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Abstract

In this paper, we examine a class of non-convex stochastic optimization problems
which we call variationally coherent, and which properly includes pseudo-/quasi-
convex and star-convex optimization problems. To solve such problems, we focus
on the widely used stochastic mirror descent (SMD) family of algorithms (which
contains stochastic gradient descent as a special case), and we show that the
last iterate of SMD converges to the problem’s solution set with probability 1.
This result contributes to the landscape of non-convex stochastic optimization by
clarifying that neither pseudo-/quasi-convexity nor star-convexity is essential for
(almost sure) global convergence; rather, variational coherence, a much weaker
requirement, suffices. Characterization of convergence rates for the subclass of
strongly variationally coherent optimization problems as well as simulation results
are also presented.

1 Introduction

The stochastic mirror descent (SMD) method and its variants[1, 7, 8] is arguably one of the most
widely used family of algorithms in stochastic optimization – convex and non-convex alike. Starting
with the orginal work of [16], the convergence of SMD has been studied extensively in the context of
convex programming (both stochastic and deterministic), saddle-point problems, and monotone varia-
tional inequalities. Some of the most important contributions in this domain are due to Nemirovski et
al. [15], Nesterov [18] and Xiao [23], who provided tight convergence bounds for the ergodic average
of SMD in stochastic/online convex programs, variational inequalities, and saddle-point problems.
These results were further boosted by recent work on extra-gradient variants of the algorithm [11, 17],
and the ergodic relaxation of [8] where the independence assumption on the gradient samples is
relaxed and is replaced by a mixing distribution that converges in probability to a well-defined limit.

However, all these works focus exclusively on the algorithm’s ergodic average (also known as time-
average), a mode of convergence which is strictly weaker than the convergence of the algorithm’s last
iterate. In addition, most of the analysis focuses on establishing convergence "in expectation" and
then leveraging sophisticated martingale concentration inequalities to derive "large deviations" results
that hold true with high probability. Last (but certainly not least), the convexity of the objective plays
a crucial role: thanks to the monotonicity of the gradient, it is possible to exploit regret-like bounds
and transform them to explicit convergence rates.1

1For the role of variational monotonicity in the context of convex programming, see also [22].
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By contrast, the gradient operator of the non-convex programs studied in this paper does not satisfy
any reasonable monotonicity property (such as quasi-/pseudo-monotonicity, monotonicity-plus, or
any of the standard variants encountered in the theory of variational inequalities [9]. Furthermore,
given that there is no inherent averaging in the algorithm’s last iterate, it is not possible to employ a
regret-based analysis such as the one yielding convergence in convex programs. Instead, to establish
convergence, we use the stochastic approximation method of Benaïm and Hirsch [2, 3] to compare the
evolution of the SMD iterates to the flow of a mean, underlying dynamical system.2 By a judicious
application of martingale limit theory, we then exploit variational coherence to show that the last
iterate of SMD converges with probability 1, recovering in the process a large part of the convergence
analysis of the works mentioned above.

Our Contributions. We consider a class of non-convex optimization problems, which we call
variationally coherent and which strictly includes convex, pseudo/quasi-convex and star-convex
optimization problems. For this class of optimization problems, we show that the last iterate of
SMD with probability 1 to a global minimum under i.i.d. gradient samples. To the best of our
knowledge, this strong convergence guarantee (almost sure of the last iterate of SMD) is not known
even for stochastic convex problems. As such, this results contributes to the landscape of non-convex
stochastic optimization by making clear that neither pseudo-/quasi-convexity nor star-convexity is
essential for global convergence; rather, variational coherence, a much weaker requirement, suffices.

Our analysis leverages the Lyapunov properties of the Fenchel coupling [14], a primal-dual divergence
measure that quantifies the distance between primal (decision) variables and dual (gradient) variables,
and which serves as an energy function to establish recurrence of SMD (Theorem 3.4). Building
on this recurrence, we consider an ordinary differential equation (ODE) approximation of the SMD
scheme and, drawing on various results from the theory of stochastic approximation and variational
analysis, we connect the solution of this ODE to the last iterate of SMD. In so doing, we establish the
algorithm’s convergence with probability 1 from any initial condition (Thereom 4.4) and, to complete
the circle, we also provide a convergence rate estimate for the subclass of strongly variationally
coherent optimization problems.

Importantly, although the ODE approximation of discrete-time Robbins–Monro algorithms has been
widely studied in control and stochastic optimization [10, 13], converting the convergence guarantees
of the ODE solution back to the discrete-time process is a fairly subtle affair that must be done on
an case-by-case basis. Further, even if such conversion goes through, the results typically have the
nature of convergence-in-distribution: almost sure convergence is much harder to obtain [5].

2 Setup and Preliminaries

Let X be a convex compact subset of a d-dimensional real space V with norm ‖·‖. Throughout this
paper, we focus on the stochastic optimization problem

minimize g(x),

subject to x ∈ X , (Opt)

where the objective function g : X → R is of the form

g(x) = E[G(x; ξ)] (2.1)

for some random function G : X × Ξ→ R defined on an underlying (complete) probability space
(Ξ,F ,P). We make the following assumptions regarding (Opt):
Assumption 1. G(x, ξ) is continuously differentiable in x for almost all ξ ∈ Ξ.
Assumption 2. ∇G(x; ξ) has bounded second moments and is Lipschitz continuous in the mean:
E[‖∇G(x; ξ)‖2∗] <∞ for all x ∈ X and E[∇G(x; ξ)] is Lipschitz on X .3

Assumption 1 is a token regularity assumption which can be relaxed to account for nonsmooth
objectives by using subgradient devices (as opposed to gradients). However, this would make

2For related approaches based on the theory of dynamical systems, see [21] and [12].
3In the above, gradients are treated as elements of the dual space V∗ of V and ‖v‖∗ = sup{〈v, x〉 : ‖x‖ ≤ 1}

denotes the dual norm of v ∈ V∗. We also note that∇G(x; ξ) refers to the gradient of G(x; ξ) with respect to
x; since Ξ need not have a differential structure, there is no danger of confusion.
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the presentation significantly more cumbersome, so we stick with smooth objectives throughout.
Assumption 2 is also standard in the stochastic optimization literature: it holds trivially if ∇G is
uniformly Lipschitz (another commonly used condition) and, by the dominated convergence theorem,
it further implies that g is smooth and∇g(x) = ∇E[G(x; ξ)] = E[∇G(x; ξ)] is Lipschitz continuous.
As a result, the solution set

X ∗ = arg min g (2.2)
of (Opt) is closed and nonempty (by the compactness of X and the continuity of g).

Remark 2.1. An important special case of (Opt) is when G(x; ξ) = g(x)+ 〈ζ, x〉 for some V∗-valued
random vector ζ such that E[ζ] = 0 and E[‖ζ‖2∗] <∞. This gives ∇G(x; ξ) = ∇g(x) + ζ, so (Opt)
can also be seen as a model for deterministic optimization problems with noisy gradient observations.

2.1 Variational Coherence

With all this at hand, we now define the class of variationally coherent optimization problems:
Definition 2.1. We say that (Opt) is variationally coherent if

〈∇g(x), x− x∗〉 ≥ 0 for all x ∈ X , x∗ ∈ X ∗, (VC)

with equality if and only if x ∈ X ∗.

Remark 2.2. (VC) can be interpreted in two ways. First, as stated, it is a non-random condition for
g, so it applies equally well to deterministic optimization problems (with or without noisy gradient
observations). Alternatively, by the dominated convergence theorem, (VC) can be written as:

E[〈∇G(x; ξ), x− x∗〉] ≥ 0. (2.3)

In this form, it can be interpreted as saying that G is variationally coherent “on average”, without any
individual realization thereof satisfying (VC).

Remark 2.3. Importantly, (VC) does not have to be stated in terms of the solution set of (Opt). Indeed,
assume that C is a nonempty subset of X such that

〈∇g(x), x− p〉 ≥ 0 for all x ∈ X , p ∈ C, (2.4)

with equality if and only if x ∈ C. Then, as the next lemma (see appendix) indicates, C = arg min g:
Lemma 2.2. Suppose that (2.4) holds for some nonempty subset C of X . Then C is closed, convex,
and it consists precisely of the global minimizers of g.
Corollary 2.3. If (Opt) is variationally coherent, arg min g is convex and compact.

Remark 2.4. All the results given in this paper also carry through for λ-variationally coherent
optimization problems, a further generalization of variational coherence. More precisely, we say that
(Opt) is λ-variationally coherent if there exists a (component-wise) positive vector λ ∈ Rd such that

d∑
i=1

λi
∂g

∂xi
(xi − x∗i ) ≥ 0 for all x ∈ X , x∗ ∈ X ∗, (2.5)

with equality if and only if x ∈ X ∗. For simplicity, our analysis will be carried out in the “vanilla"
variational coherence framework, but one should keep in mind that the results to following also hold
for λ-coherent problems.

2.2 Examples of Variational Coherence

Example 2.1 (Convex programs). If g is convex, ∇g is a monotone operator [19], i.e.

〈∇g(x)−∇g(x′), x− x′〉 ≥ 0 for all x, x′ ∈ X . (2.6)

By the first-order optimality conditions for g, we have 〈g(x∗), x− x∗〉 ≥ 0 for all x ∈ X . Hence, by
monotonicity, we get

〈∇g(x), x− x∗〉 ≥ 〈∇g(x∗), x− x∗〉 ≥ 0 for all x ∈ X , x∗ ∈ X ∗. (2.7)

By convexity, it follows that 〈∇g(x), x− x∗〉 < 0 whenever x∗ ∈ X ∗ and x ∈ X \ X ∗, so equality
holds in (2.7) if and only if x ∈ X ∗.
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Example 2.2 (Pseudo/Quasi-convex programs). The previous example shows that variational coher-
ence is a weaker and more general notion than convexity and/or operator monotonicity. In fact, as we
show below, the class of variationally coherent problems also contains all pseudo-convex programs,
i.e. when

〈∇g(x), x′ − x〉 ≥ 0 =⇒ g(x′) ≥ g(x), (PC)

for all x, x′ ∈ X . In this case, we have:
Proposition 2.4. If g is pseudo-convex, (Opt) is variationally coherent.

Proof. Take x∗ ∈ X ∗ and x ∈ X \ X ∗, and assume ad absurdum that 〈∇g(x), x − x∗〉 ≤ 0. By
(PC), this implies that g(x∗) ≥ g(x), contradicting the choice of x and x∗. We thus conclude that
〈∇g(x), x−x∗〉 > 0 for all x∗ ∈ X ∗, x ∈ X \X ∗; since 〈∇g(x), x−x∗〉 ≤ 0 if x ∈ X ∗, our claim
follows by continuity. �

We recall that every convex function is pseudo-convex, and every pseudo-convex function is quasi-
convex (i.e. its sublevel sets are convex). Both inclusions are proper, but the latter is fairly thin:
Proposition 2.5. Suppose that g is quasi-convex and non-degenerate, i.e.

〈g(x), z〉 6= 0 for all nonzero z ∈ TC(x), x ∈ X \ X ∗, (2.8)

where TC(x) is the tangent cone vertexed at x. Then, g is pseudo-convex (and variationally coherent).

Proof. This follows from the following characterization of quasi-convex functions [6]: g is quasi-
convex if and only if g(x′) ≤ g(x) implies that 〈∇g(x), x′ − x〉 ≤ 0. By contraposition, this yields
the strict part of (PC), i.e. g(x′) > g(x) whenever 〈∇g(x), x′ − x〉 > 0. To complete the proof, if
〈∇g(x), x′ − x〉 = 0 and x ∈ X ∗, (PC) is satisfied trivially; otherwise, if 〈∇g(x), x′ − x〉 = 0 but
x ∈ X \ X ∗, (2.8) implies that x′ − x = 0, so g(x′) = g(x) and (PC) is satisfied as an equality. �

The non-degeneracy condition (2.8) is satisfied by every quasi-convex function after an arbitrarily
small perturbation leaving its minimum set unchanged. By this token, Propositions 2.4 and 2.5 imply
that essentially all quasi-convex programs are also variationally coherent.

Example 2.3 (Star-convex programs). If g is star-convex, then 〈∇g(x), x − x∗〉 ≥ g(x) − g(x∗)
for all x ∈ X , x∗ ∈ X ∗. This is easily seen to be a special case of variational coherence because
〈∇g(x), x − x∗〉 ≥ g(x) − g(x∗) ≥ 0, with the last inequality strict unless x ∈ X ∗. Note that
star-convex functions contain convex functions as a subclass (but not necessarily pseudo/quasi-convex
functions).
Example 2.4 (Beyond quasi-/star-convexity). A simple example of a function that is variationally
coherent without being quasi-convex or star-convex is given by:

g(x) = 2

d∑
i=1

√
1 + xi, x ∈ [0, 1]d. (2.9)

When d ≥ 2, it is easy to see g is not quasi-convex: for instance, taking d = 2, x = (0, 1)

and x′ = (1, 0) yields g(x/2 + x′/2) = 2
√

6 > 2
√

2 = max{g(x), g(x′)}, so g is not quasi-
convex. It is also instantly clear this function is not star-convex even when d = 1 (in which case
it is a concave function). On the other hand, to estabilish (VC), simply note that X ∗ = {0} and
〈∇g(x), x− 0〉 =

∑d
i=1 xi/

√
1 + xi > 0 for all x ∈ [0, 1]d\{0}. For a more elaborate example of

a variationally coherent problem that is not quasi-convex, see Figure 2.

2.3 Stochastic Mirror Descent

To solve (Opt), we focus on the widely used family of algorithms known as stochastic mirror descent
(SMD), formally given in Algorithm 1.4 Heuristically, the main idea of the method is as follows: At
each iteration, the algorithm takes as input an independent and identically distributed (i.i.d.) sample

4Mirror descent dates back to the original work of Nemirovski and Yudin [16]. More recent treatments
include [1, 8, 15, 18, 20] and many others; the specific variant of SMD that we are considering here is most
closely related to Nesterov’s “dual averaging” scheme [18].
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X ⊆ V

Y = V∗

Q

Y0

Y1 Y2

−α1∇G(X0; ξ1)

−α2∇G(X1; ξ2)

X0 X1

X2

Q

Q
Q

Figure 1: Schematic representation of stochastic mirror descent (Algorithm 1).

of the gradient of G at the algorithm’s current state. Subsequently, the method takes a step along
this stochastic gradient in the dual space Y ≡ V∗ of V (where gradients live), the result is “mirrored”
back to the problem’s feasible region X to obtain a new solution candidate, and the process repeats.

In pseudocode form, we have:

Algorithm 1 Stochastic mirror descent (SMD)

Require: Initial score variable Y0
1: n← 0
2: repeat
3: Xn = Q(Yn)
4: Yn+1 = Yn − αn+1∇G(Xn, ξn+1)
5: n← n+ 1
6: until end
7: return solution candidate Xn

In the above representation, the key elements of SMD (see also Fig. 1) are:

1. The “mirror map” Q : Y → X that outputs a solution candidate Xn ∈ X as a function of the
auxiliary score variable Yn ∈ Y . In more detail, the algorithm’s mirror map Q is defined as

Q(y) = arg max
x∈X

{〈y, x〉 − h(x)}, (2.10)

where h(x) is a strongly convex function that plays the role of a regularizer. Different choices
of the regularizer h yields different specific algorithm. Due to space limitation, we mention in
passing two well-known examples: When h(x) = 1

2‖x‖
2
2 (i.e. Euclidean regularizer), mirror

descent becomes gradient descent. When h(x) =
∑d
i=1 xi log xi (i.e. entropic regularizer),

mirror descent becomes exponential gradient (aka exponential weights).
2. The step-size sequence αn > 0, chosen to satisfy the “`2 − `1” summability condition:

∞∑
n=1

α2
n <∞,

∞∑
n=1

αn =∞. (2.11)

3. A sequence of i.i.d. gradient samples∇G(x; ξn+1).5

3 Recurrence of SMD

In this section, we characterize an interesting recurrence phenomenon that will be useful later for
establishing global convergence. Intuitively speaking, for a variationally coherent program of the

5The specific indexing convention for ξn has been chosen so that Yn and Xn are both adapted to the natural
filtration Fn of ξn.
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general form(Opt), any neighborhood of X ∗ will almost surely be visited by iterates Xn infinitely
often. Note that this already implies that at least a subsequence of iterates converges to global
minima almost surely. To that end, we first define an important divergence measure between a primal
variable x and a dual variable y, called Fenchel coupling, that plays an indispensable role of an energy
function.

Definition 3.1. Let h : X → R be a regularizer with respect to ‖ · ‖ that is K-strongly convex.

1. The convex conjugate function h∗ : Rn → R of h is defined as:

h∗(y) = max
x∈X
{〈x, y〉 − h(x)}.

2. The mirror map Q : Rn → X associated with the regularizer h is defined as:

Q(y) = arg max
x∈X
{〈x, y〉 − h(x)}.

3. The Fenchel coupling F : X × Rn → R is defined as:

F (x, y) = h(x)− 〈x, y〉+ h∗(y).

Note that the naming of Fenchel coupling is natural as it consists of all the terms in the well-known
Fenchel’s inequality: h(x) + h∗(y) ≥ 〈x, y〉. The Fenchel’s inequality says that Fenchel coupling is
always non-negative. As indicated by part 1 of the following lemma, a stronger result can be obtained.
We state the two key properties Fenchel coupling next.

Lemma 3.2. Let h : X → R be a K-strongly convex regularizer on X . Then:

1. F (x, y) ≥ 1
2K‖Q(y)− x‖2,∀x ∈ X ,∀y ∈ Rn.

2. F (x, ỹ) ≤ F (x, y) + 〈ỹ − y,Q(y)− x〉+ 1
2K ‖ỹ − y‖

2
∗,∀x ∈ X ,∀ỹ, y ∈ Rn.

We assume that we are working with mirror maps that are regular in the following weak sense:6

Assumption 3. The mirror map Q is regular: if Q(yn)→ x, then F (x, yn)→ 0.

Definition 3.3. Given a point x ∈ X , a set S ⊂ X and a norm ‖ · ‖.

1. Define the point-to-set normed distance and Fenchel coupling distance respectively as:
dist(x,S) , infs∈S ‖x− s‖ and F (S, y) = infs∈S F (s, y).

2. Given ε > 0, define B(S, ε) , {x ∈ X | dist(x,S) < ε}.

3. Given δ > 0, define B̃(S, δ) , {Q(y) | F (S, y) < δ}.

We then have the following recurrence result for a variationally coherent optimization problem Opt.

Theorem 3.4. Under Assumptions 1–3, for any ε > 0, δ > 0 and any Xn, the (random) iterates Xn

generated in Algorithm 1 enter both B(X ∗, ε) and B̃(X ∗, δ) infinitely often almost surely.

4 Global Convergence Results

4.1 Deterministic Convergence

When a perfect gradient∇g(x) is available (in Line 4 of Algorithm 1), SMD recovers its deterministic
counterpart: mirror descent (Algorithm 2). We first characterize global convergence in this case.

6Mirror maps induced by many common regularizers are regular, including the Euclidean regularizer and the
entropic regularizer.
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Figure 2: Convergence of stochastic mirror descent for the mean objective g(r, θ) = (2 + cos θ/2 +
cos(4θ))r2(5/3 − r) expressed in polar coordinates over the unit ball (r ≤ 1). In the left subfigure, we
have plotted the graph of g; the plot to the right superimposes a typical SMD trajectory over the contours of g.

Algorithm 2 Mirror descent (MD)

Require: Initial score variable y0
1: n← 0
2: repeat
3: xn = Q(yn)
4: xn+1 = xn − αn+1∇g(xn)
5: n← n+ 1
6: until end
7: return solution candidate xn

Theorem 4.1. Consider an optimization problem Opt that is variationally coherent. Let xn be the
iterates generated by MD. Under Assumption 3, limt→∞ dist(xn,X ∗) = 0, for any y0.
Remark 4.1. Here we do not require ∇ g(x) to be Lipschitz continuous. If ∇ g(x) is indeed (locally)
Lipschitz continuous, then Theorem 4.1 follows directly from Theorem 4.4. Otherwise, Theorem 4.1
requires a different argument, briefly outlined as follows. Theorem 3.4 implies that (in the special
case of perfect gradient), iterates xn generated from MD enter B(X ∗, ε) infinitely often. Now, by
exploiting the properties of Fenchel coupling on a finer-grained level (compared to only using it to
establish recurrence), we can establish that for any ε-neighborhood B(X ∗, ε), after a certain number
of iterations, once the iterate xn enters B(X ∗, ε), it will never exit. Convergence therefore follows.

4.2 Stochastic Almost Sure Convergence

We begin with minimal mathematical preliminaries [4] needed that will be needed.
Definition 4.2. A semiflow Φ on a metric space (M,d) is a continuous map Φ : R+ ×M →M :

(t, x)→ Φt(x),

such that the semi-group properties hold: Φ0 = identity, Φt+s = Φt ◦ Φs for all (t, s) ∈ R+ × R+.
Definition 4.3. Let Φ be a semiflow on the metric space (M,d). A continuous function s : R+ →M
is an asymptotic pseudotrajectory (APT) for Φ if for every T > 0, the following holds:

lim
t→∞

sup
0≤h≤T

d(s(t+ h),Φh(s(t))) = 0. (4.1)

We are now ready to state the convergence result. See Figure 2 for a simulation example.
Theorem 4.4. Consider an optimization problem Opt that is variationally coherent. Let Xn be the
iterates generated by SMD (Algorithm 1). Under Assumptions 1–3, if ∇ g(x) is locally Lipschitz
continuous on X , then dist(xn,X ∗)→ 0 almost surely as t→∞, irrespective of Y0.
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Remark 4.2. The proof is rather involved and contains several ideas. To enhance the intuition and
understanding, we outline the main steps here, each of which will be proved in detail in the appendix.
To simplify the notation, we assume there is a unique optimal (i.e. X ∗ is a singleton set). The proof is
identical in the multiple minima case, provide we replace x∗ by X ∗ and use the point-to-set distance.

1. We consider the following ODE approximation of SMD:

ẏ = v(x),

x = Q(y),

where v(x) = −∇ g(x). We verify that the ODE admits a unique solution for y(t) for any
initial condition. Consequently, this solution induces a semiflow7, which we denote Φt(y):
it is the state at time t given it starts at y initially. Note that we have used y as the initial
point (as opposed to y0) to indicate that the semiflow representing the solution trajectory
should be viewed as a function of the initial point y.

2. We now relate the iterates generated by SMD to the above ODE’s solution. Connect linearly
the SMD iterates Y1, Y2, . . . , Yk, . . . at times 0, α1, α1+α2, . . . ,

∑k−1
i=0 αi, . . . respectively

to form a continuous, piecewise affine (random) curve Y (t). We then show that Y (t) is
almost surely an asymptotic pseudotrajectory of the semi-flow Φ induced by the above ODE.

3. Having characterized the relation between the SMD trajectory (affine interpolation of the
discrete SMD iterates) and the ODE trajectory (the semi-flow), we now turn to studying
the latter (the semiflow given by the ODE trajectory). A desirable property of Φt(y) is that
the distance F (x∗,Φt(y)) between the optimal solution x∗ and the dual variable Φt(y) (as
measured by Fenchel coupling) can never increase as a function of t. We refer to this as the
monotonicity property of Fenchel coupling under the ODE trajectory, to be contrasted to the
discrete-time dynamics, where such monotonicity is absent (even when perfect information
on the gradient is available). More formally, we show that ∀y,∀0 ≤ s ≤ t,

F (x∗,Φs(y)) ≥ F (x∗,Φt(y)). (4.2)

4. Continuing on the previous point, not only the distance F (x∗,Φt(y)) can never increase as
t increases, but also, provided that Φt(y) is not too close to x∗, F (x∗,Φt(y)) will decrease
no slower than linearly. This suggests that either Φt(y) is already close to x∗ (and hence
x(t) = Q(Φt(y)) is close to x∗), or their distance will be decreased by a meaningful amount
in (at least) the ensuing short time-frame. We formalize this discussion as follows:

∀ε > 0,∀y,∃s > 0, F (x∗,Φs(y)) ≤ max{ε
2
, F (x∗, y)− ε

2
}. (4.3)

5. Now consider an arbitrary fixed horizon T . If at time t, F (x∗,Φ0(Y (t))) is small, then
by the monotonicity property in Claim 3, F (x∗,Φh(Y (t))) will remain small on the entire
interval h ∈ [0, T ]. Since Y (t) is an asymptotic pseudotrajectory of Φ (Claim 2), Y (t+ h)
and Φh(Y (t)) should be very close for h ∈ [0, T ], at least for t large enough. This means
that F (x∗, Y (t + h)) should also be small on the entire interval h ∈ [0, T ]. This can be
made precise as follows: ∀ε, T > 0,∃τ(ε, T ) > 0 such that ∀t ≥ τ,∀h ∈ [0, T ]:

F (x∗, Y (t+ h)) < F (x∗,Φh(Y (t))) +
ε

2
, a.s.. (4.4)

6. Finally, we are ready to put the above pieces together. Claim 5 gives us a way to control
the amount by which the two Fenchel coupling functions differ on the interval [0, T ].
Claim 3 and Claim 4 together allow us to extend such control over successive intervals
[T, 2T ), [2T, 3T ), . . . , thereby establishing that, at least for t large enough, if F (x∗, Y (t))
is small, then F (x∗, Y (t+ h)) will remains small ∀h > 0. As it turns out, this means that
after long enough time, if xn ever visits B̃(x∗, ε), it will (almost surely) be forever trapped
inside the neighborhood twice that size (i.e. B̃(x∗, 2ε)). Since Theorem 3.4 ensures that
xn visits B̃(x∗, ε) infinitively often (almost surely), the hypothesis is guaranteed to be true.
Consequently, this leads to the following claim: ∀ε > 0,∃τ0 (a positive integer), such that:

F (x∗, Y (τ0 + h)) < ε,∀h ∈ [0,∞), a.s.. (4.5)
7A crucial point to note is that since C may not be invertible, there may not exist a unique solution for x(t).
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Figure 3: SMD run on the objective function of Fig. 2 with γn ∝ n−1/2 and Gaussian random noise with
standard deviation about 150% the mean value of the gradient. Due to the lack of convexity, the algorithm’s last
iterate converges much faster than its ergodic average.

To conclude, Equation (4.5) implies that F (x∗, Yn)→ 0, a.s. as t→∞, where the SMD iterates Yn
are values at integer time points of the affine trajectory Y (τ). Per Statement 1 in Lemma 3.2, this
gives ‖Q(Yn)− x∗‖ → 0, a.s. as t→∞, thereby establishing that Xn = Q(Yn)→ x∗, a.s..

4.3 Convergence Rate Analysis

At the level of generality at which (VC) has been stated, it is unlikely that any convergence rate can
be obtained, because unlike in the convex case, one has no handle on measuring the progress of
mirror descent updates (recall that in (VC), only non-negativity is guaranteed for the inner product).
Consequently, we focus here on the class of strongly coherent problems (a generalization of strongly
convex problems) and derive a O(1/

√
T ) convergence rate in terms of the squared distance to a

solution of (Opt).

Definition 4.5. We say that g is c-strongly variationally coherent (or c-strongly coherent for short)
if, for some x∗ ∈ X , we have:

〈∇g(x), x− x∗〉 ≥ c

2
‖x− x∗‖2 for all x ∈ X . (4.6)

Theorem 4.6. If (Opt) is c-strongly coherent, then ‖x̄T − x∗‖2 ≤ 2
c

F (x∗,y0)+
B
2K

∑T
n=0 γ

2
n∑T

n=0 γn
, where

x̄T =
∑T

n=0 γnxn∑T
n=0 γn

, K is the strong convexity coefficient of h and B = maxx∈X ‖∇ g(x)‖2∗.

The proof of Theorem 4.6 is given in the supplement. We mention a few implications of Theorem 4.6.
First, in a strongly coherent optimization problem, if γn = 1√

n
, then ‖x̄T − x∗‖2 = O( log T√

T
) (note

that here `2 − `1 summability is not required for global convergence). By appropriately choosing
the step-size sequence, one can further shave off the log T term above and obtain an O(1/

√
T )

convergence rate. This rate matches existing rates when applying gradient descent to strongly convex
functions, although strongly variational coherence is a strict superset of strong convexity. Finally,
note that even though we have characterized the rates in the mirror descent (i.e. perfect gradient case),
one can easily obtain a mean O(1/

√
T ) rate in the stochastic case by using a similar argument. This

discussion is omitted due to space limitation.

We end the section (and the paper) with an interesting observation from the simulation shown in
Figure 3. The rate characterized in Theorem 4.6 is with respect to the ergodic average of the mirror
descent iterates, while global convergence results established in Theorem 4.1 and Theorem 4.4 are
both last iterate convergence. Figure 3 then provides a convergence speed comparison on the function
given in Figure 2. It is apparent that the last iterate of SMD (more specifically, stochastic gradient
descent) converges much faster than the ergodic average in this non-convex objective.
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