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Abstract

We study the problem of interactively learning a binary classifier using noisy
labeling and pairwise comparison oracles, where the comparison oracle answers
which one in the given two instances is more likely to be positive. Learning from
such oracles has multiple applications where obtaining direct labels is harder but
pairwise comparisons are easier, and the algorithm can leverage both types of
oracles. In this paper, we attempt to characterize how the access to an easier
comparison oracle helps in improving the label and total query complexity. We
show that the comparison oracle reduces the learning problem to that of learning a
threshold function. We then present an algorithm that interactively queries the label
and comparison oracles and we characterize its query complexity under Tsybakov
and adversarial noise conditions for the comparison and labeling oracles. Our lower
bounds show that our label and total query complexity is almost optimal.

1 Introduction

Given high costs of obtaining labels for big datasets, interactive learning is gaining popularity in
both practice and theory of machine learning. On the practical side, there has been an increasing
interest in designing algorithms capable of engaging domain experts in two-way queries to facilitate
more accurate and more effort-efficient learning systems (c.f. [26,[31]]). On the theoretical side, study
of interactive learning has led to significant advances such as exponential improvement of query
complexity over passive learning under certain conditions (c.f. 5,16} [7,[15/[19}27]). While most of
these approaches to interactive learning fix the form of an oracle, e.g., the labeling oracle, and explore
the best way of querying, recent work allows for multiple diverse forms of oracles [12} 13} 116, 33].
The focus of this paper is on this latter setting, also known as active dual supervision [4]. We
investigate how to recover a hypothesis h that is a good approximator of the optimal classifier h*,
in terms of expected 0/1 error Prx [h(X) # h*(X)], given limited access to labels on individual
instances X € & and pairwise comparisons about which one of two given instances is more likely to
belong to the +1/-1 class.

Our study is motivated by important applications where comparisons are easier to obtain than labels,
and the algorithm can leverage both types of oracles to improve label and total query complexity.
For example, in material design, synthesizing materials for specific conditions requires expensive
experimentation, but with an appropriate algorithm we can leverage expertize of material scientists,
for whom it may be hard to accurately assess the resulting material properties, but who can quickly
compare different input conditions and suggest which ones are more promising. Similarly, in clinical
settings, precise assessment of each individual patient’s health status can be difficult, expensive and/or
risky (e.g. it may require application of invasive sensors or diagnostic surgeries), but comparing
relative statuses of two patients at a time may be relatively easy and accurate. In both these scenarios
we may have access to a modest amount of individually labeled data, but the bulk of more accessible
training information is available via pairwise comparisons. There are many other examples where
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Figure 1: Explanation of work flow of ADGAC-based algorithms. Left: Procedure of typical active
learning algorithms. Right: Procedure of our proposed ADGAC-based interactive learning algorithm
which has access to both pairwise comparison and labeling oracles.

Table 1: Comparison of various methods for learning of generic hypothesis class (Omitting log(1/¢)
factors).

Label Noise Work # Label # Query Toleomp
Tsybakov () ms) ()" ) O((H)* *as)  Na
Tsybakov () Ours O ((%)2'{_2) @} ((é)zﬁ_2 0+ d9) O(e?r)

Adversarial (v = O(g))  [19] O(db) O(db) N/A
Adversarial (v = O(g)) Ours 0(1) O(de) 0(e?)

humans find it easier to perform pairwise comparisons rather than providing direct labels, including
content search [17]], image retrieval [31]], ranking [21]], etc.

Despite many successful applications of comparison oracles, many fundamental questions remain.
One of them is how to design noise-tolerant, cost-efficient algorithms that can approximate the
unknown target hypothesis to arbitrary accuracy while having access to pairwise comparisons. On
one hand, while there is theoretical analysis on the pairwise comparisons concerning the task of
learning to rank (3| [22]], estimating ordinal measurement models [28] and learning combinatorial
functions [11]], much remains unknown how to extend these results to more generic hypothesis classes.
On the other hand, although we have seen great progress on using single or multiple oracles with the
same form of interaction [9, [16]], classification using both comparison and labeling queries remains
an interesting open problem. Independently of our work, Kane et al. concurrently analyzed
a similar setting of learning to classify using both label and comparison queries. However, their
algorithms work only in the noise-free setting.

Our Contributions: Our work addresses the aforementioned issues by presenting a new algorithm,
Active Data Generation with Adversarial Comparisons (ADGAC), which learns a classifier with both
noisy labeling and noisy comparison oracles.

e We analyze ADGAC under Tsybakov (TNC) [30] and adversarial noise conditions for
the labeling oracle, along with the adversarial noise condition for the comparison ora-
cle. Our general framework can augment any active learning algorithm by replacing the
batch sampling in these algorithms with ADGAC. Figure[T|presents the work flow of our
framework.

e We propose A2-ADGAC algorithm, which can learn an arbitrary hypothesis class. The label
complexity of the algorithm is as small as learning a threshold function under both TNC and
adversarial noise condition, independently of the structure of the hypothesis class. The toral
query complexity improves over previous best-known results under TNC which can only
access the labeling oracle.

o We derive Margin-ADGAC to learn the class of halfspaces. This algorithm has the same
label and total query complexity as A2-ADGAC, but is computationally efficient.

e We present lower bounds on total query complexity for any algorithm that can access both
labeling and comparison oracles, and a noise tolerance lower bound for our algorithms.
These lower bounds demonstrate that our analysis is nearly optimal.

An important quantity governing the performance of our algorithms is the adversarial noise level
of comparisons: denote by TOleomp (€, 6, A) the adversarial noise tolerance level of comparisons that
guarantees an algorithm A to achieve an error of ¢, with probability at least 1 — §. Table[T]compares
our results with previous work in terms of label complexity, total query complexity, and Tolcomp for
generic hypothesis class C with error €. We see that our results significantly improve over prior



Table 2: Comparison of various methods for learning of halfspaces (Omitting log(1/¢) factors).

Label Noise Work # Label # Query Toleomp  Efficient?
Massart 18] O(d) O(d) N/A No
Massart 3] poly(d) poly(d) N/A Yes
Massart Ours 0(1) O(d) 0(e?) Yes

Tsybakov (1) 91 O((2)*2dp)  O((1)*2do)  N/A No
Tsybakov (k) Ours O ((%)2'%2) @, ((%)%72 + d) O(e%) Yes
Adversarial (v = O(e))  [34] (?(d) (:N)(d) N/A No
Adversarial (v = O(g))  [6] O(d?) O(d?) N/A Yes
Adversarial (v = O(e)) Ours o) O(d) 0O(£?) Yes

work with the extra comparison oracle. Denote by d the VC-dimension of C and 6 the disagreement
coefficient. We also compare the results in Table[2]for learning halfspaces under isotropic log-concave
distributions. In both cases, our algorithms enjoy small label complexity that is independent of 6 and
d. This is helpful when labels are very expensive to obtain. Our algorithms also enjoy better total
query complexity under both TNC and adversarial noise condition for efficiently learning halfspaces.

2 Preliminaries

Notations: We study the problem of learning a classifier h : X — Y = {—1,1}, where X
and ) are the instance space and label space, respectively. Denote by Pxy the distribution over
X x Y and let Py be the marginal distribution over X. A hypothesis class C is a set of functions
h : X — Y. For any function h, define the error of i under distribution D over X x ) as
errp(h) = Prxy)~p[h(X) # Y]. Leterr(h) = errp,, (k). Suppose that h* € C satisfies
err(h*) = infpec err(h). For simplicity, we assume that such an h* exists in class C.

We apply the concept of disagreement coefficient from Hanneke [[18] for generic hypothesis class
in this paper. In particular, for any set V. C C, we denote by DIS(V) = {x € X : 3hy,hs €
V., hi(z) # ha(x)}. The disagreement coefficient is defined as § = sup,. w
B(h*,r) ={h € C: Prxp,[h(X) # h*(X)] <r}.

Problem Setup: We analyze two kinds of noise conditions for the labeling oracle, namely, adversarial
noise condition and Tsybakov noise condition (TNC). We formally define them as follows.

, where

Condition 1 (Adversarial Noise Condition for Labeling Oracle). Distribution Pxy satisfies adver-
sarial noise condition for labeling oracle with parameter v > 0, if v = Pr(x y)upo, [Y # h*(X)].

Condition 2 (Tsybakov Noise Condition for Labeling Oracle). Distribution Pxy satisfies Tsybakov
noise condition for labeling oracle with parameters k > 1,11 > 0, if Vh : X — {—1,1},err(h) —
err(h*) > pPrx p, [h(X) # h*(X)]". Also, h* is the Bayes optimal classifier, i.e., h*(x) =
sign(n(z) — 1/2). where n(z) = Pr]Y = 1|X = z]. The special case of k = 1 is also called
Massart noise condition.

In the classic active learning scenario, the algorithm has access to an unlabeled pool drawn from P.
The algorithm can then query the labeling oracle for any instance from the pool. The goal is to find
an h € C such that the error Pr[h(X) # h*(X)] < sﬂ The labeling oracle has access to the input
x € X, and outputs y € {—1, 1} according to Pxy. In our setting, however, an extra comparison
oracle is available. This oracle takes as input a pair of instances (z,z') € X x X, and returns a
variable Z(x, ') € {—1,1}, where Z(z, 2’) = 1 indicates that  is more likely to be positive, while
Z(x,x") = —1 otherwise. In this paper, we discuss an adversarial noise condition for the comparison
oracle. We discuss about dealing with TNC on the comparison oracle in appendix.

Condition 3 (Adversarial Noise Condition for Comparison Oracle). Distribution Py x z satisfies
adversarial noise with parameter v' > 0, if v/ = Pr[Z(X, X')(h*(X) — h*(X")) < 0].

!The assumption that 4™ is Bayes optimal classifier can be relaxed if the approximation error of 2* can be
quantified under assumptions on the decision boundary (c.f. [15]).

ZNote that we use the disagreement Pr[h(X) # h*(X)] instead of the excess error err(h) — err(h*) in
some of the other literatures. The two conditions can be linked by assuming a two-sided version of Tsybakov
noise (see e.g., Audibert 2004).



Table 3: Summary of notations.

Notation Meaning | Notation Meaning

C Hypothesis class K Tsybakov noise level (labeling)
X, X Instance & Instance space v Adpversarial noise level (labeling)
Y,V Label & Label space v Adpversarial noise level (comparison)
Z,Z Comparison & Comparison space | errp(h) Error of h on distribution D

d VC dimension of C SClabel Label complexity

0 Disagreement coefficient SCeomp Comparison complexity

h* Optimal classifier in C Toliabel Noise tolerance (labeling)

g* Optimal scoring function Toleomp Noise tolerance (comparison)

Note that we do not make any assumptions on the randomness of Z: Z (X, X') can be either random
or deterministic as long as the joint distribution Py y z satisfies Condition

For an interactive learning algorithm .4, given error ¢ and failure probability 4, let SCcomp (e, 6, A)
and SCppel (€, 6, .A) be the comparison and label complexity, respectively. The query complexity of A
is defined as the sum of label and comparison complexity. Similar to the definition of TOlcomp (€, 9, A),
define Toljpei (€, 6, .A) as the maximum v such that algorithm .4 achieves an error of at most £ with
probability 1 — §. As a summary, A learns an h such that Pr[h(X) # h*(X)] < € with probability
1 — 0 using SCeomp(€, d,.A) comparisons and SCiqpei(€, 0, .A) labels, if v < Tolipe (€, 6,.A) and
v < Toleomp (€, 9, A). We omit the parameters of SCeomp, SCiapel; TOlcomp, TOlabel if they are clear
from the context. We use O(-) to express sample complexity and noise tolerance, and O(-) to ignore
the log(-) terms. Table summarizes the main notations throughout the paper.

3 Active Data Generation with Adversarial Comparisons (ADGAC)

The hardness of learning from pairwise comparisons follows from the error of comparison oracle: the
comparisons are noisy, and can be asymmetric and intransitive, meaning that the human might give
contradicting preferences like 1 < 2 < z1 or 1 < 22 < 23 < 21 (here < is some preference).
This makes traditional methods, e.g., defining a function class {h : h(z) = Z(z, ), & € X'}, fail,
because such a class may have infinite VC dimension.

In this section, we propose a novel algorithm, ADGAC, to address this issue. Having access to
both comparison and labeling oracles, ADGAC generates a labeled dataset by techniques inspired
from group-based binary search. We show that ADGAC can be combined with any active learning
procedure to obtain interactive algorithms that can utilize both labeling and comparison oracles. We
provide theoretical guarantees for ADGAC.

3.1 Algorithm Description

To illustrate ADGAC, we start with a general active learning framework in Algorithm [Ii Many
active learning algorithms can be adapted to this framework, such as A2 [[7] and margin-based active
algorithms [6l 15]. Here U represents the querying space/disagreement region of the algorithm (i.e.,
we reject an instance x if x & U), and V represents a version space consisting of potential classifiers.
For example, A2 algorithm can be adapted to Algorithm straightforwardly by keeping U as the
sample space and V' as the version space. More concretely, A2 algorithm [[7] for adversarial noise can
be characterized by

Uo =&, Vo =C, fy(U,V,W,i) = {h: [Wlertw (h) < niei}, fu(U,V,W,i) =DIS(V),

where ¢; and n; are parameters of the A2 algorithm, and DIS(V) = {x € X : 3hy, hy € V, hy(x) #
ha(x)} is the disagreement region of V. Margin-based active learning [6] can also be fitted into
Algorithm[I]by taking V' as the halfspace that (approximately) minimizes the hinge loss, and U as
the region within the margin of that halfspace.

To efficiently apply the comparison oracle, we propose to replace step f] in Algorithm [I] with a
subroutine, ADGAC, that has access to both comparison and labeling oracles. Subroutine [2]describes
ADGAC. It takes as input a dataset S and a sampling number k. ADGAC first runs Quicksort
algorithm on S using feedback from comparison oracle, which is of form Z(x, 2"). Given that the
comparison oracle Z(-, -) might be asymmetric w.r.t. its two arguments, i.e., Z(x, «’) may not equal
to Z(2', z), for each pair (z;,z;), we randomly choose (z;,z;) or (x;,z;) as the input to Z(-, -).
After Quicksort, the algorithm divides the data into multiple groups of size am = 5\5‘ |, and does



Algorithm 1 Active Learning Framework

Input: ¢, 4, a sequence of n;, functions fy, fy.
1: Initialize U + Uy C X,V + Vi C C.
2: fori=1,2,...,log(1/¢) do
3: Sample unlabeled dataset S of size n;. Let S + {z:x € S,z € U}.
4: Request the labels of z € S and obtain W < {(z;,v;) : x; € S}.
5: Update V < fy (U, V,W,i), U < fu(U,V,W,1i).
Output: Any classifier heVv.

Subroutine 2 Active Data Generation with Adversarial Comparison (ADGAC)

Input: Dataset S with |S| = m, n, ¢, k.
I a5
2: Define preference relation on S according to Z. Run Quicksort on S to rank elements in an
increasing order. Obtain a sorted list S = (21, 2, ..., T ).
Divide S into groups of size am: S; = {T(i—1)am+1, - Tiam},1 = 1,2,..., 1/
tmin < latmax — 1/0[
while ¢,.,;,, < tnax dO > Do binary search
t= (tmin + tmax)/2~
Sample k points uniformly without replacement from S; and obtain the labels Y =
{ylv eeey yk}
8: If Zle y; > 0, then ty, =t; else ty;, =t + 1.
9: Fort’' > tand x; € Sy, let §; < 1.
10: Fort’ < tand x; € Sy, let g; < —1.
11: For x; € S, let gj; be the ma]orlty of labeled points in S;.
Output: Predicted labels 41, 92, ..., Ym-

AR A

group-based binary search by sampling k& labels from each group and determining the label of each
group by majority vote.

For active learning algorithm A, let A-ADGAC be the algorithm of replacing step 4 with ADGAC
using parameters (S;, n;, €;, k; ), where €;, k; are chosen as additional parameters of the algorithm. We
establish results for specific .A: A2 and margin-based active learning in Sectlonslandl respectively.

3.2 Theoretical Analysis of ADGAC

Before we combine ADGAC with active learning algorithms, we provide theoretical results for
ADGAC. By the algorithmic procedure, ADGAC reduces the problem of labeling the whole dataset
S to binary searching a threshold on the sorted list S. One can show that the conflicting instances
cannot be too many within each group S;, and thus binary search performs well in our algorithm. We
also use results in [3] to give an error estimate of Quicksort. We have the following result based on
the above arguments.

Theorem 4. Suppose that Conditions E] and 3| hold for k > 1,/ > 0, and n =

Q ((é)%fl log(l/é)). Assume a set S with |S| = n is sampled i.i.d. from Py and S C S is
an arbitrary subset ofg with |S| = m. There exist absolute constants C1, Cy, Cs such that if we
run Subroutmewzth e < C, vV < Coe?s, k= kW(e,d) = Cslog (log(l/s)) (E)QK ? it will

output a labeling of S such that |{x; € S : §; # h*(x;)}| < en, with probability at least 1 — 6.
The expected number of comparisons required is O(mlogm), and the number of sample-label pairs

required is SCypei(£,8) = O (log (22)log(1/6) (L )QH_Q).
Similarly, we analyze ADGAC under adversarial noise condition w.r.t. labeling oracle with v = O(e).

Theorem 5. Suppose that Condltzonsland@holdfor v, >0, andn = Q (Llog(1/6)). Assume

a set S with |S| = n is sampled i.i.d. from Py and S C S is an arbitrary subset of S with
|S| = m. There exist absolute constants Cy,Cy,Cs, Cy such that if we run Subroutine 2| with

e < Oy, vV < Cohe?s, k=k® (€,0) == Cslog (%), and v < Cye, it will output a labeling



of S such that |[{x; € S : §; # h*(z;)}| < en, with probability at least 1 — 6. The expected
number of comparisons required is O(mlogm), and the number of sample-label pairs required is

SChaper(c, ) = O (1og (22) log (%))

Proof Sketch. We call a pair (x;, z;) an inverse pair if Z(z;,xz;) = —1,h*(z;) = 1,h*(x;) = —1,
and an anti-sort pair if h*(z;) = 1, h*(z;) = —1, and ¢ < j. We show that the expectation of inverse
pairs is n(n — 1)e*. By the results in [3]] the numbers of inverse pairs and anti-sort pairs have the
same expectation, and the actual number of anti-sort pairs can be bounded by Markov’s inequality.
Then we show that the majority label of each group must be all -1 starting from beginning the list,
and changes to all 1 at some point of the list. With a careful choice of k, we may obtain the true
majority with k labels under Tsybakov noise; we will thus end up in the turning point of the list. The
error is then bounded by the size of groups. See appendix for the complete proof.

Theorems [ and [5| show that ADGAC gives a labeling of dataset with arbitrary small error using label
complexity independent of the data size. Moreover, ADGAC is computationally efficient since it only
involves binary search. These nice properties of ADGAC lead to improved query complexity when
we combine ADGAC with other active learning algorithms.

4 A%-ADGAC: Learning of Generic Hypothesis Class

In this section, we combine ADGAC with A? algorithm to learn a generic hypothesis class. We use
the framework in Algorithm let A2-ADGAC be the algorithm that replaces step 4]in Algorithm
with ADGAC of parameters (.S, n;, €;, k; ), where n;, €;, k; are parameters to be specified later. Under
TNC, we have the following result.

Theorem 6. Suppose that Conditions 2| and 3| hold, and h*(z) = sign(n(z) — 1/2). There exist
global constants C1, Cs such that if we run A2-ADGAC withe < C1,6, V' < Toleomp(€,0) = Coe?rs,

. 2k—1 .
g, = 27042 pn, = Q <€1 (dlog(1/¢)) + (Ei) 1og(1/5)>, k; = kM (ai, ﬁ(l/s) with k(1)

specified in Theorem with probability at least 1 — 6, the algorithm will return a classifier h with
Pr[h(X) # h*(X)] < € with comparison and label complexity

E[SCeomp] = O (a log? (i) log(do) <<d1og (i)) + (i)m 10g(1/5)>> ,
SClapet = O <log C) log <min {ie}) log(1/8) <i>2H> .

The dependence on log®(1/¢) in SCeomp can be reduced to log(1/<) under Massart noise.

We can prove a similar result for adversarial noise condition.

Theorem 7. Suppose that Conditions[Ijand Bl hold. There exist global constants C', Co, C's such that
if we run A2-ADGAC with ¢ < C1,6, V' < Toleomp (e, 8) = C2e?8,v < Tolapei(€,8) = Cse, &; =

2-(142) p. = Q (g%dlog (Ei) 10g(1/6)) ki = k3 <5i7 ﬁ(l/s)) with k@) specified in Theorem
with probability at least 1 — 8, the algorithm will return a classifier h with Pr[h(X) # h*(X)] < e

with comparison and label complexity

E[SCeomp] = O <0dlog(9d) log (;) log(1 /5)> ,

SCiapel = O (log (i) log <min {i e}) log(1 /5)) .

Proof of Theorems [6]and [7]uses Theorem ] and Theorem [5| with standard manipulations in VC theory.
Theorems [6] and [7] show that having access to even a biased comparison function can reduce the
problem of learning a classifier in high-dimensional space to that of learning a threshold classifier in
one-dimensional space as the label complexity matches that of actively learning a threshold classifier.
Given the fact that comparisons are usually easier to obtain, A2-ADGAC will save a lot in practice
due to its small label complexity. More importantly, we improve the total query complexity under
TNC by separating the dependence on d and ¢; The query complexity is now the sum of the two
terms instead of the product of them. This observation shows the power of pairwise comparisons for
learning classifiers. Such small label/query complexity is impossible without access to a comparison



oracle, since query complexity with only labeling oracle is at least {2 (d (%)%72) and (2 (d log (%))

under TNC and adversarial noise conditions, respectively [19]. Our results also matches the lower
bound of learning with labeling and comparison oracles up to log factors (see Section [6)).

We note that Theorems E] and[7|require rather small Tolcomp, equal to O(e2%§) and O(£26), respec-
tively. We will show in Section [6.3|that it is necessary to require TOlcomp = O(e?) in order to obtain
a classifier of error ¢, if we restrict the use of labeling oracle to only learning a threshold function.
Such restriction is able to reach the near-optimal label complexity as specified in Theorems [6] and

5 Margin-ADGAC: Learning of Halfspaces

In this section, we combine ADGAC with margin-based active learning [6]] to efficiently learn the
class of halfspaces. Before proceeding, we first mention a naive idea of utilizing comparisons: we
can i.i.d. sample pairs (z1, 22) from Py x Py, and use Z(z1, z2) as the label of x; — x5, where
Z is the feedback from comparison oracle. However, this method cannot work well in our setting
without additional assumption on the noise condition for the labeling Z (1, 2).

Before proceeding, we assume that Py is isotropic log-concave on R% i.e., Py has mean 0, co-
variance I and the logarithm of its density function is a concave function [} [6]. The hypothesis
class of halfspaces can be represented as C = {h : h(z) = sign(w - r),w € R9}. Denote
by h*(x) = sign(w* - x) for some w* € R? Define I, (w,z,y) = max (1 —y(w-z)/7,0)
and [ (w, W) = ﬁ > (z,yyew br(w, 2, y) as the hinge loss. The expected hinge loss of w is
Lo(w, D) = By p [l (w, , sign(w” - ))].

Margin-based active learning [6]] is a concrete example of Algorithm |1| by taking V' as (a sin-
gleton set of) the hinge loss minimizer, while taking U as the margin region around that mini-
mizer. More concretely, take Uy = X and V; = {wg} for some wy such that 0(wg, w*) < /2.
The algorithm works with constants M > 2,k < 1/2 and a set of parameters r;,7;,b;, 2;
that equal to ©(M %) (see proof in Appendix for formal definition of these parameters). V al-
ways contains a single hypothesis. Suppose V' = {w;_;} in iteration i — 1. Let v; satisfies
Lz, (0i, W) <Ml jy—w,_y o <ro,[J0]la<1 Ir; (v, W) + /8, where w; is the content of V' in iteration 4.
We also have fy (V, W, 7) = {w;} = {7} and fu (U, V,W,i) = {z : |wi - 2| < b;}.

llvill2

Let Margin-ADGAC be the algorithm obtained by replacing the sampling step in margin-based active
learning with ADGAC using parameters (S, n;, £;, k;), where n;, €;, k; are additional parameters
to be specified later. We have the following results under TNC and adversarial noise conditions,
respectively.

Theorem 8. Suppose that Conditions[2|andB|hold, and h*(z) = sign(w* - x) = sign(n(x) — 1/2).
There are settings of M, k,r;,7;,b;,;, ki, and constants Cy,Cy such that for all ¢ < C1,V <
Tolcomp(e,9) = Coe2%6, if we run Margin-ADGAC with wq such that 0(wq, w*) < /2, and n; =

0 (E%_dlog‘g(dk‘/é) + (é)%_l log(l/é)), it finds © such that Prsign(w - X ) # sign(w* - X)] < e

with probability at least 1 — 0. The comparison and label complexity are
5 1 2k—2
E[SCeomp] = O (1og2<1/s> <d10g4(d/5> +(2) 1og<1/6>>> ,

SClabeI = @ (10g(1/€) log(l/é) (i) ) > .

The dependence onlog(1/¢) in SCeomp can be reduced to log(1/<) under Massart noise.

Theorem 9. Suppose that Conditions[I|and[3|hold. There are settings of M, k,7;,7;,b;, €;, ki, and
constants C1, Cy, C3 such that for all ¢ < Cy,V' < T0leomp(£, ) = C226, v < Toleomp (e, ) =

Csé, if we run Margin-ADGAC with n; = O (%dlogg(dk/é)) and wq such that 0(wg, w*) < /2,
it finds W such that Prlsign(w - X) # sign(w* - X)| < e with probability at least 1 — 6. The
comparison and label complexity are

E[SCeomp) = O (log(1/¢) (dlog*(d/3))), SCuuer = O (log(1/c)log(1/3)).

The proofs of Theorems [§and [0]are different from the conventional analysis of margin-based active
learning in two aspects: a) Since we use labels generated by ADGAC, which is not independently



sampled from the distribution Pxy, we require new techniques that can deal with adaptive noises; b)
We improve the results of [6] over the dependence of d by new Rademacher analysis.

Theorems [§]and 0] enjoy better label and query complexity than previous results (see Table[Z). We
mention that while Yan and Zhang [32] proposed a perceptron-like algorithm with label complexity
as small as O(d log(1/¢)) under Massart and adversarial noise conditions, their algorithm works only
under uniform distributions over the instance space. In contrast, our algorithm Margin-ADGAC works
under broad log-concave distributions. The label and total query complexity of Margin-ADGAC
improves over that of traditional active learning. The lower bounds in Section [6]show the optimality
of our complexity.

6 Lower Bounds

In this section, we give lower bounds on learning using labeling and pairwise comparison. In Section
we give a lower bound on the optimal label complexity SCape. In Section we use this result
to give a lower bound on the total query complexity, i.e., the sum of comparison and label complexity.
Our two methods match these lower bounds up to log factors. In Section [6.3] we additionally give an
information-theoretic bound on TOlcomp, Which matches our algorithms in the case of Massart and
adversarial noise.

Following from [19} 20], we assume that there is an underlying score function g* such that h*(z) =
sign(g*(x)). Note that g* does not necessarily have relation with n(z); We only require that g* (z)
represents how likely a given x is positive. For instance, in digit recognition, g*(x) represents how
an image looks like a 7 (or 9); In the clinical setting, g* (x) measures the health condition of a patient.
Suppose that the distribution of g*(X) is continuous, i.e., the probability density function exists and
forevery t € R, Pr[g*(X) =t] = 0.

6.1 Lower Bound on Label Complexity

The definition of ¢* naturally induces a comparison oracle Z with Z(z, z") = sign(g*(x) — g*(z')).
We note that this oracle is invariant to shifting w.r.t. g*, i.e., g* and ¢g* 4t lead to the same comparison
oracle. As a result, we cannot distinguish g* from g* + ¢ without labels. In other words, pairwise
comparisons do not help in improving label complexity when we are learning a threshold function
on R, where all instances are in the natural order. So the label complexity of any algorithm is lower
bounded by that of learning a threshold classifier, and we formally prove this in the following theorem.

Theorem 10. For any algorithm A that can access both labeling and comparison oracles, sufficiently
small €, 0, and any score function g that takes at least two values on X, there exists a distribution
Py satisfying Condition 2] such that the optimal function is in the form of h*(z) = sign(g(x) + t)
for some t € R and

SCua (2,0, A) = 2 ((1/2)" log(1/9)) . M

If Pxy satisfies Conditionwith v = O(e), SCypel satisfies (I) with k = 1.

The lower bound in Theoremmatches the label complexity of A2-ADGAC and Margin-ADGAC
up to a log factor. So our algorithm is near-optimal.

6.2 Lower Bound on Total Query Complexity

We use Theorem [I0]to give lower bounds on the total query complexity of any algorithm which can
access both comparison and labeling oracles.

Theorem 11. For any algorithm A that can access both labeling and comparison oracles, and
sufficiently small €, 0, there exists a distribution Pxy satisfying Condition[2} such that

SCeomp(&, 6, A) + SCuaer(,6,.A) = @ ((1/2)" 10g(1/) + dlog(1/e) ) . )
If Pxy satisfies Conditionwith v = O(e), SCeomp + SCiavel satisfies @) with k = 1.

The first term of (2) follows from Theorem [I0] whereas the second term follows from transforming a
lower bound of active learning with access to only the labeling oracle. The lower bounds in Theorem
match the performance of A2-ADGAC and Margin-ADGAC up to log factors.

6.3 Adversarial Noise Tolerance of Comparisons

Note that label queries are typically expensive in practice. Thus it is natural to ask the following
question: what is the minimal requirement on v/, given that we are only allowed to have access to
minimal label complexity as in Theorem IO We study this problem in this section. More concretely,



we study the requirement on v/ when we learn a threshold function using labels. Suppose that the
comparison oracle gives feedback using a scoring function g, i.e., Z(z,z’) = sign(g(z) — §(z’)),
and has error v’. We give a sharp minimax bound on the risk of the optimal classifier in the form of
h(zx) = sign(g(x) — t) for some ¢ € R below.

Theorem 12. Suppose that min{Pr[h*(X) = 1],Pr[h*(X) = —1]} > Vv and both §(X) and
g* (X)) have probability density functions. If §(X) induces an oracle with error V', then we have
min; max - Prlsign(g(X) —t) # h*(X)] = VV/'.

The proof is technical and omitted. By Theorem we see that the condition of v/ = £? is necessary

if labels from g* are only used to learn a threshold on §. This matches our choice of v’ under Massart
and adversarial noise conditions for labeling oracle (up to a factor of 9).

7 Conclusion

We presented a general algorithmic framework, ADGAC, for learning with both comparison and
labeling oracles. We proposed two variants of the base algorithm, A2-ADGAC and Margin-ADGAC,
to facilitate low query complexity under Tsybakov and adversarial noise conditions. The performance
of our algorithms matches lower bounds for learning with both oracles. Our analysis is relevant to
a wide range of practical applications where it is easier, less expensive, and/or less risky to obtain
pairwise comparisons than labels.

There are multiple directions for future works. One improvement over our work is to show complexity
bounds for excess risk err(h) — err(h*) instead of Pr[h # h*]. Also, our bound on comparison
complexity is in expectation due to limits of quicksort; deriving concentration inequalities on the
comparison complexity would be helpful. Also, an adaptive algorithm that applies to different levels
of noise w.r.t. labels and comparisons would be interesting; i.e., use labels when comparisons are
noisy and use comparisons when labels are noisy. Other directions include using comparisons (or
more broadly, rankings) for other ML tasks like regression or matrix completion.
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