
Streaming Weak Submodularity:
Interpreting Neural Networks on the Fly

Ethan R. Elenberg
Department of Electrical

and Computer Engineering
The University of Texas at Austin

elenberg@utexas.edu

Alexandros G. Dimakis
Department of Electrical

and Computer Engineering
The University of Texas at Austin
dimakis@austin.utexas.edu

Moran Feldman
Department of Mathematics

and Computer Science
Open University of Israel
moranfe@openu.ac.il

Amin Karbasi
Department of Electrical Engineering

Department of Computer Science
Yale University

amin.karbasi@yale.edu

Abstract

In many machine learning applications, it is important to explain the predictions
of a black-box classifier. For example, why does a deep neural network assign
an image to a particular class? We cast interpretability of black-box classifiers
as a combinatorial maximization problem and propose an efficient streaming
algorithm to solve it subject to cardinality constraints. By extending ideas from
Badanidiyuru et al. [2014], we provide a constant factor approximation guarantee
for our algorithm in the case of random stream order and a weakly submodular
objective function. This is the first such theoretical guarantee for this general class
of functions, and we also show that no such algorithm exists for a worst case stream
order. Our algorithm obtains similar explanations of Inception V3 predictions 10
times faster than the state-of-the-art LIME framework of Ribeiro et al. [2016].

1 Introduction

Consider the following combinatorial optimization problem. Given a ground set N of N elements
and a set function f : 2N 7! R�0

, find the set S of size k which maximizes f(S). This formulation
is at the heart of many machine learning applications such as sparse regression, data summarization,
facility location, and graphical model inference. Although the problem is intractable in general, if
f is assumed to be submodular then many approximation algorithms have been shown to perform
provably within a constant factor from the best solution.

Some disadvantages of the standard greedy algorithm of Nemhauser et al. [1978] for this problem are
that it requires repeated access to each data element and a large total number of function evaluations.
This is undesirable in many large-scale machine learning tasks where the entire dataset cannot fit in
main memory, or when a single function evaluation is time consuming. In our main application, each
function evaluation corresponds to inference on a large neural network and can take a few seconds.
In contrast, streaming algorithms make a small number of passes (often only one) over the data and
have sublinear space complexity, and thus, are ideal for tasks of the above kind.

Recent ideas, algorithms, and techniques from submodular set function theory have been used to
derive similar results in much more general settings. For example, Elenberg et al. [2016a] used
the concept of weak submodularity to derive approximation and parameter recovery guarantees for

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

nonlinear sparse regression. Thus, a natural question is whether recent results on streaming algorithms
for maximizing submodular functions [Badanidiyuru et al., 2014, Buchbinder et al., 2015, Chekuri
et al., 2015] extend to the weakly submodular setting.

This paper answers the above question by providing the first analysis of a streaming algorithm
for any class of approximately submodular functions. We use key algorithmic components of
SIEVE-STREAMING [Badanidiyuru et al., 2014], namely greedy thresholding and binary search,
combined with a novel analysis to prove a constant factor approximation for �-weakly submodular
functions (defined in Section 3). Specifically, our contributions are as follows.

• An impossibility result showing that, even for 0.5-weakly submodular objectives, no rando-
mized streaming algorithm which uses o(N) memory can have a constant approximation
ratio when the ground set elements arrive in a worst case order.

• STREAK: a greedy, deterministic streaming algorithm for maximizing �-weakly submodular
functions which uses O("�1k log k) memory and has an approximation ratio of (1� ")�

2

·
(3� e��/2 � 2

p
2� e��/2

) when the ground set elements arrive in a random order.
• An experimental evaluation of our algorithm in two applications: nonlinear sparse regres-

sion using pairwise products of features and interpretability of black-box neural network
classifiers.

The above theoretical impossibility result is quite surprising since it stands in sharp contrast to known
streaming algorithms for submodular objectives achieving a constant approximation ratio even for
worst case stream order.

One advantage of our approach is that, while our approximation guarantees are in terms of �, our
algorithm STREAK runs without requiring prior knowledge about the value of �. This is important
since the weak submodularity parameter � is hard to compute, especially in streaming applications,
as a single element can alter � drastically.

We use our streaming algorithm for neural network interpretability on Inception V3 [Szegedy et al.,
2016]. For that purpose, we define a new set function maximization problem similar to LIME [Ribeiro
et al., 2016] and apply our framework to approximately maximize this function. Experimentally,
we find that our interpretability method produces explanations of similar quality as LIME, but runs
approximately 10 times faster.

2 Related Work

Monotone submodular set function maximization has been well studied, starting with the classical
analysis of greedy forward selection subject to a matroid constraint [Nemhauser et al., 1978, Fisher
et al., 1978]. For the special case of a uniform matroid constraint, the greedy algorithm achieves
an approximation ratio of 1� 1/e [Fisher et al., 1978], and a more involved algorithm obtains this
ratio also for general matroid constraints [Călinescu et al., 2011]. In general, no polynomial-time
algorithm can have a better approximation ratio even for a uniform matroid constraint [Nemhauser
and Wolsey, 1978, Feige, 1998]. However, it is possible to improve upon this bound when the data
obeys some additional guarantees [Conforti and Cornuéjols, 1984, Vondrák, 2010, Sviridenko et al.,
2015]. For maximizing nonnegative, not necessarily monotone, submodular functions subject to
a general matroid constraint, the state-of-the-art randomized algorithm achieves an approximation
ratio of 0.385 [Buchbinder and Feldman, 2016b]. Moreover, for uniform matroids there is also
a deterministic algorithm achieving a slightly worse approximation ratio of 1/e [Buchbinder and
Feldman, 2016a]. The reader is referred to Bach [2013] and Krause and Golovin [2014] for surveys
on submodular function theory.

A recent line of work aims to develop new algorithms for optimizing submodular functions suit-
able for large-scale machine learning applications. Algorithmic advances of this kind include
STOCHASTIC-GREEDY [Mirzasoleiman et al., 2015], SIEVE-STREAMING [Badanidiyuru et al.,
2014], and several distributed approaches [Mirzasoleiman et al., 2013, Barbosa et al., 2015, 2016, Pan
et al., 2014, Khanna et al., 2017b]. Our algorithm extends ideas found in SIEVE-STREAMING and
uses a different analysis to handle more general functions. Additionally, submodular set functions
have been used to prove guarantees for online and active learning problems [Hoi et al., 2006, Wei
et al., 2015, Buchbinder et al., 2015]. Specifically, in the online setting corresponding to our setting

2

(i.e., maximizing a monotone function subject to a cardinality constraint), Chan et al. [2017] achieve
a competitive ratio of about 0.3178 when the function is submodular.

The concept of weak submodularity was introduced in Krause and Cevher [2010], Das and Kempe
[2011], where it was applied to the specific problem of feature selection in linear regression. Their
main results state that if the data covariance matrix is not too correlated (using either incoherence or
restricted eigenvalue assumptions), then maximizing the goodness of fit f(S) = R2

S as a function of
the feature set S is weakly submodular. This leads to constant factor approximation guarantees for
several greedy algorithms. Weak submodularity was connected with Restricted Strong Convexity
in Elenberg et al. [2016a,b]. This showed that the same assumptions which imply the success of
regularization also lead to guarantees on greedy algorithms. This framework was later used for
additional algorithms and applications [Khanna et al., 2017a,b]. Other approximate versions of
submodularity were used for greedy selection problems in Horel and Singer [2016], Hassidim and
Singer [2017], Altschuler et al. [2016], Bian et al. [2017]. To the best of our knowledge, this is the
first analysis of streaming algorithms for approximately submodular set functions.

Increased interest in interpretable machine learning models has led to extensive study of sparse
feature selection methods. For example, Bahmani et al. [2013] consider greedy algorithms for logistic
regression, and Yang et al. [2016] solve a more general problem using `

1

regularization. Recently,
Ribeiro et al. [2016] developed a framework called LIME for interpreting black-box neural networks,
and Sundararajan et al. [2017] proposed a method that requires access to the network’s gradients with
respect to its inputs. We compare our algorithm to variations of LIME in Section 6.2.

3 Preliminaries

First we establish some definitions and notation. Sets are denoted with capital letters, and all big O
notation is assumed to be scaling with respect to N (the number of elements in the input stream).
Given a set function f , we often use the discrete derivative f(B | A) , f(A [B) � f(A). f is
monotone if f(B | A) � 0, 8A,B and nonnegative if f(A) � 0, 8A. Using this notation one can
define weakly submodular functions based on the following ratio.

Definition 3.1 (Weak Submodularity, adapted from Das and Kempe [2011]). A monotone nonnegative
set function f : 2

N 7! R�0

is called �-weakly submodular for an integer r if

�  �r , min

L,S✓N :

|L|,|S\L|r

P

j2S\L f(j | L)
f(S | L) ,

where the ratio is considered to be equal to 1 when its numerator and denominator are both 0.

This generalizes submodular functions by relaxing the diminishing returns property of discrete
derivatives. It is easy to show that f is submodular if and only if �|N | = 1.

Definition 3.2 (Approximation Ratio). A streaming maximization algorithm ALG which returns
a set S has approximation ratio R 2 [0, 1] if E[f(S)] � R · f(OPT), where OPT is the optimal
solution and the expectation is over the random decisions of the algorithm and the randomness of the
input stream order (when it is random).

Formally our problem is as follows. Assume that elements from a ground set N arrive in a stream at
either random or worst case order. The goal is then to design a one pass streaming algorithm that
given oracle access to a nonnegative set function f : 2

N 7! R�0

maintains at most o(N) elements in
memory and returns a set S of size at most k approximating

max

|T |k
f(T) ,

up to an approximation ratio R(�k). Ideally, this approximation ratio should be as large as possible,
and we also want it to be a function of �k and nothing else. In particular, we want it to be independent
of k and N .

To simplify notation, we use � in place of �k in the rest of the paper. Additionally, proofs for all our
theoretical results are deferred to the Supplementary Material.

3

4 Impossibility Result

To prove our negative result showing that no streaming algorithm for our problem has a constant
approximation ratio against a worst case stream order, we first need to construct a weakly submodular
set function fk. Later we use it to construct a bad instance for any given streaming algorithm.

Fix some k � 1, and consider the ground set Nk = {ui, vi}ki=1

. For ease of notation, let us define
for every subset S ✓ Nk

u(S) = |S \ {ui}ki=1

| , v(S) = |S \ {vi}ki=1

| .

Now we define the following set function:

fk(S) = min{2 · u(S) + 1, 2 · v(S)} 8 S ✓ Nk .

Lemma 4.1. fk is nonnegative, monotone and 0.5-weakly submodular for the integer |Nk|.
Since |Nk| = 2k, the maximum value of fk is fk(Nk) = 2 · v(Nk) = 2k. We now extend the ground
set of fk by adding to it an arbitrary large number d of dummy elements which do not affect fk at all.
Clearly, this does not affect the properties of fk proved in Lemma 4.1. However, the introduction
of dummy elements allows us to assume that k is an arbitrary small value compared to N , which is
necessary for the proof of the next theorem. In a nutshell, this proof is based on the observation that
the elements of {ui}ki=1

are indistinguishable from the dummy elements as long as no element of
{vi}ki=1

has arrived yet.
Theorem 4.2. For every constant c 2 (0, 1] there is a large enough k such that no randomized
streaming algorithm that uses o(N) memory to solve max|S|2k fk(S) has an approximation ratio
of c for a worst case stream order.

We note that fk has strong properties. In particular, Lemma 4.1 implies that it is 0.5-weakly
submodular for every 0  r  |N |. In contrast, the algorithm we show later assumes weak
submodularity only for the cardinality constraint k. Thus, the above theorem implies that worst
case stream order precludes a constant approximation ratio even for functions with much stronger
properties compared to what is necessary for getting a constant approximation ratio when the order is
random.

The proof of Theorem 4.2 relies critically on the fact that each element is seen exactly once. In
other words, once the algorithm decides to discard an element from its memory, this element is gone
forever, which is a standard assumption for streaming algorithms. Thus, the theorem does not apply
to algorithms that use multiple passes over N , or non-streaming algorithms that use o(N) writable
memory, and their analysis remains an interesting open problem.

5 Streaming Algorithms

In this section we give a deterministic streaming algorithm for our problem which works in a model
in which the stream contains the elements of N in a random order. We first describe in Section 5.1
such a streaming algorithm assuming access to a value ⌧ which approximates a� · f(OPT), where a
is a shorthand for a = (

p
2� e��/2 � 1)/2. Then, in Section 5.2 we explain how this assumption

can be removed to obtain STREAK and bound its approximation ratio, space complexity, and running
time.

5.1 Algorithm with access to ⌧

Consider Algorithm 1. In addition to the input instance, this algorithm gets a parameter ⌧ 2
[0, a� · f(OPT)]. One should think of ⌧ as close to a� · f(OPT), although the following analysis
of the algorithm does not rely on it. We provide an outline of the proof, but defer the technical details
to the Supplementary Material.
Theorem 5.1. The expected value of the set produced by Algorithm 1 is at least

⌧

a
· 3� e��/2 � 2

p
2� e��/2

2

= ⌧ · (
p

2� e��/2 � 1) .

4

Algorithm 1 THRESHOLD GREEDY(f, k, ⌧)
Let S ?.
while there are more elements do

Let u be the next element.
if |S| < k and f(u | S) � ⌧/k then

Update S S [{u}.
end if

end while
return: S

Algorithm 2 STREAK(f, k, ")
Let m 0, and let I be an (originally empty) collection of instances of Algorithm 1.
while there are more elements do

Let u be the next element.
if f(u) � m then

Update m f(u) and um u.
end if
Update I so that it contains an instance of Algorithm 1 with ⌧ = x for every x 2 {(1� ")i | i 2
Z and (1� ")m/(9k2)  (1� ")i  mk}, as explained in Section 5.2.
Pass u to all instances of Algorithm 1 in I .

end while
return: the best set among all the outputs of the instances of Algorithm 1 in I and the singleton
set {um}.

Proof (Sketch). Let E be the event that f(S) < ⌧ , where S is the output produced by Algorithm 1.
Clearly f(S) � ⌧ whenever E does not occur, and thus, it is possible to lower bound the expected
value of f(S) using E as follows.

Observation 5.2. Let S denote the output of Algorithm 1, then E[f(S)] � (1� Pr[E]) · ⌧ .

The lower bound given by Observation 5.2 is decreasing in Pr[E]. Proposition 5.4 provides another
lower bound for E[f(S)] which increases with Pr[E]. An important ingredient of the proof of this
proposition is the next observation, which implies that the solution produced by Algorithm 1 is always
of size smaller than k when E happens.

Observation 5.3. If at some point Algorithm 1 has a set S of size k, then f(S) � ⌧ .

The proof of Proposition 5.4 is based on the above observation and on the observation that the random
arrival order implies that every time that an element of OPT arrives in the stream we may assume it
is a random element out of all the OPT elements that did not arrive yet.

Proposition 5.4. For the set S produced by Algorithm 1,

E[f(S)] � 1

2

·
⇣

� · [Pr[E]� e��/2
] · f(OPT)� 2⌧

⌘

.

The theorem now follows by showing that for every possible value of Pr[E] the guarantee of the
theorem is implied by either Observation 5.2 or Proposition 5.4. Specifically, the former happens
when Pr[E]  2�

p
2� e��/2 and the later when Pr[E] � 2�

p
2� e��/2.

5.2 Algorithm without access to ⌧

In this section we explain how to get an algorithm which does not depend on ⌧ . Instead, STREAK
(Algorithm 2) receives an accuracy parameter " 2 (0, 1). Then, it uses " to run several instances of
Algorithm 1 stored in a collection denoted by I . The algorithm maintains two variables throughout its
execution: m is the maximum value of a singleton set corresponding to an element that the algorithm
already observed, and um references an arbitrary element satisfying f(um) = m.

5

The collection I is updated as follows after each element arrival. If previously I contained an instance
of Algorithm 1 with a given value for ⌧ , and it no longer should contain such an instance, then the
instance is simply removed. In contrast, if I did not contain an instance of Algorithm 1 with a given
value for ⌧ , and it should now contain such an instance, then a new instance with this value for ⌧ is
created. Finally, if I contained an instance of Algorithm 1 with a given value for ⌧ , and it should
continue to contain such an instance, then this instance remains in I as is.
Theorem 5.5. The approximation ratio of STREAK is at least

(1� ")� · 3� e��/2 � 2

p
2� e��/2

2

.

The proof of Theorem 5.5 shows that in the final collection I there is an instance of Algorithm 1
whose ⌧ provides a good approximation for a� · f(OPT), and thus, this instance of Algorithm 1
should (up to some technical details) produce a good output set in accordance with Theorem 5.1.

It remains to analyze the space complexity and running time of STREAK. We concentrate on bounding
the number of elements STREAK keeps in its memory at any given time, as this amount dominates
the space complexity as long as we assume that the space necessary to keep an element is at least as
large as the space necessary to keep each one of the numbers used by the algorithm.
Theorem 5.6. The space complexity of STREAK is O("�1k log k) elements.

The running time of Algorithm 1 is O(Nf) where, abusing notation, f is the running time of a single
oracle evaluation of f . Therefore, the running time of STREAK is O(Nf"�1

log k) since it uses at
every given time only O("�1

log k) instances of the former algorithm. Given multiple threads, this
can be improved to O(Nf + "�1

log k) by running the O("�1

log k) instances of Algorithm 1 in
parallel.

6 Experiments

We evaluate the performance of our streaming algorithm on two sparse feature selection applications.1
Features are passed to all algorithms in a random order to match the setting of Section 5.

Random Streak(0.75) Streak(0.1) Local Search
0

200

400

600

Lo
g

Li
ke

lih
oo

d

Random Streak(0.75) Streak(0.1) Local Search
0.70

0.75

0.80

0.85

0.90

0.95

1.00

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

k=20 k=40 k=80

(a) Performance

Random Streak(0.75) Streak(0.1) Local Search
0

5000

10000

15000

R
un

ni
ng

Ti
m

e
(s

)

Random Streak(0.75) Streak(0.1) Local Search
0

100000

200000

300000

400000

O
ra

cl
e

E
va

lu
at

io
ns

k=20 k=40 k=80

(b) Cost

Figure 1: Logistic Regression, Phishing dataset with pairwise feature products. Our algorithm is
comparable to LOCALSEARCH in both log likelihood and generalization accuracy, with much lower
running time and number of model fits in most cases. Results averaged over 40 iterations, error bars
show 1 standard deviation.
6.1 Sparse Regression with Pairwise Features

In this experiment, a sparse logistic regression is fit on 2000 training and 2000 test observations from
the Phishing dataset [Lichman, 2013]. This setup is known to be weakly submodular under mild data
assumptions [Elenberg et al., 2016a]. First, the categorical features are one-hot encoded, increasing

1Code for these experiments is available at https://github.com/eelenberg/streak.

6

https://github.com/eelenberg/streak

100 101 102 103 104 105

Running Time (s)

500

550

600

650

700

Lo
g

Li
ke

lih
oo

d

Random
Streak(0.75)
Streak(0.5)
Streak(0.2)
Streak(0.1)
Streak(0.05)
Local Search

(a) Sparse Regression

LIME + Max Wts LIME + FS LIME + Lasso Streak
0

500

1000

1500

2000

2500

R
un

ni
ng

Ti
m

e
(s

)

(b) Interpretability

Figure 2: 2(a): Logistic Regression, Phishing dataset with pairwise feature products, k = 80

features. By varying the parameter ", our algorithm captures a time-accuracy tradeoff between
RANDOMSUBSET and LOCALSEARCH. Results averaged over 40 iterations, standard deviation
shown with error bars. 2(b): Running times of interpretability algorithms on the Inception V3
network, N = 30, k = 5. Streaming maximization runs 10 times faster than the LIME framework.
Results averaged over 40 total iterations using 8 example explanations, error bars show 1 standard
deviation.

the feature dimension to 68. Then, all pairwise products are added for a total of N = 4692 features.
To reduce computational cost, feature products are generated and added to the stream on-the-fly as
needed. We compare with 2 other algorithms. RANDOMSUBSET selects the first k features from
the random stream. LOCALSEARCH first fills a buffer with the first k features, and then swaps each
incoming feature with the feature from the buffer which yields the largest nonnegative improvement.

Figure 1(a) shows both the final log likelihood and the generalization accuracy for RANDOMSUBSET,
LOCALSEARCH, and our STREAK algorithm for " = {0.75, 0.1} and k = {20, 40, 80}. As expected,
the RANDOMSUBSET algorithm has much larger variation since its performance depends highly on
the random stream order. It also performs significantly worse than LOCALSEARCH for both metrics,
whereas STREAK is comparable for most parameter choices. Figure 1(b) shows two measures of
computational cost: running time and the number of oracle evaluations (regression fits). We note
STREAK scales better as k increases; for example, STREAK with k = 80 and " = 0.1 (" = 0.75)
runs in about 70% (5%) of the time it takes to run LOCALSEARCH with k = 40. Interestingly, our
speedups are more substantial with respect to running time. In some cases STREAK actually fits
more regressions than LOCALSEARCH, but still manages to be faster. We attribute this to the fact
that nearly all of LOCALSEARCH’s regressions involve k features, which are slower than many of
the small regressions called by STREAK.

Figure 2(a) shows the final log likelihood versus running time for k = 80 and " 2 [0.05, 0.75]. By
varying the precision ", we achieve a gradual tradeoff between speed and performance. This shows
that STREAK can reduce the running time by over an order of magnitude with minimal impact on the
final log likelihood.

6.2 Black-Box Interpretability

Our next application is interpreting the predictions of black-box machine learning models. Specifically,
we begin with the Inception V3 deep neural network [Szegedy et al., 2016] trained on ImageNet. We
use this network for the task of classifying 5 types of flowers via transfer learning. This is done by
adding a final softmax layer and retraining the network.

We compare our approach to the LIME framework [Ribeiro et al., 2016] for developing sparse,
interpretable explanations. The final step of LIME is to fit a k-sparse linear regression in the space of
interpretable features. Here, the features are superpixels determined by the SLIC image segmentation
algorithm [Achanta et al., 2012] (regions from any other segmentation would also suffice). The
number of superpixels is bounded by N = 30. After a feature selection step, a final regression is
performed on only the selected features. The following feature selection methods are supplied by

7

LIME: 1. Highest Weights: fits a full regression and keep the k features with largest coefficients. 2.
Forward Selection: standard greedy forward selection. 3. Lasso: `

1

regularization.

We introduce a novel method for black-box interpretability that is similar to but simpler than LIME.
As before, we segment an image into N superpixels. Then, for a subset S of those regions we can
create a new image that contains only these regions and feed this into the black-box classifier. For a
given model M , an input image I , and a label L

1

we ask for an explanation: why did model M label
image I with label L

1

. We propose the following solution to this problem. Consider the set function
f(S) giving the likelihood that image I(S) has label L

1

. We approximately solve

max

|S|k
f(S) ,

using STREAK. Intuitively, we are limiting the number of superpixels to k so that the output will
include only the most important superpixels, and thus, will represent an interpretable explanation. In
our experiments we set k = 5.

Note that the set function f(S) depends on the black-box classifier and is neither monotone nor
submodular in general. Still, we find that the greedy maximization algorithm produces very good
explanations for the flower classifier as shown in Figure 3 and the additional experiments in the
Supplementary Material. Figure 2(b) shows that our algorithm is much faster than the LIME approach.
This is primarily because LIME relies on generating and classifying a large set of randomly perturbed
example images.

7 Conclusions

We propose STREAK, the first streaming algorithm for maximizing weakly submodular functions,
and prove that it achieves a constant factor approximation assuming a random stream order. This
is useful when the set function is not submodular and, additionally, takes a long time to evaluate or
has a very large ground set. Conversely, we show that under a worst case stream order no algorithm
with memory sublinear in the ground set size has a constant factor approximation. We formulate
interpretability of black-box neural networks as set function maximization, and show that STREAK
provides interpretable explanations faster than previous approaches. We also show experimentally
that STREAK trades off accuracy and running time in nonlinear sparse regression.

One interesting direction for future work is to tighten the bounds of Theorems 5.1 and 5.5, which
are nontrivial but somewhat loose. For example, there is a gap between the theoretical guarantee
of the state-of-the-art algorithm for submodular functions and our bound for � = 1. However, as
our algorithm performs the same computation as that state-of-the-art algorithm when the function
is submodular, this gap is solely an analysis issue. Hence, the real theoretical performance of our
algorithm is better than what we have been able to prove in Section 5.

8 Acknowledgments

This research has been supported by NSF Grants CCF 1344364, 1407278, 1422549, 1618689, ARO
YIP W911NF-14-1-0258, ISF Grant 1357/16, Google Faculty Research Award, and DARPA Young
Faculty Award (D16AP00046).

8

(a) (b)

(c) (d)

Figure 3: Comparison of interpretability algorithms for the Inception V3 deep neural network. We
have used transfer learning to extract features from Inception and train a flower classifier. In these
four input images the flower types were correctly classified (from (a) to (d): rose, sunflower, daisy,
and daisy). We ask the question of interpretability: why did this model classify this image as rose.
We are using our framework (and the recent prior work LIME [Ribeiro et al., 2016]) to see which
parts of the image the neural network is looking at for these classification tasks. As can be seen
STREAK correctly identifies the flower parts of the images while some LIME variations do not. More
importantly, STREAK is creating subsampled images on-the-fly, and hence, runs approximately 10

times faster. Since interpretability tasks perform multiple calls to the black-box model, the running
times can be quite significant.

9

References
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk.

SLIC Superpixels Compared to State-of-the-art Superpixel Methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(11):2274–2282, 2012.

Jason Altschuler, Aditya Bhaskara, Gang (Thomas) Fu, Vahab Mirrokni, Afshin Rostamizadeh,
and Morteza Zadimoghaddam. Greedy Column Subset Selection: New Bounds and Distributed
Algorithms. In ICML, pages 2539–2548, 2016.

Francis R. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Foun-
dations and Trends in Machine Learning, 6, 2013.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Streaming
Submodular Maximization: Massive Data Summarization on the Fly. In KDD, pages 671–680,
2014.

Sohail Bahmani, Bhiksha Raj, and Petros T. Boufounos. Greedy Sparsity-Constrained Optimization.
Journal of Machine Learning Research, 14:807–841, 2013.

Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. The Power of Randomization:
Distributed Submodular Maximization on Massive Datasets. In ICML, pages 1236–1244, 2015.

Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. A New Framework for
Distributed Submodular Maximization. In FOCS, pages 645–654, 2016.

Andrew An Bian, Baharan Mirzasoleiman, Joachim M. Buhmann, and Andreas Krause. Guaranteed
Non-convex Optimization: Submodular Maximization over Continuous Domains. In AISTATS,
pages 111–120, 2017.

Niv Buchbinder and Moran Feldman. Deterministic Algorithms for Submodular Maximization
Problems. In SODA, pages 392–403, 2016a.

Niv Buchbinder and Moran Feldman. Constrained Submodular Maximization via a Non-symmetric
Technique. CoRR, abs/1611.03253, 2016b. URL http://arxiv.org/abs/1611.03253.

Niv Buchbinder, Moran Feldman, and Roy Schwartz. Online Submodular Maximization with
Preemption. In SODA, pages 1202–1216, 2015.

Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Monotone Submodu-
lar Function Subject to a Matroid Constraint. SIAM J. Comput., 40(6):1740–1766, 2011.

T-H. Hubert Chan, Zhiyi Huang, Shaofeng H.-C. Jiang, Ning Kang, and Zhihao Gavin Tang. Online
Submodular Maximization with Free Disposal: Randomization Beats 1/4 for Partition Matroids. In
SODA, pages 1204–1223, 2017.

Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming Algorithms for Submodular
Function Maximization. In ICALP, pages 318–330, 2015.

Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem.
Discrete Applied Mathematics, 7(3):251–274, March 1984.

Abhimanyu Das and David Kempe. Submodular meets Spectral: Greedy Algorithms for Subset
Selection, Sparse Approximation and Dictionary Selection. In ICML, pages 1057–1064, 2011.

Ethan R. Elenberg, Rajiv Khanna, Alexandros G. Dimakis, and Sahand Negahban. Restricted
Strong Convexity Implies Weak Submodularity. CoRR, abs/1612.00804, 2016a. URL http:

//arxiv.org/abs/1612.00804.

Ethan R. Elenberg, Rajiv Khanna, Alexandros G. Dimakis, and Sahand Negahban. Restricted Strong
Convexity Implies Weak Submodularity. In NIPS Workshop on Learning in High Dimensions with
Structure, 2016b.

Uriel Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM (JACM), 45(4):
634–652, 1998.

10

http://arxiv.org/abs/1611.03253
http://arxiv.org/abs/1612.00804
http://arxiv.org/abs/1612.00804

Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of approximations
for maximizing submodular set functions–II. In M. L. Balinski and A. J. Hoffman, editors,
Polyhedral Combinatorics: Dedicated to the memory of D.R. Fulkerson, pages 73–87. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1978.

Avinatan Hassidim and Yaron Singer. Submodular Optimization Under Noise. In COLT, pages
1069–1122, 2017.

Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. Batch Mode Active Learning and its
Application to Medical Image Classification. In ICML, pages 417–424, 2006.

Thibaut Horel and Yaron Singer. Maximization of Approximately Submodular Functions. In NIPS,
2016.

Rajiv Khanna, Ethan R. Elenberg, Alexandros G. Dimakis, Joydeep Ghosh, and Sahand Negahban.
On Approximation Guarantees for Greedy Low Rank Optimization. In ICML, pages 1837–1846,
2017a.

Rajiv Khanna, Ethan R. Elenberg, Alexandros G. Dimakis, Sahand Negahban, and Joydeep Ghosh.
Scalable Greedy Support Selection via Weak Submodularity. In AISTATS, pages 1560–1568,
2017b.

Andreas Krause and Volkan Cevher. Submodular Dictionary Selection for Sparse Representation. In
ICML, pages 567–574, 2010.

Andreas Krause and Daniel Golovin. Submodular Function Maximization. Tractability: Practical
Approaches to Hard Problems, 3:71–104, 2014.

Moshe Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/

ml.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed Submodular
Maximization: Identifying Representative Elements in Massive Data. NIPS, pages 2049–2057,
2013.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier Than Lazy Greedy. In AAAI, pages 1812–1818, 2015.

George L. Nemhauser and Laurence A. Wolsey. Best Algorithms for Approximating the Maximum
of a Submodular Set Function. Math. Oper. Res., 3(3):177–188, August 1978.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations
for maximizing submodular set functions–I. Mathematical Programming, 14(1):265–294, 1978.

Xinghao Pan, Stefanie Jegelka, Joseph E. Gonzalez, Joseph K. Bradley, and Michael I. Jordan.
Parallel Double Greedy Submodular Maximization. In NIPS, pages 118–126, 2014.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust You?” Explaining
the Predictions of Any Classifier. In KDD, pages 1135–1144, 2016.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks. In
ICML, pages 3319–3328, 2017.

Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for submodular and
supermodular optimization with bounded curvature. In SODA, pages 1134–1148, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the Inception Architecture for Computer Vision. In CVPR, pages 2818–2826, 2016.

Jan Vondrák. Submodularity and curvature: the optimal algorithm. RIMS Kôkyûroku Bessatsu B23,
pages 253–266, 2010.

Kai Wei, Iyer Rishabh, and Jeff Bilmes. Submodularity in Data Subset Selection and Active Learning.
ICML, pages 1954–1963, 2015.

Zhuoran Yang, Zhaoran Wang, Han Liu, Yonina C. Eldar, and Tong Zhang. Sparse Nonlinear
Regression: Parameter Estimation and Asymptotic Inference. ICML, pages 2472–2481, 2016.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

