
Multi-output Polynomial Networks

and Factorization Machines

Mathieu Blondel
NTT Communication Science Laboratories

Kyoto, Japan
mathieu@mblondel.org

Vlad Niculae∗

Cornell University
Ithaca, NY

vlad@cs.cornell.edu

Takuma Otsuka
NTT Communication Science Laboratories

Kyoto, Japan
otsuka.takuma@lab.ntt.co.jp

Naonori Ueda
NTT Communication Science Laboratories

RIKEN
Kyoto, Japan

ueda.naonori@lab.ntt.co.jp

Abstract

Factorization machines and polynomial networks are supervised polynomial mod-
els based on an efficient low-rank decomposition. We extend these models to the
multi-output setting, i.e., for learning vector-valued functions, with application to
multi-class or multi-task problems. We cast this as the problem of learning a 3-way
tensor whose slices share a common basis and propose a convex formulation of that
problem. We then develop an efficient conditional gradient algorithm and prove
its global convergence, despite the fact that it involves a non-convex basis selec-
tion step. On classification tasks, we show that our algorithm achieves excellent
accuracy with much sparser models than existing methods. On recommendation
system tasks, we show how to combine our algorithm with a reduction from ordinal
regression to multi-output classification and show that the resulting algorithm
outperforms simple baselines in terms of ranking accuracy.

1 Introduction

Interactions between features play an important role in many classification and regression tasks.
Classically, such interactions have been leveraged either explicitly, by mapping features to their
products (as in polynomial regression), or implicitly, through the use of the kernel trick. While fast
linear model solvers have been engineered for the explicit approach [9, 28], they are typically limited
to small numbers of features or low-order feature interactions, due to the fact that the number of
parameters that they need to learn scales as O(dt), where d is the number of features and t is the order
of interactions considered. Models kernelized with the polynomial kernel do not suffer from this
problem; however, the cost of storing and evaluating these models grows linearly with the number of
training instances, a problem sometimes referred to as the curse of kernelization [30].

Factorization machines (FMs) [25] are a more recent approach that can use pairwise feature interac-
tions efficiently even in very high-dimensional data. The key idea of FMs is to model the weights
of feature interactions using a low-rank matrix. Not only this idea offers clear benefits in terms of
model compression compared to the aforementioned approaches, it has also proved instrumental
in modeling interactions between categorical variables, converted to binary features via a one-hot
encoding. Such binary features are usually so sparse that many interactions are never observed in the

∗Work performed during an internship at NTT Commmunication Science Laboratories, Kyoto.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

training set, preventing classical approaches from capturing their relative importance. By imposing
a low rank on the feature interaction weight matrix, FMs encourage shared parameters between
interactions, allowing to estimate their weights even if they never occurred in the training set. This
property has been used in recommender systems to model interactions between user variables and
item variables, and is the basis of several industrial successes of FMs [32, 17].

Originally motivated as neural networks with a polynomial activation (instead of the classical
sigmoidal or rectifier activations), polynomial networks (PNs) [20] have been shown to be intimately
related to FMs and to only subtly differ in the non-linearity they use [5]. PNs achieve better
performance than rectifier networks on pedestrian detection [20] and on dependency parsing [10],
and outperform kernel approximations such as the Nyström method [5]. However, existing PN and
FM works have been limited to single-output models, i.e., they are designed to learn scalar-valued
functions, which restricts them to regression or binary classification problems.

Our contributions. In this paper, we generalize FMs and PNs to multi-output models, i.e., for
learning vector-valued functions, with application to multi-class or multi-task problems.

1) We cast learning multi-output FMs and PNs as learning a 3-way tensor, whose slices share a
common basis (each slice corresponds to one output). To obtain a convex formulation of that
problem, we propose to cast it as learning an infinite-dimensional but row-wise sparse matrix. This
can be achieved by using group-sparsity inducing penalties. (§3)

2) To solve the obtained optimization problem, we develop a variant of the conditional gradient
(a.k.a. Frank-Wolfe) algorithm [11, 15], which repeats the following two steps: i) select a new basis
vector to add to the model and ii) refit the model over the current basis vectors. (§4) We prove the
global convergence of this algorithm (Theorem 1), despite the fact that the basis selection step is
non-convex and more challenging in the shared basis setting. (§5)

3) On multi-class classification tasks, we show that our algorithm achieves comparable accuracy to
kernel SVMs but with much more compressed models than the Nyström method. On recommender
system tasks, where kernelized models cannot be used (since they do not generalize to unseen
user-item pairs), we demonstrate how our algorithm can be combined with a reduction from ordinal
regression to multi-output classification and show that the resulting algorithm outperforms single-
output PNs and FMs both in terms of root mean squared error (RMSE) and ranking accuracy, as
measured by nDCG (normalized discounted cumulative gain) scores. (§6)

2 Background and related work

Notation. We denote the set {1, . . . ,m} by [m]. Given a vector v ∈ R
k, we denote its elements

by vr ∈ R ∀r ∈ [k]. Given a matrix V ∈ R
k×m, we denote its rows by vr ∈ R

m ∀r ∈ [k] and its
columns by v:,c ∀c ∈ [m]. We denote the lp norm of V by ‖V ‖p := ‖ vec(V)‖p and its lp/lq norm

by ‖V ‖p,q :=
(

∑k
r=1 ‖vr‖pq

)
1
p

. The number of non-zero rows of V is denoted by ‖V ‖0,∞.

Factorization machines (FMs). Given an input vector x ∈ R
d, FMs predict a scalar output by

ŷFM := wTx+
∑

i<j

wi,jxixj ,

where w ∈ R
d contains feature weights and W ∈ R

d×d is a low-rank matrix that contains pairwise
feature interaction weights. To obtain a low-rank W , [25] originally proposed to use a change of
variable W = HTH , where H ∈ R

k×d (with k ∈ N+ a rank parameter) and to learn H instead.
Noting that this quadratic model results in a non-convex problem in H , [4, 31] proposed to convexify
the problem by learning W directly but to encourage low rank using a nuclear norm on W . For
learning, [4] proposed a conditional gradient like approach with global convergence guarantees.

Polynomial networks (PNs). PNs are a recently-proposed form of neural network where the usual
activation function is replaced with a squared activation. Formally, PNs predict a scalar output by

ŷPN := wTx+ vTσ(Hx) = wTx+

k
∑

r=1

vr σ(h
T
r x),

where σ(a) = a2 (evaluated element-wise) is the squared activation, v ∈ R
k is the output layer

vector, H ∈ R
k×d is the hidden layer matrix and k is the number of hidden units. Because the

2

v1,m + · · ·+ vk,m

v1,1 + · · ·+ vk,1

W1

W2

. . .
Wm

h1

hT

1

hk

hT

k

h1

hT

1

hk

hT

k

d

d

m

Figure 1: Our multi-output PNs / FMs learn a tensor whose slices share a common basis {hr}kr=1.

r.h.s term can be rewritten as xTWx =
∑d

i,j=1 wi,jxixj if we set W = HT diag(v)H , we see

that PNs are clearly a slight variation of FMs and that learning (v,H) can be recast as learning a
low-rank matrix W . Based on this observation, [20] proposed to use GECO [26], a greedy algorithm
for convex optimization with a low-rank constraint, similar to the conditional gradient algorithm. [13]
proposed a learning algorithm for PNs with global optimality guarantees but their theory imposes
non-negativity on the network parameters and they need one distinct hyper-parameter per hidden unit
to avoid trivial models. Other low-rank polynomial models were recently introduced in [29, 23] but
using a tensor network (a.k.a. tensor train) instead of the canonical polyadic (CP) decomposition.

3 A convex formulation of multi-output PNs and FMs

In this section, we generalize PNs and FMs to multi-output problems. For the sake of concreteness,
we focus on PNs for multi-class classification. The extension to FMs is straightforward and simply
requires to replace σ(hTx) = (hTx)2 by σANOVA(h,x) :=

∑

i<j xihixjhj , as noted in [5].

The predictions of multi-class PNs can be naturally defined as ŷMPN := argmaxc∈[m] w
T
c x+xTWcx,

where m is the number of classes, wc ∈ R
d and Wc ∈ R

d×d is low-rank. Following [5], we can
model the linear term directly in the quadratic term if we augment all data points with an extra feature
of value 1, i.e., xT ← [1,xT]. We will therefore simply assume ŷMPN = argmaxc∈[m] x

TWcx

henceforth. Our main proposal in this paper is to decompose W1, . . . ,Wm using a shared basis:

Wc = HT diag(v:,c)H =
∑k

r=1 vr,chrh
T
r ∀c ∈ [m], (1)

where, in neural network terminology, H ∈ R
k×d can be interpreted as a hidden layer matrix and

V ∈ R
k×m as an output layer matrix. Compared to the naive approach of decomposing each Wc as

Wc = HT
c diag(v:,c)Hc, this reduces the number of parameters from m(dk + k) to dk +mk.

While a nuclear norm could be used to promote a low rank on each Wc, similarly as in [4, 31], this is
clearly not sufficient to impose a shared basis. A naive approach would be to use non-orthogonal
joint diagonalization as a post-processing. However, because this is a non-convex problem for which
no globally convergent algorithm is known [24], this would result in a loss of accuracy. Our key
idea is to cast the problem of learning a multi-output PN as that of learning an infinite but row-wise
sparse matrix. Without loss of generality, we assume that basis vectors (hidden units) lie in the unit
ball. We therefore denote the set of basis vectors byH := {h ∈ R

d : ‖h‖2 ≤ 1}. Let us denote this

infinite matrix by U ∈ R
|H|×m (we use a discrete notation for simplicity). We can then write

ŷMPN = argmax
c∈[m]

o(x;U)c where o(x;U) :=
∑

h∈H
σ(hTx)uh ∈ R

m and

uh ∈ R
m denotes the weights of basis h across all classes (outputs). In this formulation, we have

Wc =
∑

h∈H uh,chh
T and sharing a common basis (hidden units) amounts to encouraging the rows

of U , uh, to be either dense or entirely sparse. This can be naturally achieved using group-sparsity
inducing penalties. Intuitively, V in (1) can be thought as U restricted to its row support. Define the
training set by X ∈ R

n×d and y ∈ [m]n. We then propose to solve the convex problem

min
Ω(U)≤τ

F (U) :=

n
∑

i=1

ℓ (yi,o(xi;U)) , (2)

3

Table 1: Sparsity-inducing penalties considered in this paper. With some abuse of notation, we denote
by eh and ec standard basis vectors of dimension |H| and m, respectively. Selecting an optimal
basis vector h⋆ to add is a non-convex optimization problem. The constant ǫ ∈ (0, 1) is the tolerance
parameter used for the power method and ν is the multiplicative approximation we guarantee.

Ω(U) Ω∗(G) ∆
⋆ ∈ τ · ∂Ω∗(G) Subproblem ν

l1 (lasso) ‖U‖1 ‖G‖∞ τ sign(gh⋆,c⋆)eh⋆eT
c⋆ h⋆, c⋆ ∈ argmax

h∈H,c∈[m]

|gh,c| 1 − ǫ

l1/l2 (group lasso) ‖U‖1,2 ‖G‖∞,2 τeh⋆gT
h⋆/‖gh⋆‖2 h⋆ ∈ argmax

h∈H
‖gh‖2

1−ǫ√
m

l1/l∞ ‖U‖1,∞ ‖G‖∞,1 τeh⋆ sign(gh⋆)T h⋆ ∈ argmax
h∈H

‖gh‖1
1−ǫ
m

where ℓ is a smooth and convex multi-class loss function (cf. Appendix A for three common examples),
Ω is a sparsity-inducing penalty and τ > 0 is a hyper-parameter. In this paper, we focus on the l1
(lasso), l1/l2 (group lasso) and l1/l∞ penalties for Ω, cf. Table 1. However, as we shall see, solving
(2) is more challenging with the l1/l2 and l1/l∞ penalties than with the l1 penalty. Although our
formulation is based on an infinite view, we next show that U⋆ has finite row support.

Proposition 1 Finite row support of U⋆ for multi-output PNs and FMs

Let U⋆ be an optimal solution of (2), where Ω is one of the penalties in Table 1. Then,
‖U⋆‖0,∞ ≤ nm+1. If Ω(·) = ‖ · ‖1, we can tighten this bound to ‖U⋆‖0,∞ ≤ min(nm+1, dm).

Proof is in Appendix B.1. It is open whether we can tighten this result when Ω = ‖ · ‖1,2 or ‖ · ‖1,∞.

4 A conditional gradient algorithm with approximate basis vector selection

At first glance, learning with an infinite number of basis vectors seems impossible. In this section,
we show how the well-known conditional gradient algorithm [11, 15] combined with group-sparsity
inducing penalties naturally leads to a greedy algorithm that selects and adds basis vectors that are
useful across all outputs. On every iteration, the conditional gradient algorithm performs updates

of the form U (t+1) = (1 − γ)U (t) + γ∆⋆, where γ ∈ [0, 1] is a step size and ∆
⋆ is obtained by

solving a linear approximation of the objective around the current iterate U (t):

∆
⋆ ∈ argmin

Ω(∆)≤τ

〈∆,∇F (U (t))〉 = τ · argmax
Ω(∆)≤1

〈∆,−∇F (U (t))〉. (3)

Let us denote the negative gradient −∇F (U) by G ∈ R
|H|×m for short. Its elements are defined by

gh,c = −
n
∑

i=1

σ(hTxi)∇ℓ (yi,o(xi;U))c ,

where ∇ℓ(y,o) ∈ R
m is the gradient of ℓ w.r.t. o (cf. Appendix A). For ReLu activations, solving

(3) is known to be NP-hard [1]. Here, we focus on quadratic activations, for which we will be able to
provide approximation guarantees. Plugging the expression of σ, we get

gh,c = −hT
Γch where Γc := XTDcX (PN) or Γc :=

1

2

(

XTDcX −Dc

n
∑

i=1

diag(xi)
2
)

(FM)

and Dc ∈ R
n×n is a diagonal matrix such that (Dc)i,i := ∇ℓ(yi,o(xi;U))c. Let us recall the

definition of the dual norm of Ω: Ω∗(G) := maxΩ(∆)≤1〈∆,G〉. By comparing this equation to (3),

we see that ∆⋆ is the argument that achieves the maximum in the dual norm Ω∗(G), up to a constant
factor τ . It is easy to verify that any element in the subdifferential of Ω∗(G), which we denote by

∂Ω∗(G) ⊆ R
|H|×m, achieves that maximum, i.e., ∆⋆ ∈ τ · ∂Ω∗(G).

Basis selection. As shown in Table 1, elements of ∂Ω∗(G) (subgradients) are |H|×m matrices with
a single non-zero row indexed by h⋆, where h⋆ is an optimal basis (hidden unit) selected by

h⋆ ∈ argmax
h∈H

‖gh‖p, (4)

4

and where p = ∞ when Ω = ‖ · ‖1, p = 2 when Ω = ‖.‖1,2 and p = 1 when Ω = ‖ · ‖1,∞. We
call (4) a basis vector selection criterion. Although this selection criterion was derived from the
linearization of the objective, it is fairly natural: it chooses the basis vector with largest “violation”,
as measured by the lp norm of the negative gradient row gh.

Multiplicative approximations. The key challenge in solving (3) or equivalently (4) arises from the
fact that G has infinitely many rows gh. We therefore cast basis vector selection as a continuous
optimization problem w.r.t. h. Surprisingly, although the entire objective (2) is convex, (4) is not.

Instead of the exact maximum, we will therefore only require to find a ∆̂ ∈ R
|H|×m that satisfies

Ω(∆̂) ≤ τ and 〈∆̂,G〉 ≥ ν〈∆⋆,G〉,
where ν ∈ (0, 1] is a multiplicative approximation (higher is better). It is easy to verify that this is

equivalent to replacing the optimal h⋆ by an approximate ĥ ∈ H that satisfies ‖g
ĥ
‖p ≥ ν‖gh⋆‖p.

Sparse case. When Ω(·) = ‖ · ‖1, we need to solve

max
h∈H
‖gh‖∞ = max

h∈H
max
c∈[m]

|hT
Γch| = max

c∈[m]
max
h∈H
|hT

Γch|.

It is well known that the optimal solution of maxh∈H |hT
Γch| is the dominant eigenvector of Γc.

Therefore, we simply need to find the dominant eigenvector hc of each Γc and select ĥ as the hc

with largest singular value |hT
c Γchc|. Using the power method, we can find an hc that satisfies

|hT
c Γchc| ≥ (1− ǫ)max

h∈H
|hT

Γch|, (5)

for some tolerance parameter ǫ ∈ (0, 1). The procedure takes O(Nc log(d)/ǫ) time, where Nc is
the number of non-zero elements in Γc [26]. Taking the maximum w.r.t. c ∈ [m] on both sides of
(5) leads to ‖g

ĥ
‖∞ ≥ ν‖gh⋆‖∞, where ν = 1− ǫ. However, using Ω = ‖ · ‖1 does not encourage

selecting an ĥ that is useful for all outputs. In fact, when Ω = ‖ · ‖1, our approach is equivalent to
imposing independent nuclear norms on W1, . . . ,Wm.

Group-sparse cases. When Ω(·) = ‖.‖1,2 or Ω(·) = ‖.‖1,∞, we need to solve

max
h∈H
‖gh‖22 = max

h∈H
f2(h) :=

m
∑

c=1

(hT
Γch)

2 or max
h∈H
‖gh‖1 = max

h∈H
f1(h) :=

m
∑

c=1

|hT
Γch|,

respectively. Unlike the l1-constrained case, we are clearly selecting a basis vector with largest viola-
tion across all outputs. However, we are now faced with a more difficult non-convex optimization

problem. Our strategy is to first choose an initialization h(0) which guarantees a certain multiplicative
approximation ν, then refine the solution using a monotonically non-increasing iterative procedure.

Initialization. We simply choose h(0) as the approximate solution of the Ω = ‖ · ‖1 case, i.e., we have

‖gh(0)‖∞ ≥ (1− ǫ)max
h∈H
‖gh‖∞.

Now, using
√
m‖x‖∞ ≥ ‖x‖2 ≥ ‖x‖∞ and m‖x‖∞ ≥ ‖x‖1 ≥ ‖x‖∞, this immediately implies

‖gh(0)‖p ≥ νmax
h∈H
‖gh‖p,

with ν = 1−ǫ√
m

if p = 2 and ν = 1−ǫ
m if p = 1.

Refining the solution. We now apply another instance of the conditional gradient algorithm to solve
the subproblem max‖h‖2≤1 fp(h) itself, leading to the following iterates:

h(t+1) = (1− ηt)h
(t) + ηt

∇fp(h(t))

‖∇fp(h(t))‖2
, (6)

where ηt ∈ [0, 1]. Following [3, Section 2.2.2], if we use the Armijo rule to select ηt, every limit

point of the sequence {h(t)} is a stationary point of fp. In practice, we observe that ηt = 1 is almost
always selected. Note that when ηt = 1 and m = 1 (i.e., single-output case), our refining algorithm
recovers the power method. Generalized power methods were also studied for structured matrix
factorization [16, 21], but with different objectives and constraints. Since the conditional gradient

5

Algorithm 1 Multi-output PN/FM training
Input: X, y, k, τ
H ← [], V ← []
for t := 1, . . . , k do

Compute oi :=
∑t−1

r=1 σ(h
T
r xi)vr ∀i ∈ [n]

Let gh := [−hTΓ1h, . . . ,−hTΓmh]T

Find ĥ ≈ argmaxh∈H ‖gh‖p

Append ĥ to H and 0 to V

V ← argmin
Ω(V)≤τ

Ft(V ,H)

Optional: V ,H ← argmin
Ω(V)≤τ

hr∈H ∀r∈[t]

Ft(V ,H)

end for

Output: V , H (equivalent to U =
∑k

t=1 eht
vT
t)

algorithm assumes a differentiable function, in the case p = 1, we replace the absolute function with
the Huber function |x| ≈ 1

2x
2 if |x| ≤ 1, |x| − 1

2 otherwise.

Corrective refitting step. After t iterations, U (t) contains at most t non-zero rows. We can therefore
always store U (t) as V (t) ∈ R

t×m (the output layer matrix) and H(t) ∈ R
t×d (the basis vectors /

hidden units added so far). In order to improve accuracy, on iteration t, we can then refit the objective

Ft(V ,H) :=
∑n

i=1 ℓ
(

yi,
∑t

r=1 σ(h
T
r xi)vr

)

. We consider two kinds of corrective steps, a convex

one that minimizes Ft(V ,H(t)) w.r.t. V ∈ R
t×m and an optional non-convex one that minimizes

Ft(V ,H) w.r.t. both V ∈ R
t×m and H ∈ R

t×d. Refitting allows to remove previously-added
bad basis vectors, thanks to the use of sparsity-inducing penalties. Similar refitting procedures are
commonly used in matching pursuit [22]. The entire procedure is summarized in Algorithm 1 and
implementation details are given in Appendix D.

5 Analysis of Algorithm 1

The main difficulty in analyzing the convergence of Algorithm 1 stems from the fact that we cannot
solve the basis vector selection subproblem globally when Ω = ‖ · ‖1,2 or ‖ · ‖1,∞. Therefore, we
need to develop an analysis that can cope with the multiplicative approximation ν. Multiplicative
approximations were also considered in [18] but the condition they require is too stringent (cf.
Appendix B.2 for a detailed discussion). The next theorem guarantees the number of iterations needed
to output a multi-output network that achieves as small objective value as an optimal solution of (2).

Theorem 1 Convergence of Algorithm 1

Assume F is smooth with constant β. Let U (t) be the output after t iterations of Algorithm 1 run with

constraint parameter τ
ν . Then, F (U (t))− min

Ω(U)≤τ
F (U) ≤ ǫ ∀t ≥ 8τ2β

ǫν2
− 2.

In [20], single-output PNs were trained using GECO [26], a greedy algorithm with similar O
(

τ2β
ǫν2

)

guarantees. However, GECO is limited to learning infinite vectors (not matrices) and it does not
constrain its iterates like we do. Hence GECO cannot remove bad basis vectors. The proof of
Theorem 1 and a detailed comparison with GECO are given in Appendix B.2. Finally, we note
that the infinite dimensional view is also key to convex neural networks [2, 1]. However, to our
knowledge, we are the first to give an explicit multiplicative approximation guarantee for a non-linear
multi-output network.

6 Experimental results

6.1 Experimental setup

Datasets. For our multi-class experiments, we use four publicly-available datasets: segment (7
classes), vowel (11 classes), satimage (6 classes) and letter (26 classes) [12]. Quadratic models sub-

6

stantially improve over linear models on these datasets. For our recommendation system experiments,
we use the MovieLens 100k and 1M datasets [14]. See Appendix E for complete details.

Model validation. The greedy nature of Algorithm 1 allows us to easily interleave training with
model validation. Concretely, we use an outer loop (embarrassingly parallel) for iterating over the
range of possible regularization parameters, and an inner loop (Algorithm 1, sequential) for increasing
the number of basis vectors. Throughout our experiments, we use 50% of the data for training, 25%
for validation, and 25% for evaluation. Unless otherwise specified, we use a multi-class logistic loss.

6.2 Method comparison for the basis vector (hidden unit) selection subproblem

0.00 0.25 0.50 0.75 1.00

best data

random init

l1 init

random init
+refine

l1 init + refine
(proposed)

satimage

0.00 0.25 0.50 0.75 1.00

vowel

Figure 2: Empirically observed multiplicative

approximation factor ν̂ = f1(ĥ)/f1(h
⋆).

As we mentioned previously, the linearized subprob-
lem (basis vector selection) for the l1/l2 and l1/l∞
constrained cases involves a significantly more chal-
lenging non-convex optimization problem. In this
section, we compare different methods for obtaining

an approximate solution ĥ to (4). We focus on the
ℓ1/ℓ∞ case, since we have a method for computing
the true global solution h⋆, albeit with exponential
complexity in m (cf. Appendix C). This allows us
to report the empirically observed multiplicative

approximation factor ν̂ := f1(ĥ)/f1(h
⋆).

Compared methods. We compare l1 init + refine (proposed), random init + refine, l1 init (without

refine), random init and best data: ĥ = xi⋆/‖xi⋆‖2 where i⋆ = argmax
i∈[n]

f1(xi/‖xi‖2).

Results. We report ν̂ in Figure 2. l1 init + refine achieves nearly the global maximum on both
datasets and outperforms random init + refine, showing the effectiveness of the proposed initialization
and that the iterative update (6) can get stuck in a bad local minimum if initialized badly. On the
other hand, l1 init + refine outperforms l1 init alone, showing the importance of iteratively refining
the solution. Best data, a heuristic similar to that of approximate kernel SVMs [7], is not competitive.

6.3 Sparsity-inducing penalty comparison

0.86

0.88

0.90

0.92

0.94
letter

0 50 100 150
Max. hidden units

0.50

0.70

Te
st

 m
ul

ti-
cla

ss
 a

cc
ur

ac
y

Figure 3: Penalty comparison.

In this section, we compare the l1, l1/l2 and l1/l∞ penalties for the
choice of Ω, when varying the maximum number of basis vectors
(hidden units). Figure 3 indicates test set accuracy when using
output layer refitting. We also include linear logistic regression,
kernel SVMs and the Nyström method as baselines. For the latter
two, we use the quadratic kernel (xT

i xj + 1)2. Hyper-parameters
are chosen so as to maximize validation set accuracy.

Results. On the vowel (11 classes) and letter (26 classes) datasets,
l1/l2 and l1/l∞ penalties outperform l1 norm starting from 20 and
75 hidden units, respectively. On satimage (6 classes) and segment
(7 classes), we observed that the three penalties are mostly similar
(not shown). We hypothesize that l1/l2 and l1/l∞ penalties make
a bigger difference when the number of classes is large. Multi-
output PNs substantially outperform the Nyström method with
comparable number of basis vectors (hidden units). Multi-output
PNs reach the same test accuracy as kernel SVMs with very few
basis vectors on vowel and satimage but appear to require at least
100 basis vectors to reach good performance on letter. This is not
surprising, since kernel SVMs require 3,208 support vectors on
letter, as indicated in Table 2 below.

6.4 Multi-class benchmark comparison

Compared methods. We compare the proposed conditional gradient algorithm with output layer
refitting only and with both output and hidden layer refitting; projected gradient descent (FISTA)

7

Table 2: Muli-class test accuracy and number of basis vectors / support vectors.

segment vowel satimage letter

Conditional gradient (full refitting, proposed)

l1 96.71 (41) 87.83 (12) 89.80 (25) 92.29 (150)

l1/l2 96.71 (40) 89.57 (15) 89.08 (18) 91.81 (106)

l1/l∞ 96.71 (24) 86.96 (15) 88.99 (20) 92.35 (149)

Conditional gradient (output-layer refitting, proposed)

l1 97.05 (20) 80.00 (21) 89.71 (40) 91.01 (139)

l1/l2 96.36 (21) 85.22 (15) 89.71 (50) 92.24 (150)

l1/l∞ 96.19 (16) 86.96 (41) 89.35 (41) 91.68 (128)

Projected gradient descent (random init)

l1 96.88 (50) 79.13 (50) 89.53 (50) 88.45 (150)

l1/l2 96.88 (50) 80.00 (48) 89.80 (50) 88.45 (150)

l1/l∞ 96.71 (50) 83.48 (50) 89.08 (50) 88.45 (150)

l2
2

96.88 (50) 81.74 (50) 89.98 (50) 88.45 (150)

Baselines

Linear 92.55 60.00 83.03 71.17

Kernelized 96.71 (238) 85.22 (189) 89.53 (688) 93.73 (3208)

OvR PN 94.63 73.91 89.44 75.36

with random initialization; linear and kernelized models; one-vs-rest PNs (i.e., fit one PN per class).
We focus on PNs rather than FMs since they are known to work better on classification tasks [5].

Results are included in Table 2. From these results, we can make the following observations and
conclusions. When using output-layer refitting on vowel and letter (two datasets with more than 10
classes), group-sparsity inducing penalties lead to better test accuracy. This is to be expected, since
these penalties select basis vectors that are useful across all classes. When using full hidden layer and
output layer refitting, l1 catches up with l1/l2 and l1/l∞ on the vowel and letter datasets. Intuitively,
the basis vector selection becomes less important if we make more effort at every iteration by refitting
the basis vectors themselves. However, on vowel, l1/l2 is still substantially better than l1 (89.57 vs.
87.83).

Compared to projected gradient descent with random initialization, our algorithm (for both output
and full refitting) is better on 3/4 (l1), 2/4 (l1/l2) and 3/4 (l1/l∞) of the datasets. In addition, with our
algorithm, the best model (chosen against the validation set) is substantially sparser. Multi-output
PNs substantially outperform OvR PNs. This is to be expected, since multi-output PNs learn to share
basis vectors across different classes.

6.5 Recommender system experiments using ordinal regression

A straightforward way to implement recommender systems consists in training a single-output model
to regress ratings from one-hot encoded user and item indices [25]. Instead of a single-output PN
or FM, we propose to use ordinal McRank, a reduction from ordinal regression to multi-output
binary classification, which is known to achieve good nDCG (normalized discounted cumulative
gain) scores [19]. This reduction involves training a probabilistic binary classifier for each of the m
relevance levels (for instance, m = 5 in the MovieLens datasets). The expected relevance of x (e.g.
the concatenation of the one-hot encoded user and item indices) is then computed by

ŷ =

m∑

c=1

c p(y = c | x) =

m∑

c=1

c

[

p(y ≤ c | x)− p(y ≤ c− 1 | x)
]

,

where we use the convention p(y ≤ 0 | x) = 0. Thus, all we need to do to use ordinal McRank is to
train a probabilistic binary classifier p(y ≤ c | x) for all c ∈ [m].

Our key proposal is to use a multi-output model to learn all m classifiers simultaneously, i.e., in a
multi-task fashion. Let xi be a vector representing a user-item pair with corresponding rating yi, for

8

0 10 20 30 40 50

0.94

0.96

0.98

1.00

M
ov

ie
le

ns
 1

00
k

RMSE

0 10 20 30 40 50
0.68

0.70

0.72

0.74

0.76
nDCG@1

0 10 20 30 40 50
0.73

0.74

0.75

0.76

0.77

nDCG@5

0 10 20 30 40 50
Max. hidden units

0.90

0.92

0.94

0.96

0.98

1.00

M
ov

ie
le

ns
 1

M

0 10 20 30 40 50
Max. hidden units

0.72

0.73

0.74

0.75

0.76

0 10 20 30 40 50
Max. hidden units

0.75

0.76

0.77

Single-output PN
Single-output FM
Ordinal McRank FM l1/l2
Ordinal McRank FM l1/l

Figure 4: Recommender system experiment: RMSE (lower is better) and nDCG (higher is better).

i ∈ [n]. We form a n×m matrix Y such that yi,c = +1 if yi ≤ c and −1 otherwise, and solve

min
Ω(U)≤τ

n
∑

i=1

m
∑

c=1

ℓ

(

yi,c,
∑

h∈H
σANOVA(h,xi)uh,c

)

,

where ℓ is set to the binary logistic loss, in order to be able to produce probabilities. After running
Algorithm 1 on that objective for k iterations, we obtain H ∈ R

k×d and V ∈ R
k×m. Because H is

shared across all outputs, the only small overhead of using the ordinal McRank reduction, compared
to a single-output regression model, therefore comes from learning V ∈ R

k×m instead of v ∈ R
k.

In this experiment, we focus on multi-output factorization machines (FMs), since FMs usually work
better than PNs for one-hot encoded data [5]. We show in Figure 4 the RMSE and nDCG (truncated
at 1 and 5) achieved when varying k (the maximum number of basis vectors / hidden units).

Results. When combined with the ordinal McRank reduction, we found that l1/l2 and l1/l∞–
constrained multi-output FMs substantially outperform single-output FMs and PNs on both RMSE
and nDCG measures. For instance, on MovieLens 100k and 1M, l1/l∞–constrained multi-output
FMs achieve an nDCG@1 of 0.75 and 0.76, respectively, while single-output FMs only achieve 0.71
and 0.75. Similar trends are observed with nDCG@5. We believe that this reduction is more robust
to ranking performance measures such as nDCG thanks to its modelling of the expected relevance.

7 Conclusion and future directions

We defined the problem of learning multi-output PNs and FMs as that of learning a 3-way tensor
whose slices share a common basis. To obtain a convex optimization objective, we reformulated that
problem as that of learning an infinite but row-wise sparse matrix. To learn that matrix, we developed
a conditional gradient algorithm with corrective refitting, and were able to provide convergence
guarantees, despite the non-convexity of the basis vector (hidden unit) selection step.

Although not considered in this paper, our algorithm and its analysis can be modified to make
use of stochastic gradients. An open question remains whether a conditional gradient algorithm
with provable guarantees can be developed for training deep polynomial networks or factorization
machines. Such deep models could potentially represent high-degree polynomials with few basis
vectors. However, this would require the introduction of a new functional analysis framework.

9

References

[1] F. Bach. Breaking the curse of dimensionality with convex neural networks. JMLR, 2017.

[2] Y. Bengio, N. Le Roux, P. Vincent, O. Delalleau, and P. Marcotte. Convex neural networks. In
NIPS, 2005.

[3] D. P. Bertsekas. Nonlinear programming. Athena Scientific Belmont, 1999.

[4] M. Blondel, A. Fujino, and N. Ueda. Convex factorization machines. In ECML/PKDD, 2015.

[5] M. Blondel, M. Ishihata, A. Fujino, and N. Ueda. Polynomial networks and factorization
machines: New insights and efficient training algorithms. In ICML, 2016.

[6] M. Blondel, K. Seki, and K. Uehara. Block coordinate descent algorithms for large-scale sparse
multiclass classification. Machine Learning, 93(1):31–52, 2013.

[7] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active
learning. JMLR, 6(Sep):1579–1619, 2005.

[8] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The convex geometry of linear
inverse problems. Foundations of Computational Mathematics, 12(6):805–849, 2012.

[9] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. Training and testing
low-degree polynomial data mappings via linear svm. Journal of Machine Learning Research,
11:1471–1490, 2010.

[10] D. Chen and C. D. Manning. A fast and accurate dependency parser using neural networks. In
EMNLP, 2014.

[11] J. C. Dunn and S. A. Harshbarger. Conditional gradient algorithms with open loop step size
rules. Journal of Mathematical Analysis and Applications, 62(2):432–444, 1978.

[12] R.-E. Fan and C.-J. Lin. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/, 2011.

[13] A. Gautier, Q. N. Nguyen, and M. Hein. Globally optimal training of generalized polynomial
neural networks with nonlinear spectral methods. In NIPS, 2016.

[14] GroupLens. http://grouplens.org/datasets/movielens/, 1998.

[15] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML, 2013.

[16] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power method for sparse
principal component analysis. Journal of Machine Learning Research, 11:517–553, 2010.

[17] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin. Field-aware factorization machines for CTR
prediction. In ACM Recsys, 2016.

[18] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe
optimization for structural SVMs. In ICML, 2012.

[19] P. Li, C. J. Burges, and Q. Wu. McRank: Learning to rank using multiple classification and
gradient boosting. In NIPS, 2007.

[20] R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training neural
networks. In NIPS, 2014.

[21] R. Luss and M. Teboulle. Conditional gradient algorithms for rank-one matrix approximations
with a sparsity constraint. SIAM Review, 55(1):65–98, 2013.

[22] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transac-
tions on Signal Processing, 41(12):3397–3415, 1993.

[23] A. Novikov, M. Trofimov, and I. Oseledets. Exponential machines. arXiv preprint
arXiv:1605.03795, 2016.

10

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://grouplens.org/datasets/movielens/

[24] A. Podosinnikova, F. Bach, and S. Lacoste-Julien. Beyond CCA: Moment matching for multi-
view models. In ICML, 2016.

[25] S. Rendle. Factorization machines. In ICDM, 2010.

[26] S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale convex minimization with a low-rank
constraint. In ICML, 2011.

[27] S. Shalev-Shwartz, Y. Wexler, and A. Shashua. ShareBoost: Efficient multiclass learning with
feature sharing. In NIPS, 2011.

[28] S. Sonnenburg and V. Franc. Coffin: A computational framework for linear SVMs. In ICML,
2010.

[29] E. Stoudenmire and D. J. Schwab. Supervised learning with tensor networks. In NIPS, 2016.

[30] Z. Wang, K. Crammer, and S. Vucetic. Multi-class Pegasos on a budget. In ICML, 2010.

[31] M. Yamada, W. Lian, A. Goyal, J. Chen, K. Wimalawarne, S. A. Khan, S. Kaski, H. M.
Mamitsuka, and Y. Chang. Convex factorization machine for toxicogenomics prediction. In
KDD, 2017.

[32] E. Zhong, Y. Shi, N. Liu, and S. Rajan. Scaling factorization machines with parameter server.
In CIKM, 2016.

11

