
PRUNE: Preserving Proximity and Global Ranking
for Network Embedding

Yi-An Lai ∗‡
National Taiwan University
b99202031@ntu.edu.tw

Chin-Chi Hsu †‡
Academia Sinica

chinchi@iis.sinica.edu.tw

Wen-Hao Chen ∗
National Taiwan University
b02902023@ntu.edu.tw

Mi-Yen Yeh †
Academia Sinica

miyen@iis.sinica.edu.tw

Shou-De Lin ∗
National Taiwan University
sdlin@csie.ntu.edu.tw

Abstract

We investigate an unsupervised generative approach for network embedding. A
multi-task Siamese neural network structure is formulated to connect embedding
vectors and our objective to preserve the global node ranking and local proximity
of nodes. We provide deeper analysis to connect the proposed proximity objective
to link prediction and community detection in the network. We show our model can
satisfy the following design properties: scalability, asymmetry, unity and simplicity.
Experiment results not only verify the above design properties but also demonstrate
the superior performance in learning-to-rank, classification, regression, and link
prediction tasks.

1 Introduction

Network embedding aims at constructing a low-dimensional latent feature matrix from a sparse
high-dimensional adjacency matrix in an unsupervised manner [1–3, 6, 15, 18–21, 23, 24, 26, 31].

Most previous works [1–3, 6, 15, 18–20, 23, 31] try to preserve k-order proximity while performing
embedding. That is, given a pair of nodes (i, j), the similarity between their embedding vectors
shall be to certain extent reflect their k-hop distances (e.g. the number of k-hop distinct paths from
node i to j, or the probability that node j is visited via a random walk from i). Proximity reflects
local network topology, and could even preserve global network topology like communities. There
are some other works directly formulate node embedding to fit the community distributions by
maximizing the modularity [21, 24].

Although through experiments some of the proximity-based embedding methods had visualized the
community separation in two-dimensional vector space [2, 3, 6, 18, 20, 23], and some demonstrate an
effective usage scenario in link prediction [6, 15, 19, 23], so far we have not yet seen a theoretical
analysis to connect these three concepts. The first goal of this paper is to propose a proximity
model that connects node embedding with link prediction and community detection. There has been
some research focusing on a similar direction. [24] tries to propose an embedding model preserving
both proximity and community. However, the objective functions for proximity and community are
separately designed, not showing the connection between them. [26] models an embedding approach
considering link prediction, but not connect it to the preservation of the network proximity.

∗Department of Computer Science and Information Engineering
†Institute of Information Science
‡These authors contributed equally to this paper.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Besides connecting link prediction and proximity, here we also argue that it is beneficial for an
embedding model to preserve a network property not specifically addressed in the existing research:
global node importance ranking. For decades unsupervised node ranking algorithms such as PageRank
[16] and HITS [10] have shown the effectiveness in estimating global node ranks. Besides ranking
websites for better search outcomes, node rankings can be useful in other applications. For example,
the Webspam Challenge competition 4 requires that spam web pages to be ranked lower than non-
spam ones; the WSDM 2016 Challenge 5 asks for ranking papers information without supervision
data in a billion-sized citation network. Our experiments demonstrate that being able to preserve the
global ranking in node embedding can not only boost the performance of a learning-to-ranking task,
but also a classification and regression task training from node embedding as features.

In this paper, we propose Proximity and Ranking-preserving Unsupervised Network Embedding
(PRUNE), an unsupervised Siamese neural network structure to learn node embeddings from not only
community-aware proximity but also global node ranking (see Figure 1). To achieve the above goals,
we rely on a generative solution. That is, taking the embedding vectors of the adjacent nodes of a
link as the training input, the shared hidden layers of our model non-linearly map node embeddings
to optimize a carefully designed objective function. During training, the objective function, for
global node ranking and community-aware proximity, propagate gradients back to update embedding
vectors. Besides deriving an upper-bound-based objective function from PageRank to represent the
global node ranking. we also provide theoretical connection of the proposed proximity objective
function to a general community detection solution. In sum, our model satisfies the following four
model design characteristics: (I) Scalability [1, 6, 15, 18–21, 23, 26, 31]. We show that for each
training epoch, our model enjoys linear time and space complexity to the number of nodes or links.
Furthermore, different from some previous works relying on sampling non-existing links as negative
examples for training, our model lifts the need to sample negative examples which not only saves
extra training time but also relieves concern of sampling bias. (II) Asymmetry [2,3,15,19,20,31]. Our
model considers link directions to learn the embeddings of either directed or undirected networks.
(III) Unity [1, 2, 6, 15, 18, 19, 21, 23, 24, 26, 31]. We perform joint learning to satisfy two different
objective goals in a single model. The experiments show that the proposed multi-task neural network
structure outperforms a two-stage model. (IV) Simplicity. Empirical verifications reflect that our
model can achieve superior performance with only one hidden layer in neural networks and unified
hyperparameter setting, freeing from fine-tuning the hyperparameters. This properly is especially
important for an unsupervised learning task due to lack of validation data for fine-tuning. The source
code of the proposed model can be downloaded here 6.

2 Related work

Recently, there exists growing number of works proposing embedding models specifically for network
property preservation. Most of the prior methods extract latent embedding features by singular value
decomposition or matrix factorization [1,3,8,15,19,21,22,24,28,30]. Such methods typically define
an N -by-N matrix A (N is the number of nodes) that reflect certain network properties, and then
factorizes A ≈ U>V or A ≈ U>U into two low-dimensional embedding matrices U and V .

There are also random-walk-based methods [6,17,18,31] proposing an implicit reduction toward word
embedding [14] by gathering random-walk sequences of sampled nodes throughout a network. The
methods work well in practice but struggles to explain what network properties should be kept in their
objective functions [20]. Unsupervised deep autoencoders are also used to learn latent embedding
features of A [2, 23], especially achieve non-linear mapping strength through activation functions.
Finally, some research defined different objective functions, like Kullback–Leibler divergence [20] or
Huber loss [26] for network embedding. Please see Table 1 for detailed model comparisons.

4http://webspam.lip6.fr/wiki/pmwiki.php
5https://wsdmcupchallenge.azurewebsites.net/
6https://github.com/ntumslab/PRUNE

2

http://webspam.lip6.fr/wiki/pmwiki.php
https://wsdmcupchallenge.azurewebsites.net/
https://github.com/ntumslab/PRUNE

Table 1: Model Comparisons. (I) Scalability; (II) Asymmetry; (III) Unity. No simplicity due to
difficult comparisons between models with few sensitive and many insensitive hyperparameters.

Model (I) (II) (III) Model (I) (II) (III)
Proximity Embedding [19] X X X MMDW [22] X

SocDim [21] X X SDNE [23] X X
Graph Factorization [1] X X HOPE [15] X X X

DeepWalk [18] X X node2vec [6] X X
TADW [28] X X HSCA [30] X X
LINE [20] X X LANE [8] X
GraRep [3] X APP [31] X X X
DNGR [2] X X M-NMF [24] X

TriDNR [17] X X NRCL [26] X X
Our PRUNE X X X

Embedding ui

Node ranking
layer

Proximity
layer

Node i Node j

Node ranking
score πi

Node ranking
score πj

Proximity
representation zi

Proximity
representation zj

Training link (i, j)

Selecting embeddings of node i and j

Objective function
arg minπ,z, W Σ(i, j) (zi

TWzj - max{0, log[M / (α ni mj)]})
2 + λ Σ(i, j) mj (πi / ni - πj / mj)

2

Shared
matrix W

Embedding uj

Shared
hidden layers

Figure 1: PRUNE overview. Each solid arrow represents a non-linear mapping function h between
two neural layers.

3 Model

3.1 Problem definition and notations

We are given a directed homogeneous graph or network G = (V,E) as input, where V is the set
of vertices or nodes and E is the set of directed edges or links. Let N = |V |,M = |E| be the
number of nodes and links in the network. For each node i, we denote Pi, Si respectively as the
set of direct predecessors and successors of node i. Therefore, mi = |Pi|, ni = |Si| imply the
in-degree and out-degree of the node i. Matrix A denotes the corresponding adjacency matrix where
each entry aij ∈ [0,∞) is the weight of link (i, j). For simplicity, here we discuss only binary link
weights: aij = {1, 0} and E = {(i, j) : aij = 1}, but solutions for non-negative link weights can be
derived in the same manner. Our goal is to build an unsupervised model, learning a K-dimensional
embedding vector ui ∈ RK for each node i, such that ui preserves global node ranking and local
proximity information.

3.2 Model overview

The Siamese neural network structure of our model is illustrated in Figure 1. Siamese architecture
has been widely applied to multi-task learning like [27]. As Figure 1 illustrates, we define a pair of
nodes (i, j) as a training instance. Since both i and j refer to the same type of objects (i.e. nodes),
it is natural to allow them to share the same hidden layer, which is what the Siamese architecture

3

suggests. We start from the bottom part in Figure 1 to introduce our proximity function. Here the
model is trained using each link (i, j) as a training instance. Given (i, j), first our model feeds the
existing embedding vectors ui and uj into the input layer. The values in ui and uj are updated
by gradients propagated back from the output layers. To learn the mapping from the embedding
vectors to objective functions, we put one hidden layer as bridge. Here we found the empirically
one single hidden layers already yield competitive results, implying that a simple neural network
is sufficient to encode graph properties into a vector space, which alleviates the burden on tuning
hyperparameters in a neural network. Second, both nodes i and j share the same hidden layers in our
neural networks, realizing by the Siamese neural networks. Each solid arrow in Figure 1 implies the
following mapping function:

h(u) = φ(ωu + b) (1)

where ω, b are the weight matrix and the bias vector. φ is an activation function leading to non-linear
mappings. In Figure 1, our goal is to encode the proximity information in embedding space. Thus
we define a D-dimensional vector z ∈ [0,∞)D that represents latent features of a node. In the
next sections, we show that the proximity property can be modeled by the interaction between
representations zi and zj . We write down the mapping from embedding u to z:

z = φ2(ω2φ1(ω1u + b1) + b2). (2)

In Figure 1, we use the same network construction to encode an additional global node ranking π ≥ 0.
It is used to compare the relative ranks between one node and another. Formally, π can be mapped
from embedding u using the following formula:

π = φ4(ω4φ3(ω3u + b3) + b4). (3)

We impose the non-negative constraints of z, π for better theoretical property by exploiting the
non-negative activation functions (ReLU or softplus for example) over the outputs φ2 and φ4. Other
outputs of activation functions and all the ω, b are not limited to be non-negative. To add global node
ranking information in proximity preservation, we construct a multi-task neural network structure
as illustrated in Figure 1. Let the hidden layers for different network properties share the same
embedding space. u is thus updated by the information simultaneously from multiple objective goals.

Different from a supervised learning task that the model can be trained by labeled data. Here instead
we need to introduce an objective function for weight-tuning:

arg min
π≥0,z≥0,W≥0

∑
(i,j)∈E

(
z>i Wzj −max

{
0, log

(
M

αmjni

)})2

+ λ
∑

(i,j)∈E

mj

(
πj
mj
− πi
ni

)2

.

(4)

The first term aims at preserving the proximity and can be applied independently, as illustrated in
Figure 1. The second term corresponds to the global node ranking task, which regularizes the relative
scale among ranking scores. Here we import shared matrix W = φ5(ω5) to learn the global linking
correlations in the whole network. We also set non-negative-ranged activation function φ5 to satisfy
non-negative W . λ controls the relative importance of these two terms. We will provide analysis for
(4) in the next sections. Since the objective function (4) is differentiable, we are allowed to apply
mini-batch stochastic gradient descent (SGD) to optimize every ω, b and even u by propagating the
gradients top-down from the output layers.

Deterministic mapping in (2) could be misunderstood that both u and z capture the same embedding
information, but z specifically captures the proximity property of a network through performing
link prediction, and u in fact tries to influence both proximity and global ranking. The reason to
use z instead of u for link prediction is that we believe node ranking and link prediction are two
naturally different tasks (but their information can be shared since highly ranked nodes can have
better connectivity to others), using one single embedding representation u to achieve both goals can
lead to a compromised solution. Instead, z can be treated as some "distilled" information extracted
from u specifically for link prediction, which can prevent our model from settling to a mediocre u
that fails to satisfy both goals directly.

3.3 Proximity preservation as PMI matrix tri-factorization

The first term in (4) aims at preserving the proximity property from input networks. We focus on the
first-order and second-order proximity, which are explicitly addressed in several proximity-based

4

methods [3, 20, 23, 24]. The first-order proximity refers to whether node pair (i, j) is connected in
unweighted graphs. In an input network, links (i, j) ∈ E are observed as positive training examples
aij = 1. Thus, their latent inner product z>i Wzj should be increased to reflect such close linking
relationship. Nonetheless, usually another set of randomly chosen node pairs (i, k) ∈ F is required
to train the embedding model as negative training examples. Since set F does not exist in input
networks, one can sample α target nodes k (with probability proportional to in-degree mk) to form
negative examples (i, k) . That is, given source node i, we emphasize the existence of link (i, j) by
distinguishing whether the corresponding target node is observed ((i, j) ∈ E) or not ((i, k) ∈ F).
We can construct a binary logistic regression model to distinguish E and F :

arg max
z,W

E(i,j)∈E
[
log σ(z>i Wzj)

]
+ αE(i,k)∈F

[
log
(
1− σ(z>i Wzk)

)]
(5)

where E denotes an expected value, σ(x) = 1
1+exp(−x) is the sigmoid function. Inspired by the

derivations in [12], we have the following conclusion:
Lemma 3.1. Let yij = z>i Wzj . We have the closed-form solution from zero first-order derivative
of (5) over yij:

yij = log
M

αnimj
= log

ps,t(i, j)

ps(i)pt(j)
− logα (6)

where ps,t(i, j) = 1
|E| = 1

M is the joint probability of link (positive example) (i, j) in set E,
ps(i) = ni

M follows a distribution proportional to out-degree ni of source node i, whereas pt(j) =
mj

M
follows another distribution proportional to in-degree mj of target node j.

Proof. Please refer to our Supplementary Material Section 2.

Clearly, (6) is the pointwise mutual information (PMI) shifted by logα, which can be viewed as link
weights in terms of out-degree ni and in-degree mj . If we directly minimize the difference between
two sides in (6) rather than maximize (5), then we are free from sampling negative examples (i, k) to
train a model. Following the suggestions in [12], we filter negative (less informative) PMI as shown
in (4), causing further performance improvement.

The second-order proximity refers to the fact that the similarity of zi and zj is higher if nodes i, j
have similar sets of direct predecessors and successors (that is, the similarity reflects 2-hop distance
relationships). Now we present how to preserve the second-order proximity using tri-factorization-
based link prediction [13, 32]. Let APMI =

[
max

{
0, log M

αnimj

}
if (i, j) ∈ E; otherwise missing

]
be the corresponding PMI matrix. Link prediction aims to predict the missing PMI values in
APMI. Factorization methods suppose APMI of low-rank D, and then learn matrix tri-factorization
Z>WZ ≈ APMI using non-missing entries. Matrix Z = [z1z2 . . . zN] aligns latent representations
with link distributions. Compared with classical factorization Z>V , such tri-factorization supports
the asymmetric transitivity property of directed links. Specifically, the existence of two directed
links (i, j) (z>i Wzj), (j, k) (z>j Wzk) increase the likelihood of (i, k) (z>i Wzk) via representation
propagation zi → zj → zk, but not the case for (k, i) due to asymmetric W . Then we have a lemma
as follows:
Lemma 3.2. Matrix tri-factorization Z>WZ ≈ APMI preserves the second-order proximity.

Proof. Please refer to our Supplementary Material Section 3.

Next, we discuss the connection between matrix tri-factorization and community. Different from
heuristic statements in [13, 32], we argue that the representation vector zi captures a D-community
distribution for node i (each dimension is proportional to the probability that node i belongs to certain
community), and shared matrix W implies the interactions among these D communities.
Lemma 3.3. Matrix tri-factorization z>i Wzj can be regarded as the expectation of community
interactions with distributions of link (i, j).

z>i Wzj ∝ E(i,j) [W] =

D∑
c=1

D∑
d=1

Pr(i ∈ Cc) Pr(j ∈ Cd)wcd, (7)

5

where each entry wcd is the expected number of interactions from community c to d, and Cc denotes
the set of nodes in community c.

Proof. Please refer to the Supplementary Material Section 4.

Based on the binary classification model (5), when a true link (i, j) is observed in the training data,
the corresponding inner product z>i Wzj is increased, which is equivalent to raising the expectation
E(i,j) [W].

To summarize, the derivations from logistic classification (5) to PMI matrix tri-factorization (6)
show the tri-factorization model preserves the first-order proximity. Then Lemma 3.2 proves the
preservation of second-order proximity. Besides, if a non-negative constraint is imposed, Lemma 3.3
shows that the tri-factorization model can be interpreted as capturing community interactions. That
says, our proximity preserving loss achieves the first-order proximity, second-order proximity, and
community preservation.

Given non-negative log M
nimj

as our setting in (4), we make another observation on community
detection. (6) can be rewritten as the following equation:

1− exp
(
−z>i Wzj

)︸ ︷︷ ︸
P(X(i,j)>0)=1−P(X(i,j)=0)

= 1− nimj

M︸ ︷︷ ︸
Modularity as aij=1,α=1

. (8)

Following Lemma 3.3, we can then derive

Lemma 3.4. The left-hand side of (8) is the probability P(X(i,j) > 0) , where 0 ≤ X(i,j) ≤ D2

represents the total numbers of interactions between all the community pairs (c, d) ∀1 ≤ c ≤ D, 1 ≤
d ≤ D that affect the existence of this link (i, j), following Poisson distribution P(X(i,j)) with mean
z>i Wzj .

Proof. Please refer to the Supplementary Material Section 5.

In fact, on either side of Equation (8), it evaluates the likelihood of the occurrence of a link. For
the left-hand side, as shown in reference [29] and our Supplementary Material 5, an existing link
implies at least one community interactions (X > 0), whose probability is assumed following Poisson
with means equal to the tri-factorization values. The right-hand side is commonly regarded as the
"modularity" [11], which measures the difference between links from the observed data and links
from random generation. Modularity is commonly used as an evaluation metric for the quality of a
community detection algorithm (see [21, 24]). The deep investigation of Equation (8) is left for our
future work.

3.4 Global node ranking preservation as PageRank upper bound

Here we want to connect the second objective to PageRank. To be more precise, the second term
in (4) (without parameter λ) comes from an upper bound of PageRank assumption. PageRank [16]
is arguably the most common unsupervised method to evaluate the rank of a node. It claims that
ranking score of a node j πj is the probability of visiting j through random walks. πj ∀ j ∈ V
can be obtained from the ranking score accumulation from direct predecessors i, weighted by the
reciprocal of out-degree ni. One can express PageRank using the minimization of squared loss
L =

∑
j∈V (

∑
i∈Pj

πi

ni
− πj)2. Here the probability constraint

∑
i∈V πi = 1 is not considered since

we care only about the relative rankings. The damping factor in PageRank is not considered either
for model simplicity. Unfortunately, it is infeasible to apply SGD to update L, since summation∑
i∈Pj

is inside the square, violating the standard SGD assumption L =
∑

(i,j)∈E Lij where each
sub-objective function Lij is relevant to a single training link (i, j). Instead, we choose to minimize
an upper bound.
Lemma 3.5. By Cauchy–Schwarz inequality, we have the upper bound as follows:

∑
j∈V

∑
i∈Pj

πi
ni
− πj

2

≤
∑

(i,j)∈E

mj

(
πi
ni
− πj
mj

)2

. (9)

6

Proof. Please refer to our Supplementary Material Section 6.

The proof of approximation ratio of such upper bound (9) is left as our future work. Nevertheless,
as will be shown later, the experiments have demonstrated the effectiveness of such upper bound.
Intuitively, (9) minimizes the difference between πi

ni
and πj

mj
weighted by in-degree mj . This could

be explained by the following lemma:

Lemma 3.6. The objectvie πi

ni
=

πj

mj
at the right-hand side of (9) is a sufficient condition of the

objective
∑
i∈Pj

πi

ni
= πj at the left-hand side of (9).

Proof. Please refer to our Supplementary Material Section 7.

3.5 Discussion

We have mentioned four major advantages of our model the introduction section. Here we would like
to provide in-depth discussions on them. (I) Scalability. Since only the positive links are used for
training, during SGD, our model spends O(MΩ2) time for each epoch, where Ω is the maximum
number of neurons of a layer in our model, which is usually in the hundreds. Also, our model costs
only O(N +M) space to store input networks and the sparse PMI matrix consumes O(M) non-zero
entries. In practice Ω2 � M , our model is thus scalable. (II) Asymmetry. By the observation in
(4), replacing (i, j) with (j, i) leads to different results since W and PageRank upper bound are
asymmetric. (III) Unity. All the objectives in our model are jointly optimized under a multi-task
Siamese neural network. (IV) Simplicity. As experiments shows, our model performs well with single
hidden layers and the same hyperparameter setting across all the datasets, which could alleviate the
difficult hyperparameter determination for unsupervised network embedding.

4 Experiments

4.1 Settings

Datasets. We benchmark our model on three real-world networks in different application domains:

(I) Hep-Ph 7. It is a paper citation network from 1993 to 2003, including 34, 546 papers and
421, 578 citations relationships. Following the same setup as [25], we leave citations before 1999 for
embedding generation, and then evaluate paper ranks using the number of citations after 2000.

(II) Webspam 8. It is a web page network used in Webspam Challenges. There are 114, 529 web
pages and 1, 836, 441 hyperlinks. Participants are challenged to build a model to rank the 1, 933
labeled non-spam web pages higher than 122 labeled spam ones.

(III) FB Wall Post 9. Previous task [7] aims at ranking active users using a 63, 731-user, 831, 401-link
wall post network in social media website Facebook, New Orlean 2009. The nodes denote users and
a link implies that a user posts at least an article on someone’s wall. 14, 862 users are marked active,
that is, they continue to post articles in the next three weeks after a certain date. The goal is to rank
active users over inactive ones.

Competitors. We compare the performance of our model with DeepWalk [18], LINE [20], node2vec
[6], SDNE [23] and NRCL [26]. DeepWalk, LINE and node2vec are popular models used in various
applications. SDNE proposes another neural network structure to embed networks. NRCL is one
of the state-of-the-art network embedding model, specially designed for link prediction. Note that
NRCL encodes external node attributes into network embedding, but we discard this part since such
information are not assumed available in our setup.

Model Setup. For all experiments, our model fixes node embedding and hidden layers to be 128-
dimensional, proximity representation to be 64-dimensional. Exponential Linear Unit (ELU) [4]
activation is adopted in hidden layers for faster learning, while output layers use softplus activation
for node ranking score and Rectified Linear Unit (ReLU) [5] activation for proximity representation

7http://snap.stanford.edu/data/cit-HepPh.html
8http://chato.cl/webspam/datasets/uk2007/
9http://socialnetworks.mpi-sws.org/data-wosn2009.html

7

http://snap.stanford.edu/data/cit-HepPh.html
http://chato.cl/webspam/datasets/uk2007/
http://socialnetworks.mpi-sws.org/data-wosn2009.html

to avoid negative-or-zero scores as well as negative representation values. We recommend and fix
α = 5, λ = 0.01. All training uses a batch size of 1024 and Adam [9] optimizer with learning rate
0.0001.

Evaluation. Similar to the previous works, we want to evaluate our embedding using supervised
learning tasks. That is, we want to evaluate whether the proposed embedding yields better results for
a (1) learning-to-rank (2) classification and regression (3) link prediction tasks.

4.2 Results

In the following paragraphs, we call our proposed model PRUNE. PRUNE without the global ranking
part is named TriFac below.

Learning-to-rank. In this setting, we use pairwise approach that formulates learning-to-rank as a
binary classification problem and take embeddings as node attributes. Linear Support Vector Machine
with regularization C = 1.0 is used as our learning-to-rank classifier. We train on 80% and evaluate
on 20% of datasets. Since Webspam and FB Wall Post possess binary labels, we choose Area Under
ROC Curve (AUC) as the evaluation metric. Following the setting in [25], Hep-Ph paper citation is a
real value, and thus suits better for Spearman’s rank correlation coefficient.

The results in Table 2 show that PRUNE significantly outperforms the competitors. Note that PRUNE
which incorporates global node ranking as a multi-task learning has superior performance compared
with TriFac which only considers the proximity. It shows that the unsupervised global ranking
we modeled is positively correlated with the rankings in these learning-to-ranking tasks. Also the
multi-task learning enriches the underlying interactions between two tasks and is the key to better
performance of PRUNE.

Table 2: Learning-to-rank performance (†: outperforms 2nd-best with p-value < 0.01).

Dataset Evaluation DeepWalk LINE node2vec SDNE NRCL TriFac PRUNE
Hep-Ph Rank Corr. 0.485 0.430 0.494 0.353 0.327 0.554 0.621†

Webspam AUC 0.821 0.818 0.843 0.800 0.839 0.821 0.853†
FB Wall Post AUC 0.702 0.712 0.730 0.749 0.573 0.747 0.765†

Classification and Regression. In this experiment, embedding outputs are directly used for binary
node classification on Webspam and FB Wall Post and node regression on Hep-Ph. We only observe
80% nodes while training and predict the labels of remaining 20% nodes. Random Forest and Support
Vector Regression are used for classification and regression, respectively. Classification is evaluated
by AUC and regression is evaluated by the Root Mean Square Error (RMSE). Table 3 shows that
PRUNE reaches the lowest RMSE on the regression task and the highest AUC on two classification
tasks among embedding algorithms, while TriFac is competitive to others. The results show that the
global ranking modeled by us contains useful information to capture certain properties of nodes.

Table 3: Classification and regression performance (†: outperforms 2nd-best with p-value < 0.01).

Dataset Evaluation DeepWalk LINE node2vec SDNE NRCL TriFac PRUNE
Hep-Ph RMSE 12.079 12.307 11.909 12.451 12.429 11.967 11.720†

Webspam AUC 0.620 0.597 0.622 0.605 0.578 0.576 0.637†
FB Wall Post AUC 0.733 0.707 0.744 0.752 0.759 0.763 0.775†

Link Prediction. We randomly split network edges into 80%-20% train-test subsets as positive
examples and sample equal number of node pairs with no edge connection as negative samples.
Embeddings are learned on the training set and performance is evaluated on the test set. Logistic
regression is adopted as the link prediction algorithm and models are evaluated by AUC. The results
in Table 4 show that PRUNE outperforms all counterparts significantly, while TriFac is competitive to
others. The results, together with previous two experiments, demonstrate the effectiveness of PRUNE
for diverse network applications.

Robustness to Noisy Data. In the real-world settings, usually only partial network is observable as
links can be missing. Perturbation analysis is then conducted in verifying the robustness of models
by measuring the learning-to-rank performance when different fractions of edges are missing. Figure
2 shows that PRUNE persistently outperforms competitors across different fractions of missing

8

Table 4: Link prediction performance (†: outperforms 2nd-best with p-value < 0.01).

Dataset DeepWalk LINE node2vec SDNE NRCL TriFac PRUNE
Hep-Ph 0.803 0.796 0.805 0.751 0.688 0.814 0.861†

Webspam 0.885 0.954 0.894 0.953 0.910 0.946 0.973†
FB Wall Post 0.828 0.781 0.853 0.855 0.731 0.858 0.878†

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
drop rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
an

kC
or

r

Hep-Ph
PRUNE
DeepWalk
LINE
node2vec
SDNE
NRCL

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
drop rate

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
U

C

FB Wall Post
PRUNE
DeepWalk
LINE
node2vec
SDNE
NRCL

Figure 2: Perturbation analysis for learning-to-rank on Hep-Ph and FB Wall Post.

edges. The results demonstrate its robustness to missing edges which is crucial for evolving or
costly-constructed networks.

Discussions. The superiority can be summarized based on the features of the models:

(I) We have an explicit objective to optimize. Random walk based models (i.e. DeepWalk, node2vec)
lack such objectives and moreover, noises are introduced during the random walk procedure.

(II) We are the only model that considers global node ranking information.

(III) We preserve first and second-order proximity and considers the asymmetry (i.e. direction of
links). NRCL only preserves the first-order proximity and does not consider asymmetry. SDNE does
not consider asymmetry either. LINE does not handle first-order and second-order proximity jointly
but instead treating them independently.

5 Conclusion

We propose a multi-task Siamese deep neural network to generate network embeddings that preserve
global node ranking and community-aware proximity. We design a novel objective function for
embedding training and provide corresponding theoretical interpretation. The experiments shows
that preserving the properties we have proposed can indeed improve the performance of supervised
learning tasks using the embedding as features.

Acknowledgments

This study was supported in part by the Ministry of Science and Technology (MOST) of Taiwan,
R.O.C., under Contracts 105-2628-E-001-002-MY2, 106-2628-E-006-005-MY3, 104-2628-E-002
-015 -MY3 & 106-2218-E-002 -014 -MY4 , Air Force Office of Scientific Research, Asian Office
of Aerospace Research and Development (AOARD) under award number No.FA2386-17-1-4038,
and Microsoft under Contracts FY16-RES-THEME-021. All opinions, findings, conclusions, and
recommendations in this paper are those of the authors and do not necessarily reflect the views of the
funding agencies.

References

[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J. Smola.
Distributed large-scale natural graph factorization. WWW ’13.

[2] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations.
AAAI’16.

9

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global structural
information. CIKM ’15.

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). CoRR, 2015.

[5] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. AISTATS’11.

[6] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. KDD ’16.

[7] Julia Heidemann, Mathias Klier, and Florian Probst. Identifying key users in online social networks: A
pagerank based approach. ICIS’10.

[8] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed network embedding. WSDM ’17.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, 2014.

[10] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 1999.

[11] Elizabeth A Leicht and Mark EJ Newman. Community structure in directed networks. Physical review
letters, 2008.

[12] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. NIPS’14.

[13] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. ECML PKDD’11.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. NIPS’13.

[15] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserving
graph embedding. KDD ’16.

[16] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[17] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network representation.
IJCAI’16.

[18] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.
KDD ’14.

[19] Han Hee Song, Tae Won Cho, Vacha Dave, Yin Zhang, and Lili Qiu. Scalable proximity estimation and
link prediction in online social networks. IMC ’09.

[20] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. WWW ’15.

[21] Lei Tang and Huan Liu. Relational learning via latent social dimensions. KDD ’09.

[22] Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, and Maosong Sun. Max-margin deepwalk: Discriminative
learning of network representation. IJCAI’16.

[23] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. KDD ’16.

[24] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community preserving
network embedding. AAAI’17.

[25] Yujing Wang, Yunhai Tong, and Ming Zeng. Ranking scientific articles by exploiting citations, authors,
journals, and time information. AAAI’13.

[26] Xiaokai Wei, Linchuan Xu, Bokai Cao, and Philip S. Yu. Cross view link prediction by learning noise-
resilient representation consensus. WWW ’17.

[27] Zhizheng Wu, Cassia Valentini-Botinhao, Oliver Watts, and Simon King. Deep neural networks employing
multi-task learning and stacked bottleneck features for speech synthesis. ICASSP ’15, 2015.

[28] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. Network representation
learning with rich text information. IJCAI’15.

[29] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: A nonnegative matrix
factorization approach. WSDM ’13.

[30] D. Zhang, J. Yin, X. Zhu, and C. Zhang. Homophily, structure, and content augmented network representa-
tion learning. ICDM’16.

[31] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. Scalable graph embedding for
asymmetric proximity. AAAI’17.

[32] Shenghuo Zhu, Kai Yu, Yun Chi, and Yihong Gong. Combining content and link for classification using
matrix factorization. SIGIR ’07.

10

