let Ω = [0, 1)2 be a domain in R2. We first characterize the space BV (Ω) of functions of bounded
variation on Ω.

For a vector ν ∈ R2, the difference operator ∆ν along the direction ν is defined by

∆ν(f, y) := f(y + ν)− f(y).

For functions f defined on Ω, ∆ν(f, y) is defined whenever y ∈ Ω(ν), where Ω(ν) := {y :
[y, y + ν] ⊂ Ω} and [y, y + ν] is the line segment connecting y and y + ν. Denote by el, l = 1, 2 the
two coordinate vectors in R2. We say that a function f ∈ L1(Ω) is in BV (Ω) if and only if

VΩ(f) := sup
h>0

h−1
2∑
l=1

‖∆hel(f, ·)‖L1(Ω(hel)) = lim
h→0

h−1
2∑
l=1

‖∆hel(f, ·)‖L1(Ω(hel))

is finite. The quantity VΩ(f) is the variation of f over Ω.
Corollary 3.3. Assume that f0 ∈ BV (Ω). If we apply the Bayesian multivariate density estimator
based on adaptive partitioning here to estimate f0, the posterior concentration rate is n−1/4(log n)3.

3.3 Hölder space

In one-dimensional case, the class of Hölder functionsH(L, β) with regularity parameter β is defined
as the following: let κ be the largest integer smaller than β, and denote by f (κ) its κth derivative.

H(L, β) = {f : [0, 1]→ R : |f (κ)(x)− f (κ)(y)| ≤ L|x− y|β−κ}.

In multi-dimensional cases, we introduce the Mixed-Hölder continuity. In order to simplify the
notation, we give the definition when the dimension is two. It can be easily generalized to high-
dimensional cases. A real-valued function f on R2 is called Mixed-Hölder continuous for some
nonnegative constant C and β ∈ (0, 1], if for any (x1, y1), (x1, y2) ∈ R2,

|f(x2, y2)− f(x2, y1)− f(x1, y2) + f(x1, y1)| ≤ C|x1 − x2|β |y1 − y2|β .

Corollary 3.4. Let f0 be the p-dimensional density function. If
√
f0 is Hölder continuous (when

p = 1) or mixed-Hölder continuous (when p ≥ 2) with regularity parameter β ∈ (0, 1], then the
posterior concentration rate of the Bayes estimator is n−

β
2β+p (log n)2+ p

2β .

This result also implies that if f0 only depends on p̃ variable where p̃ < p, but we do not know in
advance which p̃ variables, then the rate of this method is determined by the effective dimension p̃ of
the problem, since the smoothness parameter r is only a function of p̃. In next section, we will use a
simulated data set to illustrate this point.

4 Simulation

4.1 Sequential importance sampling

Each partition AI = {Ωi}Ii=1 is obtained by recursively partitioning the sample space. We can
use a sequence of partitions A1,A2, · · · ,AI to keep track of the path leading to AI . Let Πn(·)
denote the posterior distribution Πn(·|Y1, · · · , Yn) for simplicity, and ΠI

n be the posterior distribution
conditioning on ΘI . Then ΠI

n(AI) can be decomposed as

ΠI
n(AI) = ΠI

n(A1)ΠI
n(A2|A1) · · ·ΠI

n(AI |AI−1).
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Figure 2: Heatmap of the density and plots of the 2-dimensional Haar coefficients. For the plot on the
right, the left panel is the plot of the Haar coefficients from low resolution to high resolution up to
level 6. The middle one is the plot of the sorted coefficients according to their absolute values. And
the right one is the same as the middle plot but with the abscissa in log scale.

The conditional distribution ΠI
n(Ai+1|Ai) can be calculated by ΠI

n(Ai+1)/ΠI
n(Ai). However, the

computation of the marginal distribution ΠI
n(Ai) is sometimes infeasible, especially when both I and

I − i are large, because we need to sum the marginal posterior probability over all binary partitions of
size I for which the first i steps in the partition generating path are the same as those ofAi. Therefore,
we adopt the sequential importance algorithm proposed in [13]. In order to build a sequence of binary
partitions, at each step, the conditional distribution is approximated by Πi+1

n (Ai+1|Ai). The obtained
partition is assigned a weight to compensate the approximation, where the weight is

wI(AI) =
ΠI
n(AI)

Π1
n(A1)Π2

n(A2|A1) · · ·ΠI
n(AI |AI−1)

.

In order to make the data points as uniform as possible, we apply a copula transformation to each
variable in advance whenever the dimension exceeds 3. More specifically, we estimate the marginal
distribution of each variable Xj by our approach, denoted as f̂j (we use F̂j to denote the cdf of
Xj), and transform each point (y1, · · · , yp) to (F1(y1), · · · , Fp(yp)). Another advantage of this
transformation is that after the transformation the sample space naturally becomes [0, 1]p.

Example 1 Assume that the two-dimensional density function is(
Y1

Y2

)
∼ 2

5
N
((

0.25
0.25

)
, 0.052I2×2

)
+

3

5
N
((

0.75
0.75

)
, 0.052I2×2

)
.

This density function both satisfies the spatial sparsity condition and belongs to the space of functions
of bounded variation. Figure 2 shows the heatmap of the density function and its Haar coefficients.
The last panel in the second plot displays the sorted coefficients with the abscissa in log-scale. From
this we can clearly see that the power-law decay defined in Section 3.1 is satisfied.

We apply the adaptive partitioning approach to estimate the density, and allow the sample size increase
from 102 to 105. In Figure 3, the left plot is the density estimation result based on a sample with
10000 data points. The right one is the plot of Kullback-Leibler (KL) divergence from the estimated
density to f0 vs. sample size in log-scale. The sample sizes are set to be 100, 500, 1000, 5000, 104,
and 105. The linear trend in the plot validates the posterior concentrate rates calculated in Section 3.
The reason why we use KL divergence instead of the Hellinger distance is that for any f0 ∈ F0 and
f̂ ∈ Θ, we can show that the KL divergence and the Hellinger distance are of the same order. But
KL divergence is relatively easier to compute in our setting, since we can show that it is linear in
the logarithm of the posterior marginal probability of a partition. The proof will be provided in the
appendix. For each fixed sample size, we run the experiment 10 times and estimate the standard error,
which is shown by the lighter blue part in the plot.

Example 2 In the second example we work with a density function of moderately high dimension.
Assume that the first five random variables Y1, · · ·Y5 are generated from the following location
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Figure 3: Plot of the estimated density and KL divergence against sample size. We use the posterior
mean as the estimate. The right plot is on log-log scale, while the labels of x and y axes still represent
the sample size and the KL divergence before we take the logarithm.

Figure 4: KL divergence vs. sample size. The blue, purple and red curves correspond to the cases
when p = 5, p = 10 and p = 30 respectively. The slopes of the three lines are almost the same,
implying that the concentration rate only depends on the effective dimension of the problem (which
is 5 in this example).

mixture of the Gaussian distribution:(
Y1

Y2

Y3

)
∼ 1

2
N

(0.25
0.25
0.25

)
,

0.052 0.032 0
0.032 0.052 0

0 0 0.052

+
1

2
N

((
0.75
0.75
0.75

)
, 0.052I3×3

)
,

Y4, Y5 ∼ N (0.5, 0.1),

the other components Y6, · · · , Yp are independently uniformly distributed. We run experiments for
p = 5, 10, and 30. For a fixed p, we generate n ∈ {500, 1000, 5000, 104, 105} data points. For
each pair of p and n, we repeat the experiment 10 times and calculate the standard error. Figure 4
displays the plot of the KL divergence vs. the sample size on log-log scale. The density function is
continuous differentiable. Therefore, it satisfies the mixed-Hölder continuity condition. The effective
dimension of this example is p̃ = 5, and this is reflected in the plot: the slopes of the three lines,
which correspond to the concentration rates under different dimensions, almost remain the same as
we increase the full dimension of the problem.

5 Conclusion

In this paper, we study the posterior concentration rate of a class of Bayesian density estimators
based on adaptive partitioning. We obtain explicit rates when the density function is spatially sparse,
belongs to the space of bounded variation, or is Hölder continuous. For the last case, the rate is
minimax up to a logarithmic term. When the density function is sparse or lies in a low-dimensional
subspace, the rate will not be affected by the dimension of the problem. Another advantage of this
method is that it can adapt to the unknown smoothness of the underlying density function.
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